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Abstract

We live in a digital world. A significant part of our lives happens online, and we use
the internet for incredibly many different purposes and we rely on increasingly advanced
technology. It therefore is important to protect against malicious actors who may try to
exploit this reliance for their own gain.

Cryptography is a key part of the answer to protecting internet users. Historically,
cryptography has mainly been focused on maintaining the confidentiality of communi-
cation, ensuring that no one can read private messages sent between people. In recent
decades, cryptography has become concerned with creating protocols which guarantee
privacy even as they support more complex actions.

A crucial cryptographic tool to ensure that these protocols are indeed followed is the
zero-knowledge proof. A zero-knowledge proof is a process where two parties, a prover
and a verifier, exchange messages to convince the verifier that the prover followed the
protocol correctly (if indeed the prover did so) without revealing any private information
to the verifier.

It is often desirable to create a non-interactive zero-knowledge proof (NIZK), where
the prover only sends one message to the verifier. NIZKs have found a number of
different applications, which makes them an attractive object of study. A NIZK has a
variety of different properties, and improving any of these aspects advances our collective
cryptographic knowledge.

In the first paper in this thesis, we construct a new non-interactive zero-knowledge
proof for languages based on algebraic sets. This paper is based on work by Couteau
and Hartmann (Crypto 2020), which showed how to convert a particular interactive
zero-knowledge proof to a NIZK. We follow their approach, but we start with a different
interactive zero-knowledge proof. This leads to an improvement compared to their work
in several ways, in particular in terms of both assumptions and efficiency.

In the second paper in this thesis, we study the property of subversion zero-knowledge
in non-interactive zero-knowledge proofs. It is impossible to create a NIZK without
relying on a common reference string (CRS) generated by a trusted party. However, a
NIZK with the subversion zero-knowledge property guarantees that no one learns any
private information from the proof even if the CRS was generated dishonestly. In this
paper, we create a new cryptographic primitive (verifiably-extractable one-way functions)
and show how this primitive relates to NIZKs with subversion zero-knowledge.
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Sammendrag

Vi lever i en digital verden. En betydelig del av livene våre skjer på nettet, og vi bruker
internett for stadig flere formål og er avhengig av stadig mer avansert teknologi. Det er
derfor viktig å beskytte seg mot ondsinnede aktører som kan forsøke å utnytte denne
avhengigheten for egen vinning.

Kryptografi er en sentral del av svaret på hvordan man kan beskytte internettbrukere.
Historisk sett har kryptografi hovedsakelig vært opptatt av konfidensiell kommunikasjon,
altså at ingen kan lese private meldinger sendt mellom to personer. I de siste tiårene har
kryptografi blitt mer opptatt av å lage protokoller som garanterer personvern selv om
man kan gjennomføre komplekse handlinger.

Et viktig kryptografisk verktøy for å sikre at disse protokollene faktisk følges er
kunnskapsløse bevis. Et kunnskapsløst bevis er en prosess hvor to parter, en bevisfører
og en attestant, utveksler meldinger for å overbevise attestanten om at bevisføreren
fulgte protokollen riktig (hvis dette faktisk er tilfelle) uten å avsløre privat informasjon
til attestanten.

For de fleste anvendelser er det ønskelig å lage et ikke-interaktivt kunnskapsløst bevis
(IIK-bevis), der bevisføreren kun sender én melding til attestanten. IIK-bevis har en rekke
ulike bruksområder, som gjør de til attraktive studieobjekter. Et IIK-bevis har en rekke
ulike egenskaper og forbedring av noen av disse fremmer vår kollektive kryptografiske
kunnskap.

I den første artikkelen i denne avhandlingen konstruerer vi et nytt ikke-interaktivt
kunnskapsløst bevis for språk basert på algebraiske mengder. Denne artikkelen er
basert på arbeid av Couteau og Hartmann (Crypto 2020), som viste hvordan man
omformer et bestemt interaktivt kunnskapsløst bevis til et IIK-bevis. Vi følger deres
tilnærming, men vi bruker et annet interaktivt kunnskapsløst bevis. Dette fører til en
forbedring sammenlignet med arbeidet deres på flere områder, spesielt når det gjelder
både formodninger og effektivitet.

I den andre artikkelen i denne avhandlingen studerer vi egenskapene til ikke-interaktive
kunnskapsløse bevis som er motstandsdyktige mot undergraving. Det er umulig å lage et
IIK-bevis uten å stole på en felles referansestreng (FRS) generert av en pålitelig tredjepart.
Men det finnes eksempler på IIK-bevis der ingen lærer noe privat informasjon fra beviset
selv om den felles referansestrengen ble skapt på en uredelig måte. I denne artikkelen
lager vi en ny kryptografisk primitiv (verifiserbart-uttrekkbare enveisfunksjoner) og viser
hvordan denne primitiven er relatert til IIK-bevis med den ovennevnte egenskapen.
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Chapter 1

Introduction

1.1 Cryptography

The Cambridge Dictionary defines cryptography as the practice of creating and under-
standing codes that keep information secret. The field of cryptography concerns, in its
modern form, a vast variety of methods for achieving a large number of tasks without
revealing secret information to unwanted parties, called adversaries. While the field
contains many different subfields with advanced applications, which we will discuss later,
historically the most important aspect of cryptography has been secure communication,
where one party, Alice, wants to communicate privately with a second party, Bob. The
goal of secure communication is that an eavesdropper, Eve, should not be able to learn
anything about the content of the message Alice sends to Bob even if Eve can see what
is being sent by Alice.

The typical approach to achieving secure communication is that Alice starts out with a
plaintext, the message she wants to send to Bob. She then applies an encryption algorithm
to scramble the plaintext and render it in an unintelligible form called a ciphertext, which
she then transmits to Bob. Bob, upon receiving the ciphertext, applies a decryption
algorithm to unscramble the ciphertext and recover the original plaintext.

Secure communication has been vital at various times throughout history, particularly
during times of armed conflict. If a general wants to send orders to their subordinates, it is
of utmost importance that the enemy cannot intercept these orders. Thus, advancements
in cryptography became crucial war assets. If one side were able to secure their own
communication but managed to read the communication of the enemy, this could prove
a decisive advantage. Indeed, during World War II, due to work by a large team at
Bletchley Park, the Allies were able to read top-secret Axis communication. Their efforts
are estimated to have shortened the war by several years and saved millions of lives [Sin99].

Until the 1970s, a plethora of different techniques were used to create the algorithms
used for encryption and decryption, but they all followed a similar template. Alice and
Bob would first agree on an algorithm and would share a secret key. Using this shared
algorithm and key, Alice would compute the ciphertext from her plaintext and send it to
Bob, and Bob would recover the plaintext from this ciphertext.

The drawback of this approach is that Alice and Bob need to agree on a key. This
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is a surmountable task if Alice and Bob can meet up in person, but if Alice and Bob
want to communicate securely over the internet, and they are on opposite sides of the
Earth, this suddenly becomes a serious challenge. The advent of public-key cryptography
provided the solution to this problem, and in doing so helped revolutionize the field.
Diffie and Hellman [DH76], based on earlier work by Merkle [Mer78], defined and created
a method for key exchange, where two different parties can, by only exchanging messages
in public, agree on a shared secret key known only to them. Around the same time,
Rivest, Shamir and Adleman [RSA78] created a method for public-key encryption, where
one party can encrypt the message using a public encryption key, but only the intended
recipient can decrypt the ciphertext using their private decryption key. Both of these
methods relied on a separation between public and private keys satisfying a specific
mathematical relationship. Public-key cryptography was discovered earlier at the British
signals intelligence agency GCHQ, but the fact of their discovery was kept secret until
several decades later [Sin99].

During the latter half of the twentieth century, alongside the new development of
public-key cryptography, cryptography as a whole started moving in a more scientific
direction, and away from the various ad-hoc approaches used previously. Provable security
became a core part of the field, where security properties were formally defined, and
constructions were proven secure. Only certain cryptographic constructions can be proven
secure unconditionally, and the remaining constructions rely on unproven, but usually
well-motivated, complexity-theoretic assumptions, such as the supposed difficulty of
factoring an integer into its prime factors.

As information technology has grown more mature and advanced, the number of
possible applications of various kinds of cryptography has increased drastically. These
days, cryptographers are interested in a lot more than secure communication. Some of
the major topics in vogue at the moment are: homomorphic encryption, where one can
compute on encrypted data without decrypting it first, which could allow someone to run
tests for you based on your private medical data without revealing anything about you;
secure multi-party computation, where a group of people can compute a function of their
inputs while keeping their inputs secret, which could be used to run an auction where
the highest bidder wins but the bids of everyone else remain secret; and the topic of
this thesis, zero-knowledge proofs, where someone can prove properties about secret data
without revealing it, which Bob could use to prove that his cryptocurrency transaction is
legitimate without revealing the sender, recipient or the amount of money being sent.
For more applications of zero-knowledge proofs, see Section 1.3.

To explain what zero-knowledge proofs are, we need to first take a detour into the
nature of proofs in mathematics.
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1.2 Mathematical proofs

The notion of proof is a big part of what makes mathematics a unique discipline. For
a statement to be accepted as true in mathematics, it needs to come with a proof that
establishes the logical necessity of the statement.

The recorded history of proofs in mathematics goes back more than 2500 years, to at
least Thales of Miletus (624-546 BCE). However, Euclid (ca. 300 BCE) is the person
credited with creating the notion of proof that mathematicians are familiar with today.
Euclid wrote an incredibly influential textbook, the Elements, on the subjects of plane
geometry and number theory. The mathematical content in this textbook was significant
on its own, but of most impact was the way statements were proved, and how those
proofs were presented. Euclid started with a small number of axioms, which he took as
pre-established truths. He then used logical derivation rules to derive new truths from
these axioms and would continue this process until he had derived the statement he
wanted to prove. This proof system, where the person creating the proof finds a list of
logical deductions which form the proof, and the person checking the proof simply verifies
that these logical deductions are indeed correct, remains ubiquitous in mathematics to
this very day.

Interactive proofs

The classical proof system has its strengths and weaknesses. It is very straightforward to
check if a properly written proof is indeed correct, and if the proof is correct, then the
statement must necessarily be true. However, such proofs can become very large, which
makes them time-consuming to both write down and verify. A natural question then
becomes whether there are other proof systems with more desirable properties. To create
a new proof system, a natural place to start is to figure out what the key components of
a proof system are, and how some of them can be modified.

Any proof system has two main roles, that of the prover and the verifier. The prover
has discovered the truth of some statement and wants to convince the verifier of this
fact. It sends a proof to the verifier, and the verifier checks whether the proof is correct.
A proof system needs to satisfy completeness, meaning that if the prover knows that a
statement is true and why this is the case, the prover can create a proof that the verifier
will accept. Additionally, the proof system needs to satisfy soundness, meaning that if
the verifier accepts the proof, then the statement must be true. Equivalently, it should
not be possible to create an acceptable proof of a false statement.

By cleverly modifying some of the properties of the classical proof system, Goldwasser,
Micali and Rackoff [GMR85] defined the interactive proof. The first defining aspect of
an interactive proof is that the prover and verifier can interact with each other. Instead
of the prover computing the whole proof on their own, the prover and verifier can send
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messages back and forth, and this interaction forms the proof. The second key aspect
of an interactive proof is the ability of the verifier to make random decisions, and ask
the prover random questions. Along with this reliance on randomness comes a slightly
relaxed soundness criterion. The new definition of soundness requires that the probability
that a cheating prover convinces the verifier to accept a false statement is sufficiently
small, but it can be non-zero, unlike in a classical proof.

A key advantage of interactive proofs is that they allow for the creation of much
smaller proofs. Shamir [Sha92] showed that, under a widely believed conjecture in
computer science, there are statements that can be proved with a small interactive proof,
but where any traditional proof would be so long that the universe would end before it
could be verified. Both the interactive nature of the proof, and the random nature of the
verifier, are crucial to establishing this advantage over traditional proofs. The invention
of interactive proofs has had a massive impact on computer science, and Goldwasser,
Micali and Rackoff were awarded the 1993 Gödel Prize for their work, along with Babai
and Moran.

1.3 Zero-knowledge proofs

Another benefit of interactive proofs becomes apparent when considering other applications
than mathematics. While a proof in mathematics is intended to illuminate why a particular
statement is true, there are circumstances where you only want to show that something
is true, but not why. Suppose you have created a great sudoku puzzle for your friend to
solve, but your friend is not convinced that this puzzle actually has a solution. A perfectly
valid proof would be to simply reveal a solution, but this could ruin the enjoyment they
would get from solving it. For this reason, you might desire additional properties of a
proof beyond just completeness and soundness.

In the same paper where they define interactive proofs, Goldwasser, Micali and
Rackoff [GMR85] also define what it means for a proof to be a zero-knowledge (ZK) proof.
A zero-knowledge proof is a proof where the verifier only learns that the statement is
true, but nothing else beyond this fact, particularly no secret information the prover used
to create the proof. Returning to our sudoku example, a ZK proof showing that a sudoku
puzzle is valid would establish solely this fact, and would not spoil anything about how
to solve the puzzle. Ben-Or et al. [Ben+90] showed that every interactive proof can be
transformed into a zero-knowledge interactive proof.

Zero-knowledge proofs are where cryptography and mathematical proofs join hands
because they are proofs that can be used to protect someone’s privacy, as in the following
example. An online casino will only let in users who are 18 years or older. If a user wants
to gain access to this casino, they could transmit their age to the casino, but if the user
wants to keep their age secret, this is a bad idea. The user and website can instead carry
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out a zero-knowledge proof to check that the user’s age is at least 18. The ZK property
guarantees that the casino learns nothing about the age of the user beyond the fact that
the user is over 18 years old, and thus the privacy of the user is maintained.

To show the validity of a specific construction of a ZK proof system, one needs
to provide a (classical) proof that the construction satisfies completeness, soundness
and zero-knowledge. These proofs often rely on a cryptographic assumption, and then
they only show that the property is secure against efficient adversaries. For example,
a construction might only satisfy computational soundness, meaning that an adversary
which has unlimited time and resources could find a valid proof of a false statement,
but any adversary which can only take some reasonable amount of time would not be
able to. Zero-knowledge proofs which only satisfy computational soundness are called
zero-knowledge arguments.

Non-interactive zero-knowledge proofs

While zero-knowledge proofs were originally formulated in the interactive setting, this
turns out to have significant drawbacks for certain applications. Verifying the same
statement multiple times becomes complicated as there must be an interaction process
every time a statement needs to be checked. Additionally, it places additional demands
on the prover, as they need to be continuously available to interact with the verifier and
defend their statement. To overcome these drawbacks, it would be convenient to combine
the zero-knowledge property with the non-interactive nature of traditional proofs. Sadly,
Goldreich and Oren [GO94] showed this to be impossible in its basic form: One cannot
hope to achieve zero-knowledge proofs for non-trivial statements if the prover only sends
one message to the verifier.

Fortunately, this is not the end of the story. Blum, Feldman and Micali [BFM88]
showed that one can construct non-interactive zero-knowledge proofs (NIZKs) in the
common reference string (CRS) model. In this setting, there needs to be a setup phase
ahead of time, run by a third party trusted by both the prover and the verifier, which
generates some common information shared between the prover and verifier. After this
setup has been done, the prover only needs to send one additional message to the verifier
to create a proof.

The initial work of Blum, Feldman and Micali was a (non-interactive) proof of concept
and had significant drawbacks. Most importantly, their NIZK was very inefficient, in the
sense that computing and verifying a proof would take too much time for any real-life
applications. An early alternative was the Fiat–Shamir transform, created by Fiat and
Shamir [FS87], in which one transforms an interactive ZK proof (with certain specific
properties) into a non-interactive ZK proof by letting the prover compute the verifier’s
messages on their own, in such a way that the prover is not able to cheat. This approach
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can lead to very efficient NIZKs and does not rely on a CRS, but the security of such a
NIZK is only proven in the random oracle model. This suggests that the NIZK is secure,
but provides no concrete proof, as there are protocols proven secure in the random oracle
model which are actually insecure [CGH98].

An important historical milestone to mention is the creation by Groth and Sahai [GS08]
of Groth–Sahai proofs, provably secure NIZKs based on a very standard and well-known
assumption, which do not rely on the random oracle model. Their approach led to
proofs which were efficient for a limited set of useful statements. While one could use
Groth–Sahai proofs to prove any statement, this would be very slow and the proof would
be very big.

zk-SNARKs

While the work of Groth and Sahai presented a significant step forward, there were still
further improvements to be made with regard to efficiency. For a number of practical use
cases, where thousands of proofs need to be verified every second, and millions of proofs
need to be transferred and stored, the size of the proofs, as well as how quickly they can
be verified, become crucial, and the previous approaches were simply not sufficient.

It thus became desirable to construct a succinct non-interactive argument (SNARG),
where succinct means that the size of the proof stays small even as the statement becomes
more complex. Kilian [Kil92] used probabilistically checkable proofs to create a four-round
argument with succinct communication, and Micali [Mic94] showed how to turn this
protocol into a SNARG using the Fiat–Shamir transform to create a non-interactive
argument in the random oracle model. Di Crescenzo and Lipmaa [DL08] and Bitansky et.
al [Bit+17] followed a similar approach but removed the random oracle model by relying
on very strong assumptions. A sequence of works starting with Groth in 2010 [Gro10],
continued by Lipmaa [Lip12], Gennaro et al. [Gen+13] along with several others, showed
how to construct SNARGs using a mathematical structure called pairings. This line of
research culminated in the extremely efficient Groth16 SNARG [Gro16]. Using pairings
in this manner one again avoids the random oracle model but has to rely on very strong
assumptions.

All the works mentioned since 2010 were in fact succinct non-interactive arguments
of knowledge (SNARKs). The difference between a SNARG and a SNARK is that the
latter provides a stronger notion of soundness known as knowledge-soundness. If a proof
is knowledge-sound, this guarantees not only that a prover cannot cheat, but also that
any prover which can create a valid proof must know a witness which certifies that the
statement is true. For example, using a SNARK the verifier can be convinced that
not only is the statement “There exists a password which matches this public account
information” true, but the prover must also know such a password. SNARKs that also
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satisfy zero-knowledge are referred to as zk-SNARKs, and all previously mentioned
SNARKs are of this type.

Applications

Zero-knowledge proofs, and in particular NIZKs and zk-SNARKs, have found a number
of applications, both on their own and as a building block for other cryptographic
constructions.

The typical application for a zero-knowledge proof concerns a system where users
have some private data that would allow them to perform specific actions. Examples of
such private data could be their age, their location or their account password. The user
can simply reveal their private data, but this is often undesirable. A better solution is
to let the user compute a zero-knowledge proof showing that their private data satisfies
certain conditions. The soundness property of the proof guarantees that users cannot
perform actions they are not allowed to, and the zero-knowledge property guarantees
that the user’s private data is indeed kept private. Both interactive and non-interactive
zero-knowledge proofs could be appropriate, depending on the application.

One such natural application is anonymous credentials, introduced by Chaum [Cha85].
Anonymous credentials allow a user to get a credential from some service that contains
private data about themselves, such as their age, name, city and ID number. When the
user wishes to access a website that restricts access to users based on their attributes,
such as an online casino, they can use this credential to compute a zero-knowledge proof
which establishes that they satisfy those attributes.

A feature of zero-knowledge proofs which is the basis of a number of applications is
that they allow you to prove that you executed a computation correctly. This makes it
possible to verify that everyone followed an agreed-upon protocol. An example application
where verification comes into play is the area of verifiable computation, formalized by
Gennaro, Gentry and Parno [GGP10]. Suppose someone wishes to perform a massive
computation they cannot do on their own. Verifiable computation would allow them to
offload this computation to some cloud service, which would do the computation and
return the output. In order to verify that the cloud service did not simply provide some
correct-looking answer without actually doing the computation, they would include a
zk-SNARK proof that they performed the computation.

NIZKs can provide crucial guarantees in electronic voting systems. A key part of most
electronic voting systems is a way to shuffle all the votes to ensure anonymity, a digital
analogue of shaking the ballot box, an idea introduced by Chaum [Cha81]. To ensure that
the participants behaved honestly, an accompanying NIZK proof is produced to verify
that the shuffle was executed correctly, first demonstrated by Sako and Kilian [SK95].

A notable application of zk-SNARKs is found in cryptocurrencies, online currencies
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based on a decentralized ledger. In the most famous example, Zcash [Ben+14], zk-
SNARKs are used to provide privacy for transactions. A transaction in a cryptocurrency
contains a lot of information that needs to be correct, such as which accounts are involved,
that the sender has sufficient money in their account, and that the user creating this
transaction has access to the sender’s account. In Zcash, a user which performs a
transaction produces a zk-SNARK proof that everything in their transaction is correct
using the secret information about their account. In these last two examples, there are
a number of other components that come together to form the whole system, but a
zero-knowledge proof is at the heart of both systems to protect users against misbehaving
adversaries.

1.4 Assumptions in cryptography

While some parts of cryptography can be proven secure from basic principles, most
modern cryptography relies on a vast web of cryptographic assumptions. Assumptions
are unproven, but hopefully well-motivated, statements cryptographers use to prove that
a construction satisfies some property. Proofs can establish that, as long as the given
assumption is true, then the construction does indeed satisfy this property. For example,
one could prove that an encryption scheme remains secure as long as the assumption that
it is hard to factor integers is true.

Cryptographic assumptions are a necessary underpinning of modern cryptography.
However, proving that any of these assumptions are true is a Sisyphean task, as such a
proof would typically settle the long-standing problem of P vs. NP, a problem which is
beyond our current understanding of mathematics and computation. While we cannot
prove that a certain assumption holds, we would like to make the assumptions we rely
on as weak as possible because weaker assumptions are more likely to be true. At the
very least we want to understand something about which assumptions we rely on, and
whether they are necessary to prove the security properties we desire.

One important division of assumptions is into falsifiable and non-falsifiable assumptions.
Falsifiable assumptions are assumptions where the fact that they have been broken can
be efficiently verified. The integer factoring assumption is an example of a falsifiable
assumption because if someone produces two supposed factors of a number, it is easy
to multiply them together to see if they indeed are the factors. Because it is hard to
verify whether a non-falsifiable assumption has been broken, these assumptions are hard
to reason about, and falsifiable assumptions are preferred in general, but it is not always
possible to rely on falsifiable assumptions. Related to non-interactive zero-knowledge,
Gentry and Wichs [GW11] showed that the soundness of a zk-SNARK can never be
based on falsifiable assumptions using most normal proof techniques. However, some
less efficient NIZKs can be shown both sound and zero-knowledge based on falsifiable
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assumptions, so this represents a trade-off between efficiency and relying on desirable
assumptions.

1.5 Research on NIZKs

The field of non-interactive zero-knowledge, despite having seen a large flurry of activity in
the past decades, is still a field where a number of open questions remain, and new results
are consistently being found. One can make progress by creating a NIZK with improved
efficiency, be it the running time of the prover or verifier, or the size of the proof or
CRS. Additionally, one can create NIZKs whose security is based on weaker assumptions
than previously existing constructions. Since there is a trade-off between assumptions
and efficiency, such as any succinct NIZK requiring non-falsifiable assumptions [GW11],
another way to make progress is to present a NIZK with a different such trade-off. One
can also construct NIZKs that satisfy some additional properties, which might be needed
for specific applications. And finally, while it is necessary to have some trust in the
third party generating the CRS because there are no NIZKs without a CRS [GO94], it is
desirable to reduce the trust required of the third party generating the CRS.

1.6 The results in this thesis

This thesis consists of two papers, both on the topic of non-interactive zero-knowledge.

Paper I

The first paper, Efficient NIZKs for Algebraic Sets [Cou+21b], was published at Asiacrypt
2021. It was written with co-authors Geoffroy Couteau, Helger Lipmaa and Roberto
Parisella. The version included in this thesis is a full version uploaded to the Cryptography
ePrint archive [Cou+21a], which fixes some minor errors and adds lengthy appendices
which were not included in the published version due to page limits. The main contribution
of this paper is a construction of a NIZK for proving statements about roots of polynomials.

The starting point of our construction is a work by Couteau and Hartmann [CH20],
which provides a technique by which one can transform a specific interactive zero-
knowledge proof into a NIZK. Unlike the Fiat–Shamir transform, this technique ensures
that the security of the resulting NIZK can be proven without relying on the random
oracle model. We start by constructing a new interactive zero-knowledge proof, which is
then transformed into a NIZK using their technique. We define a novel way to represent
a polynomial using a matrix, which forms the basis of our zero-knowledge proof. The
security of our NIZK relies on a weaker version of the assumption used by Couteau and
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Hartmann, and we additionally provide evidence for why the assumption we rely on is
reasonable.

Paper II

The second paper, Verifiably-Extractable OWFs and Their Applications to Subversion Zero-
Knowledge [Fau+21b], was published at Asiacrypt 2021. It was written with co-authors
Prastudy Fauzi, Helger Lipmaa, Janno Siim and Michał Zając. The version included in
this thesis is a full version uploaded to the Cryptography ePrint archive [Fau+21a], which
adds some material and fixes some minor errors. The paper studies the assumptions
required to achieve zero-knowledge in a NIZK without trusting the CRS creator, and its
main contribution is the definition of a new cryptographic primitive which relates to this.

In the CRS model, it is crucial that both the prover and the verifier trust the third
party which computes the common reference string because a malicious creator of the
CRS could break either the soundness or zero-knowledge properties. It is impossible for
neither party to trust the CRS creator because then the prover could simply create the
CRS on its own, and this would give a non-interactive zero-knowledge proof without
a CRS, which is known to be impossible. However, there are constructions where the
verifier still needs to trust the CRS creator to achieve soundness, but the prover can
be convinced that zero-knowledge is achieved regardless of what the CRS creator does.
This is called subversion zero-knowledge, meaning that the NIZK has the zero-knowledge
property even if the CRS is subverted.

In this paper, we study which assumptions are needed to achieve subversion zero-
knowledge NIZKs. We define a new primitive called a verifiably-extractable one-way
function (VEOWF). A VEOWF is a one-way function where, while it is difficult to
compute a preimage given just an image of the function, it should be possible to extract
a preimage from any machine outputting an image of the function. Additionally, it must
be possible to efficiently verify if some value belongs to the image of the function. We
show how a VEOWF can be used to add the subversion zero-knowledge property to
certain existing NIZKs. Additionally, we show that any subversion zero-knowledge NIZK
fulfilling some additional criteria can be used to construct a VEOWF, hence showing a
strong connection between VEOWFs and subversion zero-knowledge NIZKs.



Chapter 2

Preliminaries

This chapter contains key background material, starting with some basic concepts
from mathematics and cryptography. It then gives a flavour of assumptions used in
cryptography, and how one can classify them. Finally, we define both interactive and
non-interactive zero-knowledge proofs and give some example constructions.

2.1 Mathematics

Groups and pairings

A lot of modern cryptography is based on mathematical groups, whose structure provides
a good balance between flexibility and security. A large class of groups which find their
use in cryptography, and are of special interest when it comes to this thesis, are cyclic
groups G whose order is some large prime p. We simply rely on these properties (as well
as certain efficiency and hardness properties) in a black-box way, but it is worth pointing
out that the recommended way to implement these groups is by using groups which are
elliptic curves over finite fields. For an introduction to elliptic curves in cryptography,
see [BSS00].

We consider cyclic groups which come endowed with a group element g which generates
the whole group G, i.e. it is a generator of G. We will write our groups additively, and we
introduce the bracket notation of [Esc+13]. We fix a generator g, and write [a] to mean
ag, where a is an integer modulo p. (We let Zp denote the set of integers modulo p) This
notation is linear, i.e. [a] + [b] = [a+ b] and n[a] = [na] for all a, b, n ∈ Zp. We can also
extend the bracket notation to vectors and matrices, by applying the bracket pointwise.
For a vector v = (v1, . . . , vn) ∈ Znp , [v] = ([v1], . . . , [vn]) ∈ Gn, and we will often write
[v1, . . . , vn] to mean [(v1, . . . , vn)]. Similarly [A] ∈ Gm×n for a matrix A ∈ Zm×np .

For certain applications, like the ones we consider in this thesis, one requires groups
with additional structure, namely that of a bilinear pairing. One starts with three
groups G1, G2 and GT , all of the same order p, and where g1 and g2 generate G1 and
G2, respectively. A pairing is a function ê : G1 × G2 → GT which satisfies these three
properties:

Bilinearity: ∀a, b ∈ Zp : ê(ag1, bg2) = ab · ê(g1, g2),
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Non-degeneracy: The element gT = ê(g1, g2) is a generator of GT ,

Efficiency: There is an efficient algorithm to compute ê.

The benefits of the bracket notation become clear in the presence of pairings. We
write [a]ι = agι for ι ∈ {1, 2, T}. We define [a]1 • [b]2 = ê([a]1, [b]2), and the bilinearity
requirement then reads that [a]1 • [b]2 = [ab]T . We can extend this to vectors and matrices
as well, for example for two matrices A and B of appropriate dimensions, it is the case
that [A]1 • [B]2 = [AB]T . For pairings to be applicable in cryptography, they must
satisfy certain cryptographic hardness assumptions. While there exist many bilinear
maps, the only ones known to be suitable for cryptographical applications are in the
setting of elliptic curves.

While groups on their own provide for limitless addition and scalar multiplication
operations of group elements, pairings allow for one multiplication of group elements,
which makes them very flexible for the design of cryptographic protocols. The use of
pairings for this purpose was pioneered by Joux [Jou00], and developed further by several
others, such as Boneh and Franklin [BF01] and Boneh, Lynn and Shacham [BLS04], and
is now a standard tool in the cryptographic toolbox. For an introduction to how pairings
can be used in cryptography, see [Men09].

One can classify pairings into three main types depending on the relationship between
G1 and G2, as done by Galbraith, Paterson and Smart [GPS06].

• If G1 = G2, this is called a type-1 pairing.

• If G1 6= G2 and there is an efficiently computable isomorphism between the groups,
this is called a type-2 pairing.

• If G1 6= G2 and there is no efficiently computable isomorphism between the groups,
this is called a type-3 pairing.

Type-1 pairings are also called symmetric pairings, and type-2 and type-3 are both
referred to as asymmetric pairings.

Complexity theory

Languages and complexity classes

In computer science, everything is typically encoded as finite strings of bits, i.e. members
of the set {0, 1}∗. If we are discussing the set of prime numbers, for example, we implicitly
choose an of the natural numbers (e.g. their binary expansion), and the set which is really
under discussion is the set of encodings. Of fundamental interest in computer science are
languages, where a language L is simply a subset of {0, 1}∗.
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One can classify languages into complexity classes based on how they can be recog-
nised, typically by which Turing machines can recognise them. A Turing machine is a
mathematical model of computation, essentially describing an abstract form of a computer.
For an introduction to the subject, as well as a formal definition, see [Sip13]. Some of the
fundamental complexity classes in theoretical computer science and cryptography are:

P: P consists of any language L where deciding whether x ∈ L can be achieved by a
deterministic Turing machine which runs in time polynomial in the size of x.

BPP: BPP consists of any language L where deciding whether x ∈ L can be achieved by
a probabilistic Turing machine which runs in time polynomial in the size of x, and
which makes mistakes at most 1/3 of the time.

NP: NP consists of any language L where all x ∈ L have a witness w certifying this fact,
and it can be checked in time polynomial in the size of x whether the certificate is
valid. This can be re-formulated as: L is in NP if there exists a relation R = {(x, w)}
where membership can be decided in polynomial time, and L = {x | ∃w : (x, w) ∈ R}.

PSPACE: PSPACE consists of any language L where deciding whether x ∈ L can be
achieved by a deterministic Turing machine which requires an amount of space
which is polynomial in the size of x.

It is quite easily shown that P ⊆ BPP ⊆ NP ⊆ PSPACE, but it is not known whether
any of these inclusions are strict. In fact, the matter of deciding whether P = NP is one
of the Millenium Prize problems, and solving it comes with a 1 million dollar prize.

Reductions

The fundamental tool of the cryptographer working with provable security is the reduction.
One wants to prove that a security property P of a certain construction holds as long as
some assumption A holds as well, that is one wants to reduce property P to assumption
A. The traditional approach is to prove the contrapositive, namely one starts out by
assuming that the construction does not have property P . This means that there is some
adversary A which is able to break P . The security reduction then uses this adversary A
to build a new adversary B which breaks assumption A. One has therefore established
that if the construction does not have property P , then assumption A does not hold. It
must then be the case that if assumption A holds, no adversary breaks it, and therefore
there does not exist an adversary which breaks P , and therefore the construction must
indeed have property P .



14 2. Preliminaries

2.2 Cryptography

Fundamental notions

A key definitional question of cryptography is what it means for a cryptographic scheme
to be secure. A cryptographic scheme typically consists of some algorithms, which
together must satisfy certain security properties, all of which must hold for the scheme
to be secure. While it is desirable that a security property can never be broken by any
adversary, this is often impossible. The approach usually taken is therefore to define
that a security property holds if no reasonable adversary can succeed with more than
negligible probability, which leaves open the question of defining the allowable adversaries
and probabilities.

We follow the standard approach where we parametrise our schemes by a security
parameter λ which can be chosen upon setup to reach the desired security level. Intuitively,
the security parameter should represent the number of bits of security one achieves, that
means by choosing the security parameter λ, it should take 2λ time to break the scheme.
For technical reasons, algorithms are given the security parameter in the form 1λ, i.e. λ
written in unary. We then define “reasonable adversary” as any probabilistic (i.e. one
which can make random decisions) adversary which takes an amount of time which is
bounded by p(λ), where p is a polynomial. We call such adversaries PPT (probabilistic
polynomial-time) adversaries. The probability of success being negligible means that this
probability, as a function of λ, goes to 0 faster than the inverse of any (positive-valued)
polynomial. Formally, a function f : N→ R≥0 is said to be negligible if, for all polynomials
p : N → R>0, there exists N such that, if n ≥ N , then f(n) < 1

p(n) . We will typically
define that a security property holds if all PPT adversaries have a negligible probability
of succeeding in breaking the property.

The above definition does not provide, on its own, any concrete security guarantees.
Even if a scheme is proven secure given this definition, it could be unclear how large λ
needs to be to achieve security against actual adversaries. Providing concrete security
bounds that state how much power an adversary needs to break the scheme for specific
parameters requires further analysis which is beyond the scope of this thesis.

Group generators

Since our schemes depend on a security parameter, we require algorithms which generate
groups and bilinear pairings for use in our schemes. We will postulate the existence of a
group generator GpGen which takes in a security parameter 1λ and outputs a description
gp = (G, p, [1]) consisting of the group itself, its order, and a generator of the group. We
additionally postulate the existence of a bilinear pairing generator BGGen which takes
in a security parameter 1λ, and outputs a description bp = (G1,G2,GT , p, [1]1, [1]2, ê),
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consisting of the three groups, their order, generators of G1 and G2, and the pairing itself.
In practice, one often uses a fixed security parameter and a fixed group/pairing, and
when that is the case one tends to use an elliptic curve such that the value p is a prime
which is approximately 2256, resulting in 128-bit security. Choosing an appropriate curve
is an important question, but is outside the scope of this thesis.

Notation

We write {0, 1}n to denote all bitstrings of length n. We write x←$S to denote that x is
sampled uniformly at random from the set S. If D is a probability distribution, we write
x←$D to denote that we sample according to D. We write y ← A(x) to denote that
the adversary A on input x outputs y. Note that if A is a randomized algorithm, then y
has a probability distribution. In the case where A is a randomized algorithm, we let
RNDλ(A) denote the random coins used by A.

Fundamental primitives

Our work relies on several basic building blocks called cryptographic primitives. These
are algorithms with a limited scope, designed to perform one simple task. We here define
some primitives we refer to in the thesis.

One-way functions

A foundational concept of cryptography is the one-way function, a function which is easy
to compute, but hard to reverse. Given just an output of the function, it should be hard
to find an input which produces that output. A typical example candidate of a one-way
function is multiplication of large prime numbers. While it seems hard to find two prime
numbers which multiply to 3233, it is easy to verify that 53 · 61 = 3233.

Definition 2.2.1 (One-way functions [KL14, p. 332]). A polynomial-time computable
function f : {0, 1}∗ → {0, 1}∗ is a one-way function if for any PPT adversary A, this is
negligible:

Pr
[
f(x′) = f(x) | x′ ← A(f(x)), x←$ {0, 1}λ

]
.

Public-key encryption

Public-key encryption is an encryption method with two different keys, one public key for
encryption and one private key for decryption. Such a scheme needs to be correct, namely
that decrypting an encrypted message with the right keys gets back the initial message.
One also requires some form of security, and here there are a number of flavours, which
vary based on the goal of the attacker, as well as their powers. We will here state the
basic property of IND-CPA security (indistinguishability under chosen-plaintext attacks),
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which requires that the attacker is not able to distinguish encryptions of two different
messages of its choice, even though it can encrypt any plaintexts.

Definition 2.2.2 (Public-key encryption [KL14, pp. 378–380]). A public-key encryption
scheme PKE is a tuple of three algorithms (Kgen,Enc,Dec) where

• Kgen takes a security parameter 1λ as input and outputs a keypair (pk, sk),

• Enc takes a public key pk and a message m as input and outputs a ciphertext c,

• Dec takes a private key sk and a ciphertext c as input and outputs a message m.

The two algorithms Kgen and Enc are randomized algorithms, so they additionally get
access to random coin flips as input, but we will not make this explicit unless required
for clarity. These algorithms together must satisfy the following properties:

Correctness: For any keypair (pk, sk) generated by Kgen,

Dec(sk,Enc(pk,m)) = m .

IND-CPA security: For any PPT adversary A, this is negligible:∣∣∣∣∣∣Pr
 b′ = b

(pk, sk)← Kgen(1λ), (m0,m1)← A(pk)
b←$ {0, 1}, b′ ← A(Enc(mb))

− 1
2

∣∣∣∣∣∣ .
Note that an adversary which outputs b′ at random succeeds with probability 1

2 , so
this states that no adversary can do noticeably better than guessing at random.

One example of a public-key encryption scheme is the Elgamal encryption scheme
for group elements. The key generation algorithm Kgen outputs a group description
gp = (G, p, [1]) plus a group element [x] as the public key, and the discrete logarithm
x as the secret key. Encryption is defined as Enc(pk, [m]) = ([r], [m] + r[x]), where
r is a random integer. Decryption is defined as Dec(sk, [c1, c2]) = [c2] − x[c1]. It is
straightforward to verify the correctness of this scheme, and the IND-CPA security of the
scheme can be proven based on the decisional Diffie–Hellman assumption, see Section 2.3.

Commitment schemes

A commitment scheme is a cryptographic primitive which allows someone to, essentially,
write down a value in a sealed envelope and later reveal its contents. In a commitment
scheme, the user can take some message m and some randomness r and create a com-
mitment c. Later on, the user can reveal their message and randomness, to show that
this is what they committed to. There are two key security properties such a scheme
must satisfy. A commitment scheme must be hiding, no adversary should be able to tell
anything about the message based on the commitment. It must also be binding, the
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commitment must tie the user to a specific value, i.e. the user can not open a commitment
to two different values.

Definition 2.2.3 (Commitment schemes [KL14, pp. 187–188]). A commitment scheme C
is a tuple of two algorithms (Kgen,Com) where

• Kgen takes as input a security parameter λ and outputs a commitment key ck;

• Com takes as input a commitment key ck, a message m and some randomness r
and outputs a commitment com.

These algorithms must satisfy:

Hiding: For any PPT adversary A, this is negligible:∣∣∣∣∣∣Pr
 b′ = b

ck← Kgen(1λ), (m0,m1)← A(ck)
b←$ {0, 1}, b′ ← A(ck,Com(mb))

− 1
2

∣∣∣∣∣∣ .
If the probability is 1

2 even for any unbounded A, this is called perfect hiding. Note
that an adversary which outputs b′ at random succeeds with probability 1

2 , so this
is saying that no adversary can do noticeably better than guessing at random.

Binding: For any PPT adversary A, this is negligible:

Pr
 Com(ck,m, r) = Com(ck,m′, r′) ck← Kgen(1λ)

(m, r,m′, r′)← A(ck)

 .

If the probability is 0 even for any unbounded A, this is called perfect binding.

No commitment scheme can be both perfectly binding and perfectly hiding at the
same time, one needs to choose at most one of these properties. Any public-key encryption
scheme, such as Elgamal, can be seen as a perfectly binding commitment scheme. The
Pedersen commitment [Ped92], where the commitment key is a group element [a] and the
commitment is com([a],m, r) = [m] + r[a], is a perfectly hiding commitment scheme that
is binding under the discrete logarithm assumption, see Section 2.3.

Hash functions

A hash function is a function which takes in a message and compresses it into a short
digest of a fixed length. For cryptographic purposes, a hash function is typically required
to be collision-resistant, i.e. it must be hard to find two messages which produce the
same digest. For certain applications, different properties might be required.

For a full definition, including certain technical nuances dealing with the security
parameter, see [KL14, pp. 153–155].
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2.3 Assumptions in cryptography

We will give examples of the types of assumptions there are in cryptography, particularly
the ones we use in this thesis.

1. A very basic assumption is the assumption which asserts the existence of a one-way
function.

2. The discrete logarithm assumption asserts the existence of a specific one-way
function, namely group exponentiation. (Since the definition of one-way functions
we gave in Definition 2.2.1 is about bitstrings, there are some technical nuances we
skip here.) Formally, for a group generator GpGen, the assumption states that for
any PPT adversary A, this is negligible:

Pr
[
[x′] = [x] | gp← GpGen(1λ), x←$Zp, x′ ← A(gp, [x])

]
.

3. The decisional Diffie–Hellman (DDH) assumption states that it is difficult to decide
whether a quadruple of group elements forms a Diffie–Hellman tuple, i.e. it is of
the form ([1], [x], [y], [xy]) or if the last element of the tuple is simply a random
group element [z]. For a group generator GpGen, the assumption states that for
any PPT adversary A, this is negligible:∣∣∣∣∣∣∣∣∣Pr

 b′ = b

gp← GpGen(1λ), b←$ {0, 1}, x, y←$Zp
if b = 0 then z ← xy else z←$Zp

b′ ← A(G, [1], [x], [y], [z])

− 1
2

∣∣∣∣∣∣∣∣∣ .
4. The Kernel Matrix Diffie–Hellman (KerMDH) assumption [MRV16], given here

for bilinear pairings, states that given a matrix [A]1 of elements in G1, it should
be hard to find a non-zero vector x of elements in G2 which belongs to the kernel
of AT . Let D be a distribution of matrices over Zp of a fixed size. For a bilinear
pairing generator BGGen, the assumption states that for any PPT adversary A,
this is negligible:

Pr
 ATx = 0 ∧ x 6= 0

bp← BGGen(1λ),A←$D
[x]2 ← A(bp, [A]1)

 .

5. The extended-kernel Matrix Diffie–Hellman (ExtKerMDH) assumption [CH20], is
an extension of the KerMDH assumption. The adversary is given a matrix [D]2 in
a group, and is tasked to find a matrix [E]2 and a matrix [F ]1 such that F spans
the kernel of D||E. Let D be a distribution of matrices over Zp of a fixed size.
For a bilinear pairing generator BGGen, the assumption states that for any PPT
adversary A, this is negligible:

Pr
 F (DE ) = 0 ∧ F has full rank bp← BGGen(1λ),D←$D,

([F ]1, [E]2)← A(p, [D]2)

 .
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6. A very different type of assumption is exemplified by Damgård’s knowledge-of-
exponent assumption [Dam92]. The assumption states that any adversary which,
on input [1, α], can output a pair [x, xα], must know some method for obtaining
this x. This is formalized by postulating that for any adversary outputting such
a pair, there exists an extractor which has access to the randomness used by the
adversary, and which extracts this x. For a group generator GpGen, the assumption
states that for any PPT adversary A, there exists a PPT extractor Ext such that
this is negligible:

Pr
 x 6= x′

gp← GpGen(λ), r←$ RNDλ(A), [α]←$G
[x, xα]← A(gp, [1, α]; r), x′ ← Ext(gp, [1, α]; r)

 .

Classifying assumptions

Since there is a massive variety of assumptions used in cryptography, all with their own
names and definitions, there is utility in classifying assumptions, so that one can more
easily understand what type of assumption one is dealing with.

Perhaps the most natural classification deals with the strength of the assumptions.
Naor [Nao03] first presented the idea of classifying assumptions into falsifiable and non-
falsifiable assumptions. This notion has been later refined by Gentry and Wichs [GW11],
and the current understanding of a falsifiable assumption is an assumption which is a game
between an efficient challenger and an adversary, where the challenger can efficiently check
whether the adversary broke the assumption. Assumptions 1–4 above are falsifiable. A
non-falsifiable assumption is simply any assumption which is not falsifiable, and thus can
not be written in this form. Falsifiable assumptions tend to be preferable to non-falsifiable
assumptions, as it is hard to reason about non-falsifiable assumptions.

There are several reasons why an assumption might not be falsifiable, and this gives
rise to further classification of assumptions, see [Pas13]. One reason could be that the
assumption can be written as a game between a challenger and an adversary, but the
challenger can not check efficiently whether the adversary succeeded, as is the case for
assumption 5. There, the challenger can not efficiently check whether F has full rank
given just [F ]1, which it would need to do to determine if the adversary succeeded.
Further still, some assumptions can not be written as a game at all, such as assumption 6.
Unlike most cryptographic assumptions, which are assumptions stating that something
is hard, this assumption states that something is rather easy, and thus it is completely
different from most cryptographic assumptions.

It is also natural to divide assumptions into concrete or generic assumptions. Concrete
assumptions are assumptions that state something about a specific problem, like the DDH
assumption. A generic assumption states that some primitive exists, like the assumption
that there exists a one-way function. When you create an actual protocol, you need to rely
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on concrete assumptions, but generic assumptions can provide theoretical understanding,
showing which assumptions are necessary and/or sufficient for certain purposes.

2.4 Zero-knowledge proofs

An interactive proof system consists of two algorithms, the prover P and the verifier
V. These algorithms share a common input string x which may or may not belong
to a language L. The algorithms send messages to each other and perform their own
computations. Eventually, the verifier outputs either accept or reject. The list of messages
sent between the parties is called the transcript.

An interactive zero-knowledge proof is an interactive proof that satisfies the following
properties:

Completeness: If x ∈ L, then the verifier will accept with high probability.

Soundness: If x 6∈ L, then the verifier will reject with high probability.

Zero-knowledge: For every verifier V, there exists a simulator which, based only on the
statement x, as well as any randomness used by V, can create a simulated transcript
which is indistinguishable from a real transcript.

For the sake of simplicity, we are skipping several technical details. These details can
be specified, and they do matter when proving relations between different variants of
zero-knowledge proofs, or when proving impossibility results.

Σ-protocols

A Σ-protocol is a specific type of interactive proof, which was precisely defined in its full
generality by Cramer, Damgård and Schoenmakers [CDS94]. A Σ-protocol is defined for
a language L with a relation R such that L = {x | ∃w : (x, w) ∈ R}. It is a three-message
interactive proof, where the prover sends an initial message a, the verifier responds with
a random element e←$Zp or e←$ {0, 1}t, and the prover concludes with a message z.
Finally, the verifier either accepts or rejects.

A Σ-protocol must satisfy slightly modified versions of the properties for general
zero-knowledge proofs. Completeness is not changed, but soundness and zero-knowledge
are replaced with the following:

Special soundness: For any x and pair of accepting transcripts (a, e, z) and (a, e′, z′)
with e 6= e′, one can efficiently compute w such that (x, w) ∈ R.

Special honest-verifier zero-knowledge: There exists a simulator Sim which, given
any x and e, can output an accepting transcript (a, e, z), and the distribution of
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P(x = [w], w = w) V(x = [w])

r←$Zp
[r]

e←$Zpe

z ← r + ew z

[z] = [r] + e[w]

Figure 2.1: Schnorr’s Σ-protocol to prove knowledge of a discrete logarithm

this transcript is exactly the same as the distribution of transcripts in an honest
execution of the protocol.

These properties are different from the typical requirements of a zero-knowledge proof,
but there are ways to build a standard interactive zero-knowledge proof from a Σ-protocol
satisfying these special properties, see [Dam00].

Every Σ-protocol is also a proof of knowledge. A proof of knowledge for a relation R
is a proof system such that any prover which computes a valid proof for x must indeed
know w such that (x, w) ∈ R. This is formalized by stating that there exists an extractor
Ext which obtains this w from the prover.

Example construction

In Figure 2.1 we show Schnorr’s protocol for proving knowledge of a discrete loga-
rithm [Sch90]. The prover knows the discrete logarithm of some public group element
[w] and wishes to convince the verifier of this fact. It is important to use a proof of
knowledge here because a regular proof could only show that [w] is a group element, which
is not helpful. The special soundness property follows because, given two transcripts
([r], e, z) and ([r], e′, z′) with e 6= e′, one can compute w = z−z′

e−e′ . Special honest-verifier
zero-knowledge follows because the simulator can choose a random z and construct the
transcript ([z]− e[w], e, z), which is identically distributed to a real transcript.

2.5 Non-interactive zero-knowledge proofs

We now give a definition of non-interactive zero-knowledge (NIZK) in the common
reference string (CRS) model. Recall that Goldreich and Oren [GO94] proved that it
is impossible to have a NIZK in the plain model, and using a CRS is the standard
way of bypassing this impossibility result. The idea behind the CRS is that it comes
with a simulation trapdoor only given to the simulator, which allows the simulator to
create simulated proofs. This simulator is only a mathematical construct to demonstrate
zero-knowledge and does not exist in real life. It is important in practical applications
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that the simulation trapdoor is kept hidden, which is why the CRS creator needs to be
trusted.

Definition 2.5.1 (Non-interactive zero-knowledge). A non-interactive zero-knowledge
proof Π for a relation R is a tuple Π = (Pgen,Kgen,P,V, Sim) of algorithms:

• The parameter generator Pgen takes as input a security parameter 1λ and outputs
some parameters p. For pairing-based applications, this is the description of the
bilinear pairing using BGGen. We will not explicitly write the parameters in our
security definitions.

• The CRS generator Kgen which takes as input a security parameter 1λ and some
parameters p and outputs a CRS crs and a simulation trapdoor td.

• The prover P which takes as input a CRS crs and a pair (x, w) ∈ R and outputs a
proof π.

• The verifier V which takes as input a CRS crs, a statement x and a proof π and
outputs either 0 or 1, respectively rejecting or accepting the proof.

• The zero-knowledge simulator Sim takes as input the simulation trapdoor td and a
statement x and outputs a simulated proof π.

These algorithms must satisfy the following properties:

Completeness: An honest verifier should accept a proof from an honest prover. For all
(x, w) ∈ R, this is negligible:

Pr
[
V(crs, x, π) = 0 | crs← Kgen(1λ), π ← P(crs, (x, w))

]
.

If the probability is precisely 0, i.e. the verifier always accepts, this is called perfect
completeness.

Soundness: No dishonest prover should be able to convince a verifier of the truth of a
statement not in the language. There are several flavours of soundness depending
on how powerful the adversary is allowed to be and what its goal is. This is adaptive
soundness, where the adversary can choose the statement it creates a false proof
for.

For any adversary A, this is negligible:

Pr
[
V(crs, x, π) = 1 | crs← Kgen(1λ), (x, π)← A(crs)

]
.

If the adversary is restricted to be a PPT adversary, this is computational soundness.
In this case, we call Π an argument. If the adversary can be of unbounded
computational power, this is statistical soundness. If the probability is 0, even when
the adversary has unbounded computational power, this is perfect soundness.
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Zero-knowledge: The simulator’s proof of a true statement must be indistinguishable
from an honest proof of that statement. For any adversary A, this is negligible:∣∣∣∣∣∣∣∣∣Pr

 b′ = b

(crs, td)← Kgen(1λ), (x, w)← A(crs), b←$ {0, 1}
if b = 0 then π ← P(crs, (x, w)) else π ← Sim(td, x)

b′ ← A(crs, x, w, π)

− 1
2

∣∣∣∣∣∣∣∣∣ .
If this holds for PPT adversaries, this is computational zero-knowledge. If this holds
for unbounded adversaries, this is statistical zero-knowledge. If the distributions of
the simulated and honest proofs are the same, this is perfect zero-knowledge.

No NIZK which is complete can achieve perfect soundness and perfect zero-knowledge at
the same time.

The Fiat–Shamir transform

The Fiat–Shamir transform [FS87] is a generic method for transforming a Σ-protocol
into a non-interactive zero-knowledge argument. Recall that in a Σ-protocol, after the
prover’s first message a, the verifier responds with a uniformly random value e, which the
prover uses to compute its final message z. The idea of the Fiat–Shamir transform is to
let the prover compute e on its own, but in such a way that it cannot choose an e which
lets it cheat. In the Fiat–Shamir transform, a hash function H is specified ahead of time,
and the prover computes e as H(x||a), hashing the statement concatenated with the first
message. It then computes the third message using this e as in the original protocol and
sends (a, z) as the proof. The verifier computes e = H(x||a), and checks if the transcript
(a, e, z) is valid.

One can prove that the resulting NIZK is sound and zero-knowledge if the hash
function is modelled as a random oracle, meaning that on any input, the output is
a uniformly random value, independent of any other inputs or outputs, which is not
the case for any real hash function. This proof method using a random oracle was
pioneered by Bellare and Rogaway [BR93]. It has been prevalent in the field ever since as
a way to gain confidence in practical protocols. However, there are results which provide
reasons to be sceptical about relying on the random oracle model. Canetti, Goldreich and
Halevi [CGH98] showed examples of encryption schemes which are secure in the random
oracle model but are insecure when instantiated with any hash function, and Goldwasser
and Kalai [GK03] did the same for the Fiat–Shamir transform. While this by no means
implies that any NIZK using the Fiat–Shamir transform is insecure, it gives reasonable
room for doubt and provides ample motivation to study alternative approaches.
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Chapter 3

Overview of Paper I

3.1 Motivation

The Fiat–Shamir transform [FS87] is a method of creating non-interactive zero-knowledge
arguments from Σ-protocols, but it produces NIZKs which are only secure in the random
oracle model, which is not desirable, see Section 2.5. Couteau and Hartmann [CH20]
provided a different method of compiling a Σ-protocol into a NIZK, which did result in
a provably secure NIZK in the CRS model. The approach they presented was able to
strike a good balance between the strength of assumptions and the efficiency of the NIZK.
However, there remained several open questions, which we answer in the affirmative.

• Their compilation worked for a very specific Σ-protocol, but are there other Σ-
protocols it would be fruitful to transform to NIZKs, perhaps with improved
efficiency?

• Could one base the NIZK on a weaker assumption, perhaps with better evidence of
its security?

• Their NIZK supported algebraic languages, would it be possible to support a
broader class of languages?

• Their NIZK required a description of the language in a very specific form, could
this be achieved with less expertise?

3.2 Previous work

There are a number of NIZKs in the literature, each with its own benefits and drawbacks.
For example, there are several constructions of zk-SNARKs in the literature [Gro10; Lip12;
Gen+13; Gro16]. Some of them are very efficient, but they all rely on non-falsifiable
knowledge-of-exponent assumptions. On the other hand, Groth and Sahai [GS08] con-
structed NIZKs from a standard falsifiable assumption. However, the efficiency often
remains unsatisfying, and moreover building an optimized Groth–Sahai proof requires
significant expertise.
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P(lpar = [Γ,θ]1; [x]1, w) V(lpar = [Γ,θ]1; [x]1)

r←$Ztp
[a]1 ← [Γ(x)]1r [a]1

e←$Zpe

d← ew + r d

[Γ(x)]1d
?= [θ(x)]1e+ [a]1

Figure 3.1: Maurer’s Σ-protocol for algebraic languages LΓ,θ.

P(lpar = [Γ,θ]1, crs = [e]2; [x]1, w) V(lpar = [Γ,θ]1, crs = [e]2; [x]1)

r←$Ztp
[a]1 ← [Γ(x)]1r
[d]2 ← [e]2w + r[1]2 ([a]1, [d]2)

[Γ(x)]1 • [d]2
?= [θ(x)]1 • [e]2 + [a]1 • [1]2

Figure 3.2: Couteau and Hartmann’s NIZK for algebraic languages LΓ,θ.

A generic method to create NIZKs is to use the Fiat–Shamir transform [FS87], where
one compiles a Σ-protocol into a NIZK by letting the prover compute the verifier‘s
messages in a transparent manner. This can yield very efficient NIZKs, but their security
is only proven in the random oracle model, which can be undesirable, see Section 2.5.

Couteau and Hartmann [CH20] created a new paradigm to create NIZKs, which
created a different set of trade-offs between assumptions and efficiency, landing between
zk-SNARKs and Groth–Sahai proofs in both of these categories. Their NIZK was defined
for algebraic languages, where an algebraic language is parametrised by two linear maps Γ,
θ, and the language is defined as LΓ,θ = {x : ∃w,Γ(x) ·w = θ(x)}. This is a generalization
of the set of linear languages, where the maps Γ and θ are constant. Of particular
relevance, algebraic languages capture the language L{0,1} which consists of Elgamal
encryptions of 0 or 1. NIZKs for this language have found a variety of applications.

Couteau and Hartmann started with a bilinear pairing bp = (G1,G2,GT , p, [1]1, [1]2, ê),
and Maurer’s Σ-protocol for algebraic languages Figure 3.1 in G1. By putting the
verifier’s challenge as [e]2 in the CRS, one can transform the prover’s final message and
the verification equation by using pairings, and one gets the NIZK in Figure 3.2. The
soundness of the NIZK is based on the ExtKerMDH assumption, introduced by Couteau
and Hartmann in their paper. See Section 2.3 for its definition.

3.3 Our solution

The main idea of this paper is to use the approach of Couteau and Hartmann, but apply
it with a different Σ-protocol for different languages. We construct a NIZK for languages



3.3. Our solution 27

which are Elgamal encryptions of members of algebraic sets. An algebraic set A(F) ⊆ Znp ,
defined by a set of polynomials F ⊆ Zp[X], consists of all points which are zeros of all
polynomials F ∈ F . In symbols,

A(F) := {χ ∈ Znp | (∀F ∈ F)[F (χ) = 0]}.

Algebraic sets are basic objects of study in algebraic geometry, see [ALO15] for an
introduction.

The languages we are concerned about are parameterised by a public key pk and an
algebraic set A(F), in symbols

Lpk,A(F) = {[ct]1 | [ct]1 = Encpk([χ]1) ∧ χ ∈ A(F)}.

To prove that [ct]1 ∈ Lpk,A(F), we provide proofs that F (χ) = 0 for all F ∈ F , where
[χ]1 = Dec([ct]1). The verifier will only accept that [ct]1 ∈ Lpk,A(F) if all these subproofs
are valid. To prove that F (χ) = 0, we do the following:

1. We construct a matrix representation C(X) of affine maps which satisfies that
det(C(X)) = F (X).

2. We create a Σ-protocol to prove that det(C(χ)) = 0, and use the Couteau-Hartmann
approach to convert this Σ-protocol to a NIZK.

Matrix representation of polynomials

We define a quasideterminantal representation (QDR) of a polynomial F (X) as a matrix
C(X) of polynomials which satisfies

i) All entries of C are affine maps, meaning that each entry is of the form a0 +∑n
i=1 aiXi

where X = (X1, . . . , Xn),

ii) det(C(X)) = F (X),

iii) For all χ ∈ Znp such that F (χ) = 0, the first column of C(χ) is in the span of the
remaining columns of C(χ).

This is a specialization of determinantal representations (DR), which arise in algebraic
geometry. A determinantal representation of a polynomial F (X) is a matrix C(X) which
satisfies properties i and ii above. The determinantal complexity of a polynomial F is the
size of the smallest DR of F , and it is a question of interest in mathematics to compute
the determinantal complexity of polynomials. In fact, an algebraic version of the P vs.
NP problem (the VP vs. VNP problem, which also remains unsolved) is equivalent to
determining the determinantal complexity of a certain class of polynomials. See [SY10]
for an introduction to this field.
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X X2

s F (X)

Y

X

X

Y

Xa

b

−Y
IK(X, Y ) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

Figure 3.3: ABP example for F (X, Y ) = X3 + aX + b− Y 2.

To motivate these properties, we mention what purpose they serve in the resulting
Σ-protocol. The first property guarantees that the prover and verifier can compute an
encryption of each entry of C based solely on the statement [ct]1, without knowing the
corresponding plaintext values, which works because of the homomorphic properties
of Elgamal encryption. The second property guarantees that, when we prove that
det(C(X)) = 0, this actually corresponds to proving the same statement about F . The
motivation for the final property is of a more technical nature, but it is both a necessary
and sufficient condition to ensure that the prover will be efficient and to ensure that the
zero-knowledge property will hold.

Constructing a QDR from a polynomial is a non-trivial task that highly depends on F .
We provide a general framework to construct such QDRs from algebraic branching programs
(ABPs [Nis91]). An algebraic branching program computes a function F : Znp → Zp. It is
defined by a directed acyclic graph (V,E) with two special vertices s, t ∈ V and where
each edge is labelled by an affine or constant function in the input variables. The value
F (X) is the sum over all paths from s to t of the product of the values along the path.
Ishai and Kushilevitz [IK00; IK02] found a method to construct a matrix IK from the
ABP, and we show that this matrix is a QDR. In Figure 3.3, we show an example of an
ABP for the function F (X, Y ) = X3 + aX + b− Y 2 and its corresponding QDR.

Σ-protocol and NIZK

To explain our Σ-protocol, we start with the assumption we rely on to prove that the
NIZK is sound. We use the CED assumption, which is a slightly weaker version of the
ExtKerMDH assumption of [CH20], here written with different notation. The assumption
concerns bilinear pairings, and states that given [e]2, it should be hard to compute
[γ]1 ∈ G`

1, [C]1 ∈ G`×`
1 , [δ]2 ∈ G`−1

2 such that rk(C) = ` and

γ +C( eδ ) = 0. (3.1)

The CED assumption simply changes the requirement that rk(γ‖C) = ` with one
where rk(C) = `, so every adversary which breaks the CED assumption also breaks the
ExtKerMDH assumption, so CED is a weaker assumption.

In our protocol, we will verify an equivalent version of Equation (3.1) using cipher-
texts. The matrix C in Equation (3.1) will be C(χ), where C is a quasideterminantal
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P(x = [ct]1, w = (χ, r)) V(x = [ct]1)

[γ]1 ← comp1(χ,C(X))
r′←$Z`p; [ctγ ]1 ← Enc([γ]1; r′) [ctγ ]1

e←$Zpe

δ ← comp2(χ,C(X), e);
z ← comp3(χ, r, r′, e, δ); (δ, z)

[ctγ ]1 + C([ct]1)( eδ ) ?= Enc([0]1; z)

Figure 3.4: The new Σ-protocol from this paper.

representation of F . The idea is that if the prover is cheating, then F (χ) 6= 0, and
since det(C(χ)) = F (χ), then det(C(χ)) 6= 0. By basic linear algebra, this ensures that
rk(C(χ)) = `, and the cheating prover has broken the assumption.

The Σ-protocol is pictured in Figure 3.4, in a slightly simplified version. The functions
compi have concrete definitions we omit here for simplicity. In the NIZK, the verifier‘s
challenge is put in G2 as [e]2, and the proof consists of the unchanged first message, as
well as [δ]2 and [z]2 which are computed from [e]2.

Properties

The efficiency of this NIZK depends on the representation C of F . The size of the proof
increases linearly with the size of the matrix C. The running times of the prover and the
verifier also increase with the size of the matrix, but they additionally depend on the
structure of the matrix. Essentially, smaller and simpler matrices lead to more efficient
proofs.

The NIZK is proven to be sound based on the novel CED assumption, which is a
weaker assumption than the ExtKerMDH assumption used in [CH20]. Additionally, we
show in this paper that the CED assumption can be reduced to a very natural gap
assumption, essentially stating that having knowledge of the structure in G1 does not
help with solving a certain hard problem in G2. The CED assumption is in general not
falsifiable, but it is for certain specific cases, importantly when F has a very small number
of roots.

3.4 Comparison with previous work

A very straightforward application of our general framework is to create a set membership
proof. To prove that a ciphertext encrypts a value in the set {a1, . . . , an}, we can apply
our framework with the polynomial F (X) = ∏n

i=1(X − ai). Our framework yields a set
membership proof which has proof size 2n elements in G1 and 2n − 1 elements in G2.
This represents an approximately 14% decrease in the size of the proof one can get by
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optimizing Groth–Sahai proofs [Ràf15] as well as an approximately 33% decrease in the
size of the proof one can get by applying Couteau and Hartmann’s approach [CH20]. For
this application the CED assumption is falsifiable.

We can also use our framework to construct a NIZK for NP. It suffices to create a
NIZK for proving that a boolean circuit is satisfiable. We use the well-known technique
of Groth, Ostrovsky and Sahai [GOS06], where we encrypt all inputs and intermediate
wires in the circuit, and then for each gate in the circuit, use our framework to prove that
the gate is computed correctly. Finally, one proves that the output of the final gate is 1.
Compared to the existing optimized Groth–Sahai proof for Boolean circuits by Ghadafi
et al. [GSW09], our arguments are 20% shorter for the AES circuit described in [GSW09],
and this application also relies on a falsifiable version of the CED assumption.



Chapter 4

Overview of Paper II

4.1 Motivation

Non-interactive zero-knowledge arguments are typically defined in a setting where the
CRS is generated by a trusted third party, and this CRS generator needs to behave
honestly in order for the completeness, soundness and zero-knowledge properties to hold.
While there are approaches which reduce the amount of trust required (by designing
protocols where one only needs to trust one out of the n parties generating the CRS), it
is desirable to have provable security guarantees without needing to trust anyone.

Attempting to reduce trust in central entities is a crucial part of subversion-resistant
cryptography. Several cryptographic constructions rely on pre-shared parameters set up
ahead of time, which need to be chosen by some entity. One example is the choice of an
elliptic curve group for various schemes, and another is the CRS for a public NIZK. If
someone could subvert these parameters in a specific way, they might be able to break
the cryptographic schemes. An infamous example of this is the NIST Dual_EC_DRBG
curve [BLN15], which did contain a backdoor which allowed someone who knew certain
secret values to break security. The goal of subversion-resistant cryptography is to make
such subversion attempts impossible, or at least to detect when they are attempted.

A natural question is whether one can create subversion-resistant NIZKs, and which
properties can be made subversion-resistant at the same time. There are theoretical
limits to what is possible to achieve. Importantly, it is not possible to achieve all
three of completeness, soundness and zero-knowledge without some trust in the CRS
generator. If this was the case, the prover could generate the CRS on its own, and one
would have a non-interactive zero-knowledge proof without a CRS, which is impossible.
Bellare, Fuchsbauer and Scafuro [BFS16] additionally showed that it is not possible to
achieve zero-knowledge if both the soundness and completeness properties are resistant to
subversion. However, they did give a construction of a NIZK where the completeness and
zero-knowledge properties are resistant to subversion, and the NIZK satisfies soundness if
the CRS generator behaves honestly, which is called a Sub-ZK NIZK.

Our paper sets out to partially answer which assumptions are needed to create Sub-ZK
NIZKs.
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4.2 Previous work

There are different constructions of Sub-ZK NIZKs in the literature. Bellare, Fuchsbauer
and Scafuro [BFS16] gave the first construction of a Sub-ZK NIZK, and both Abdolmaleki
et al. [Abd+17] and Fuchsbauer [Fuc18] gave constructions of Sub-ZK SNARKs.

We also build on work surrounding extractable one-way functions, first introduced
by Canetti and Dakdouk [CD08], and generalized by Bitansky et al. [Bit+16]. Work on ex-
tractable collision-resistant hash functions and their relationship with zk-SNARKs [Bit+17]
also inspired this paper.

An extractable one-way function (EOWF) is a one-way function which comes with an
extractability property. While it should be hard to produce a preimage of the function
given just an output, it should be possible to produce such a preimage if one is given
access to a machine computing the function. Essentially, it must be possible to extract
the input from a machine computing the function, because such a machine must know a
way to find a preimage. This definition formalizes the notion of a knowledge assumption,
of which Damgård’s Knowledge-of-Exponent assumption is an example.

The definition of the subversion zero-knowledge property is that for any CRS creator
which produces a valid CRS there must exist an extractor which computes a simulation
trapdoor, which can be used to create simulated proofs. It is important that checking
whether the CRS is valid can be done efficiently and by a public algorithm. The
previous approaches by [BFS16; Abd+17; Fuc18] to create Sub-ZK NIZKs all followed a
similar structure. They ensured that the CRS contained the right elements which would
make it possible to verify with a pairing that it was a valid CRS, and used a specific
knowledge-of-exponent assumption to extract the simulation trapdoor.

4.3 Our solution

We define a primitive we call verifiably-extractable one-way functions (VEOWF). This is
an extractable one-way function, where it additionally must be possible to verify whether
some value is in the image of the function. More formally, a function f is a VEOWF if it
is:

One-way: Given a value y = f(x), it should be hard to output x′ such that f(x′) = y,

Extractable: For any adversary A outputting an image y of f , there exists an extractor
Ext which outputs a preimage of y,

Verifiable: There exists an efficient algorithm ImV which, given a value y in the codomain
of f can decide if y is in the image of f .
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The intuition for why this definition has utility compared to an EOWF is that there are
circumstances, in particular related to Sub-ZK NIZKs, where we want to check in public
whether extraction would be successful, but without actually performing the extraction.

An example of a VEOWF comes from Damgård’s Knowledge-of-Exponent assumption.
Let bp be a symmetric bilinear pairing, meaning that G1 = G2, and let [α]1 be a randomly
chosen group element. The function f(x) = [x, xα]1 is a VEOWF where the one-way
property follows from the discrete logarithm assumption, the extractability follows from
Damgård’s Knowledge-of-Exponent assumption, see Section 2.3 for their definition, and
the verifiability follows from the use of pairings. To verify whether an element [y, z]1
belongs to the image of f , one simply checks whether [y]1 • [α]1 = [1]1 • [z]1.

We also define verifiably-extractable generalized one-way functions (VEGOWF), where
the function f comes with a relation RG, and a set YExt ⊇ im(f), and must satisfy:

RG-hardness: Given a value y = f(x), it should be hard to output z such that
RG(y, z) = 1,

Verifiability: Given y one can efficiently verify whether y ∈ YExt,

Extractability: For any adversary A which outputs y ∈ YExt there exists an extractor
ExtA which extracts z such that RG(y, z) = 1.

Note that extraction should work even if y ∈ YExt\ im(ge), and in general, it might be hard
to decide if y ∈ im(ge). Note that all VEOWFs are VEGOWFs with RG(y, z) = 1 ⇐⇒
y = f(z) and YExt = im(f), but not necessarily vice versa. There is in particular one
construction from the literature by Bitansky et al. [Bit+16] which results in a VEGOWF
but not a VEOWF.

To demonstrate the plausibility of our new primitives, we show how they can be
instantiated from a number of established assumptions in the literature.

In addition to the VEOWF from Damgård’s Knowledge-of-Exponent assumption, a
family of VEGOWFs come from knowledge-of-exponent style assumptions in groups with
pairings, examples of which we provide in the paper. The one-way property is based on a
standard hardness assumption about groups, the extractability property comes from a
knowledge-of-exponent assumption, and finally, the pairing is used to construct ImV.

We show that the construction by Bitansky et al. [Bit+16] of a GEOWF from
delegation schemes in a restricted model is also a VEGOWF. Delegation schemes are
SNARGs, but only for P. They allow you to delegate a polynomial-time computation
and check whether the computation was performed correctly in significantly less time
than it takes to perform the computation itself. Unlike SNARGs, delegation schemes can
be based on falsifiable assumptions.

Additionally, we show that any knowledge-sound NIZK gives rise to a VEGOWF.
Because of the zero-knowledge property, it is hard to compute a witness from the statement
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and a proof of that statement. However, because of the knowledge-sound property, it is
possible to extract a witness from any prover convincing the verifier. Finally, the basic
soundness property of the NIZK ensures verifiability.

We provide two generic constructions where we use a VEGOWF as a core ingredient
to transform a proof system Π with certain properties into a Sub-ZK NIZK. We give a
brief overview of the construction for the case of VEOWFs, but the same construction
works for VEGOWFs as well. The essential idea is to apply the well-known FLS [FLS90]
approach with a VEOWF f . The CRS generator generates the CRS of Π, and also picks
a value x, and includes y = f(x) in the new CRS. To prove that a statement x is true,
the prover provides a proof using Π that either the prover knows a witness for x, or
the prover knows a preimage of y. Since an honest prover does not know a preimage
of y, and such a preimage is hard to compute, the only way the prover can create an
accepting proof is if it actually knows a witness for x, and thus the statement is true.
To demonstrate subversion zero-knowledge, the simulator extracts a preimage of f from
the CRS generator and uses this to create a simulated proof. By the properties of the
proof system, this simulated proof looks indistinguishable from a real proof. The two
constructions differ based on the requirements of the underlying proof system and the
details of the techniques we use.

Our final contribution is to show that for any Sub-ZK NIZK with certain additional
properties, the algorithm used to generate the CRS is in fact a VEGOWF.

4.4 Comparison with previous work

Prior to our work, it was known how to obtain Sub-ZK NIZKs using concrete knowledge
assumptions. In this work we show how subversion zero-knowledge can be obtained by
using a generic assumption instead, deepening the theoretical understanding of subversion
zero-knowledge.

One particular application of our work is that we show how, from any candidate
VEGOWF, one can construct a Sub-ZK SNARK where the subversion zero-knowledge
property solely relies on the security of the VEGOWF.
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Abstract

Significantly extending the framework of (Couteau and Hartmann, Crypto 2020), we
propose a general methodology to construct NIZKs for showing that an encrypted
vector χ belongs to an algebraic set, i.e., is in the zero locus of an ideal I of a poly-
nomial ring. In the case where I is principal, i.e., generated by a single polynomial
F , we first construct a matrix that is a “quasideterminantal representation” of F
and then a NIZK argument to show that F (χ) = 0. This leads to compact NIZKs
for general computational structures, such as polynomial-size algebraic branching
programs. We extend the framework to the case where I is non-principal, obtaining
efficient NIZKs for R1CS, arithmetic constraint satisfaction systems, and thus for
NP. As an independent result, we explicitly describe the corresponding language
of ciphertexts as an algebraic language, with smaller parameters than in previous
constructions that were based on the disjunction of algebraic languages. This
results in an efficient GL-SPHF for algebraic branching programs.

5.1 Introduction

Zero-knowledge arguments [GMR89] are fundamental cryptographic primitives allow-
ing one to convince a verifier of the truth of a statement while concealing all further
information. A particularly appealing type of zero-knowledge arguments, with a wide
variety of applications in cryptography, are non-interactive zero-knowledge arguments
(NIZKs) [BFM88] with a single flow from the prover to the verifier.

Early feasibility results from the 90’s established the existence of NIZKs for all
NP languages (in the common reference string model) under standard cryptographic
assumptions. However, these early constructions were inefficient. In the past decades, a
major effort of the cryptographic community has been directed towards obtaining efficient
and conceptually simple NIZK argument systems for many languages of interest. Among
the celebrated successes of this line of work are the Fiat-Shamir (FS) transform [FS87],
which provides simple and efficient NIZKs but only offers heuristic security guarantees1,
and pairing-based NIZKs such as the Groth-Sahai proof system [GS08] (and its follow-ups).

The quest for efficient and conceptually simple NIZKs. The Groth-Sahai NIZK
proof system was a major breakthrough in this line of work, providing the first provably
secure (under standard pairing assumptions) and reasonably efficient NIZK for a large
class of languages, capturing many concrete languages of interest. This proof system
initiated a wide variety of cryptographic applications, and its efficiency was refined in
a sequence of works [Bla+10; EG14; Ràf15; Daz+19]. Unfortunately, the efficiency
of Groth-Sahai proofs often remains unsatisfying (typically much worse than NIZKs

1There have been recent developments towards provably secure Fiat-Shamir NIZKs [CLW18].
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obtained with Fiat-Shamir), and building an optimized Groth-Sahai proof for a specific
problem is an often tedious process that requires considerable expertise. This lack of
conceptual simplicity inhibits the potential for large-scale deployment of this proof system.
Therefore, we view it as one of the major open problems in this line of work to obtain an
efficient proof system where constructing an optimized proof for a given statement does
not require dedicated expertise. The Fiat-Shamir transform offers such a candidate – and
as a consequence, it has seen widescale adoption in real-world protocols – but lacks a
formal proof of security. The recent line of work on quasi-adaptive NIZKs [JR13; KW15;
Abd+20] offers simultaneously simple, efficient, and provably secure proof systems, but
these are restricted to a small class of languages – namely, linear languages. Some recent
SNARK proof systems also offer generic and efficient methods to handle a large class
of languages given by their high-level description; however, they all rely on very strong
knowledge-of-exponent style assumptions.

The Couteau-Hartmann argument system. Very recently, Couteau and Hartmann
put forth a new framework for constructing pairing based NIZKs [CH20]. At a high level,
their approach compiles a specific interactive zero-knowledge proof into a NIZK (as does
Fiat-Shamir), by embedding the challenge in the exponent of a group equipped with an
asymmetric pairing. The CH argument system enjoys several interesting features:

• It generates compact proofs, with efficiency comparable to Fiat-Shamir arguments,
with ultra-short common reference strings (a single group element);

• It has a conceptually simple structure, since it compiles a well-known and simple
interactive proof;

• It handles a relatively large class of algebraic languages [Ben+13; CC18], which
are parameterized languages of the shape LΓ,θ = {x : ∃w,Γ(x) · w = θ(x)}, where x
is the input, w is the witness, Γ and θ are affine maps, such that x and θ(x) are
vectors and Γ(x) is a matrix. We call (θ,Γ) the matrix description of the language
L. Since any NP language can be embedded into an algebraic language2, this gives
a proof system for all of NP.

These features make the CH argument system a competitive alternative to Fiat-Shamir
and Groth-Sahai in settings where efficiency and conceptual simplicity are desirable while
maintaining provable security under a plausible, albeit new, assumption over pairing
groups. In a sense, Couteau-Hartmann achieves a sweet spot between efficiency, generality,
and underlying assumption.

2The classical approach to do so for circuit satisfiability uses algebraic commitments to all values on
the wire of the circuit; then the statement “all committed values are consistent and the output is 1” is
an algebraic language.
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Limitations of the CH argument system. The CH transformation offers attractive
efficiency features, but its core advantage is (arguably) its conceptual simplicity. As many
previous works pointed out (see e.g. [E K+15]), what “real-world” protocol designers need
is a method that can easily take a high-level description of a language, and “automatically”
generate a NIZK for this language without going through a tedious and complex process
requiring dedicated expertise. Ideally, both the process of generating the NIZK description
from the high-level language and the NIZK itself should be efficient.

With this in mind, CH provides an important step in the right direction, where
producing the NIZK for any algebraic language is a straightforward generic transformation
applied to its matrix description. However, it falls short of fully achieving the desired
goal for two reasons.

First, it does not entirely remove the need for dedicated expertise from the NIZK
construction; rather, it pushes the complexity of building the NIZK to that of finding its
matrix description given a higher-level description of an algebraic language. However,
it does not provide a characterization of which languages, given via a common higher-
level description, are algebraic, neither does it give a method to construct their matrix
description3.

Second, the CH-compilation produces NIZKs whose soundness reduces to an instance
of the novel ExtKerMDH family of assumptions. However, the particular assumption will
only be falsifiable in the much more restricted setting of witness-samplable algebraic
languages, which essentially seem to capture disjunctions of linear languages. Couteau
and Hartmann focused on NIZKs based on the falsifiable variant, which severely limits
the class of languages captured by the framework. It is much more desirable to base the
security of all NIZKs produced by this framework on a single, plausible, well-supported
assumption: this would avoid protocol designers the hurdle of precisely assessing the
security of the specific flavor of the ExtKerMDH assumption their particular instance
requires.

Our Contribution

We overcome the main limitations of the CH argument system. Our new approach, which
significantly departs from the CH methodology, allows us to produce compact NIZKs for
a variety of languages, with several appealing features.
A general framework. We provide a generic method to compute, for several important
families of languages, a different matrix description of the languages. We then construct a
NIZK. We implicitly use the CH-compiler but in a way, different from [CH20]. We focus
on the important setting of commit-and-prove NIZK argument systems [Lip16; KOS18;

3While we can always embed any language in an algebraic language, this can be inefficient; the CH
proof system is efficient when the language is “natively” algebraic.
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Kiy20], i.e. languages of the form {Com(x1), . . . ,Com(xn) | R(x1, . . . , xn)}, where R is
some efficiently computable relation. Our method allows us to automatically obtain a
compact matrix description for many types of high-level relations.
New NIZKs: improved efficiency or generality. As a first byproduct, we obtain improved
NIZKs for some important statements, such as set membership (see Table 5.1) or the
language of commitments to points on an elliptic curve4, as well as new NIZKs for very
general classes of statements, such as R1CS, arithmetic constraint satisfaction systems
(and thus for NP).
A weaker unified assumption. As the second byproduct of our formal approach, we
manage to base all NIZKs in our framework on a slightly weaker form of the extended
Kernel Diffie-Hellman assumption, which we call the CED (family of) assumption(s) (for
Computational Extended Determinant assumption). This turns out to have an important
consequence: we show that all instances of our assumption can be based on a single
plausible gap assumption, which states that solving the kernel Diffie-Hellman assumption
in a group G2 (a well-known search assumption implied in particular by DDH) remains
hard, even given a CDH oracle in a different group G1. On top of it, several of our NIZKs
(like the one for Boolean Circuit-SAT) are based on a falsifiable CED assumption, while
we also show that a slight modification of the NIZK for arithmetic circuits can be also
based on a falsifiable variant of CED.
New SPHFs. Eventually, as another byproduct of our methodology, we obtain con-
structions of Smooth Projective Hash Functions (SPHFs) [GL03] for new languages
(SPHFs were the original motivation for introducing the notion of algebraic language,
and [Ben+13] gives a generic construction of SPHFs given the matrix description of
an algebraic language), including languages describable by efficient algebraic branching
programs.

Efficiency, Generality, and Security of our NIZKs

The argument of Couteau and Hartmann [CH20] improves over (even optimized variants
of) the standard Groth-Sahai approach on essentially all known algebraic languages.
Couteau and Hartmann illustrated this by providing shorter proofs for linear languages
(Diffie-Hellman tuples, membership in a linear subspace) and OR proofs (and more
generally, membership in t out of n possibly different linear languages), two settings
with numerous important applications (to structure-preserving signatures, tightly-secure
simulation-sound NIZKs, tightly-mCCA-secure cryptosystems, ring signatures...). Our
framework builds upon the Couteau-Hartmann framework, provides a clean mathematical
approach to overcoming its main downside (which is that the matrix description of

4NIZKs for this type of languages have recently found important applications in blockchain applica-
tions, such as the zcash cryptocurrency, see [E K+15] and https://z.cash/technology/jubjub/.
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Table 5.1: Comparison of set-membership proofs, i..e., NIZKs for Lpk,F , where F (X) is
univariate, as in Lemmas 5.6.1, 5.9.3 and 5.F.5. The verifier’s computation is given in
pairings. The Groth-Sahai computation figures are not published and based on our own
estimation; hence, we have omitted the computation cost. Note that |G2| = 2|G1| in
common settings. In CHM and new NIZK, |crs| = |G2|.

Argument |π| P comp. V comp.
Previous works

Optimized GS [Ràf15] d|G1|+ (3d+ 2)|G2| - -
CHM NIZK + [CH20] (Γ,θ), Lemma 5.F.5 (3d− 1)|G1|+ (3d− 2)|G2| (7d− 4)e1 + (3d− 1)e2 9d− 2

New solutions
CHM NIZK + new Γ,θ, Lemma 5.9.3 2d|G1|+ (2d− 1)|G2| (5d− 3)e1 + 4de2 7d− 1
New NIZK, Lemma 5.6.1 2d|G1|+ (2d− 1)|G2| ≤ 3de1 + (4d− 2)e2 7d− 1

“algebraic languages” must be manually found), and significantly generalizes it. Our
framework enjoys most of the benefits of the Couteau-Hartmann framework, such as its
ultra-short common random string (a single random group element).

Efficiency. Our framework shines especially as soon as the target language becomes
slightly too complex to directly “see” from its description an appropriate and compatible
matrix description C of the language; then, we get significant efficiency improvements.
We illustrate this on a natural and useful example: set membership proofs for ElGamal
ciphertext over G1 (i.e., the language of ElGamal encryptions of m ∈ S for some public
set S of size d), see Table 5.1. It depicts the complexity of optimized Groth-Sahai
proofs, the generic Couteau-Hartmann compilation of Maurer’s protocol (denoted CHM)
by using the language parameters (Γ,θ) provided in [CH20], CHM NIZK for (Γ,θ)
automatically derived in the current paper from the matrix description C, and our new
NIZK. On the other hand, our modular approach provides significantly shorter proofs.
Taking e.g. d = 5, we get a proof about 25% shorter compared to Groth-Sahai. Our
approach also significantly improves in terms of computational efficiency. Moreover, since
in our approach, we need to only encrypt the data in a single group, as opposed in
two groups in the case of (asymmetric-pairing-based) Groth-Sahai, we have three times
shorter commitments. In Section 5.8, we also discuss the case of multi-dimensional set
membership proofs (where, depending on the structure of the set, our framework can
lead to even more significant improvements).

Generality. Our framework also goes way beyond the class of languages naturally handled
by Couteau-Hartmann. In particular, we show that our framework directly encompasses
arithmetic constraint satisfaction systems (aCSPs), i.e., collections of functions F1, . . . , Fτ

(called constraints) such that each function Fi depends on at most q of its input locations.5

In particular, this efficiently captures arithmetic circuits, hence all NP languages.6

5That is, for every j ∈ [1, τ ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that ∀χ ∈ Fn, Fj(χ) =
f(χi1 , . . . , χiq

). Then F is satisfiable if ∀j, Fj(χ) = 0.
6Technically, one could always take aCSPs, write them as a circuit satisfiability problem, and embed

that into an agebraic language to capture it with the Couteau-Hartmann framework; the point of our
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Rank-1 constraints systems (R1CS) are well-known to be powerful, since they capture
compactly many languages of interest [Gen+13]. They have been widely used in the
construction of SNARKs. aCSPs directly extend these simple constraints to arbitrary
low-degree polynomial relations. Moving away from R1CS to more expressive constraint
systems can potentially be very useful: in many applications of NIZKs with complex
languages, an important work is dedicated to finding the “best” R1CS to represent the
language. The increased flexibility of being allowed to handle more general constraints
can typically allow to achieve a significantly more efficient solution. While systematically
revisiting existing works and demonstrating that their R1CS system could be improved
using aCSPs would be out of the scope of this paper, we point out that this generalization
approach was successfully applied in the past: the work of [HKR19] described a method
to go beyond R1CS in “Bulletproof style” random-oracle-based NIZKs (this setting is
incomparable to ours, as we focus on NIZKs in the standard model). They show how
to handle general quadratic constraints, and demonstrate that this leads to efficiency
improvements over Bulletproof on aggregate range proofs. Since aCSPs are even more
general, handling any low-degree polynomials, we expect that this representation could
lead to significant optimizations for many applications of NIZKs that rely on R1CS
representations. However, we are aware of no previous random-oracle-less NIZKs that
can handle aCSPs natively.

Furthermore, even in scenarios where R1CS does indeed provide the best possible
representation, our framework leads to proofs more compact than Groth-Sahai. We
illustrate this on Table 5.2 for the case of general boolean circuits. Here, the standard
GOS approach [GOS06] reduces checking each gate of the circuit to checking R1CS
equations. When comparing the cost obtained with our framework to the cost achieved
by a Groth-Sahai proof (using the optimized variant of [GSW09]), we find that our
framework leads to three times smaller commitments, 20% shorter argument, and almost
a factor two reduction in computation.

On the non-falsifiability of our assumption. When the algebraic branching program
representation of the relation is multivariate, the corresponding matrix description may
lead to a NIZK under a non-falsifiable assumption. This might appear at first sight
to significantly restrict the interest of our framework: while our NIZKs are typically
more efficient than Groth-Sahai, they are usually larger than SNARKs since they grow
linearly with (the algebraic branching program representation of) the relation, while
SNARKs have size independent of both the relation and the witness. Hence, if we allow
non-falsifiable assumptions, wouldn’t SNARKs provide a better solution?

We discuss this apparent issue in Section 5.10. First, we identify a large class of
important cases where the underlying assumption becomes falsifiable; this includes

framework is that, by capturing this powerful model directly, we can obtain much better efficiency on
aCSPs.
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Boolean circuits (and thus NP). Second, we provide a general approach to transform
any NIZK from our framework into NIZKs under a falsifiable assumption, by replacing
the underlying commitment scheme by a DLIN-based encryption scheme and double-
encrypting certain values. This comes at the cost of increasing the commitment and
argument size. Third, we argue that the gap assumption [OP01] underlying our framework
is, despite its non-falsifiability, a very natural and plausible assumption; see Section 5.10
for more details. In particular, gap assumptions are generally recognized as much more
desirable than knowledge of exponent assumptions. In essence, our assumption says that
uncovering structural weaknesses in a group G1 does not necessarily imply the existence
of structural weaknesses in another group G2; in particular, this assumption trivially
holds in the generic bilinear group model (where a CDH oracle in G1 provides no useful
information for breaking any assumption in G2).

Overall, we view our framework as providing a desirable middle ground between Groth-
Sahai (which leads to less efficient NIZKs, but under the standard SXDH assumption) and
SNARKs (which lead to more efficient NIZKs in general but require highly non-standard
knowledge of exponent assumptions).

Technical Overview

Intuitive overview. At a high level, the Couteau-Hartmann methodology compiles
a Σ-protocol for languages of the form {x : ∃w,Γ(x) · w = θ(x)}, where (Γ,θ) are
linear maps, into a NIZK. This leaves open, however, the tasks of characterizing which
languages admit such a representation, finding such a representation, and when multiple
representations are possible optimizing the choice of the representation. We provide a
blueprint for these tasks.

We focus on commit-and-prove languages, a large and useful class of languages. At
the heart of our techniques is a general method to convert a set of low-degree polynomial
equations Fi(X) into a set of “optimized” matrices Ci(X) such that det(Ci(X)) = Fi(X)
with a specific additional structure. We call this matrix a quasideterminantal (QDR)
representation of the polynomial. Then, we directly construct a compact NIZK proof
system for a QDR, using a variant of the Couteau-Hartmann methodology. We prove
that the resulting proof system is sound under a CED assumption. Whenever Fi has
a polynomial number of roots (e.g., univariate), the corresponding CED assumption is
always falsifiable.

Constructing a QDR from a polynomial is a non-trivial task that highly depends on
the representation of Fi. We provide a general framework to construct such QDRs from
the algebraic branching program (ABP [Nis91]) representation of Fi; hence, our framework
is especially suited whenever the polynomials have a compact ABP representation. ABP
is a powerful model of computation, capturing in particular all log-depth circuits, boolean
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branching programs, boolean formulas, logspace circuits, and many more.

Background. The rest of the technical overview requires understanding of some minimal
background from algebraic geometry, see [ALO15] for more. Let F = Zp and X =
(X1, . . . , Xν). For a set F of polynomials in F[X], let

A(F) := {χ ∈ Fν : f(χ) = 0 for all f ∈ F}

be the algebraic set defined by F . A subset A ⊆ Fν is an algebraic set if A = A(F)
for some F . Given a subset A of Fν , let I(A) be the ideal of all polynomial functions
vanishing on A,

I(A) := {f ∈ F[X] : f(χ) = 0 for all χ ∈ A} .

Since each ideal of F [X] is finitely generated [ALO15], then so is I(A), and thus
I(A) = 〈F1, . . . , Fτ 〉 for some Fi. I is principal if it is generated by a single polynomial.
All univariate ideals are principal. For an ideal I with generating set {Fi}, A(I) := A({Fi}).
We also define Z(F ) := A({F}).

Commit-and-prove NIZKs for algebraic sets. For the sake of concreteness, we focus
on commit-and-prove languages where the underlying commitment scheme is the ElGamal
encryption scheme; it is easy to extend this approach to any additively homomorphic
and perfectly binding algebraic commitment scheme. Let pk be an Elgamal public key
and let A be an algebraic set. We provide a general methodology of constructing a NIZK
argument for the language

Lpk,A = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ A}

of Elgamal-encryptions of elements of A. We define Lpk,F := Lpk,Z(F ) when we are working
with a single polynomial. Assuming I(A) = 〈F1, . . . , Fτ 〉, we prove that χ ∈ A by proving
that Fi(χ) = 0 for each Fi. The resulting argument system is efficient (probabilistic
polynomial-time), assuming that there is

(i) an efficient algorithm (to be run only once) that finds a small generating set
(F1, . . . , Fτ ) for I(A) where τ = poly(λ), and

(ii) an efficient NIZK argument system to show that Fi(χ) = 0 for each Fi.

Note that the NIZK for showing that Fi(χ) = 0 for each i is a simple conjunction of
NIZKs for showing for each i that Fi(χ) = 0.

Now, i is a non-cryptographic problem from computational commutative algebra. The
classical Buchberger-Möller algorithm [MB82] can find efficiently a finite Gröbner basis
{Fi} for all algebraic sets A that have a finite Gröbner basis. Other methods exist, and we
will only mention a few. Most importantly, one can relate i to finding efficient arithmetic
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circuits and arithmetic constraint satisfaction systems (aCSPs), see Section 5.8.7 The
main technical contribution of our work (on top of the general framework) is to propose
an efficient solution to ii.
Constructing a compact proof system for F (χ) = 0. Here, we follow the next
blueprint: we construct

(iii) a small matrix C(X) (that satisfies some additional properties) of affine maps, such
that det(C(X)) = F (X), and

(iv) an efficient NIZK argument system for showing that det(C(χ)) = 0 for committed
χ.

To solve iv, we build upon the new computational extended determinant assumption
(CED). The CED assumption is a relaxation of the ExtKerMDH assumption from [CH20],
which itself is a natural generalization of the Kernel Diffie-Hellman assumption. At a
high level, CED says that given a matrix in a group G2, it is hard to find an extension
of this matrix over G2, together with a large enough set of linearly independent vectors
in G1 in the kernel of the extended matrix (where (G1,G2) are groups equipped with
an asymmetric pairing). While CED is not falsifiable in general, it can be reduced to
a natural gap assumption. The latter reduction does not work with the ExtKerMDH
assumption.

Our reduction to the CED assumption proceeds by identifying the matrix C, returned
by the CED adversary, with the matrixC(X) from iii. Intuitively, we construct a reduction
that, knowing the Elgamal secret key sk, extracts [(γ‖C)(χ)]1, where [χ]1 = Decsk([ct]1),
such that C(χ) has full rank iff the soundness adversary cheated, i.e., F (χ) 6= 0. In that
case, the reduction can obviously break the CED assumption.

To ensure that the NIZK argument can be constructed, we require that C satisfies
two additional properties. Briefly,

(1) C(X) is a matrix of affine maps, (to ensure that the matrix is computable from the
statement) and

(2) the first column of C(χ) is in the linear span of the remaining columns of the matrix
for any χ ∈ Z(F ) (a technical condition which ensures that an honest prover can
compute the argument).

We say that then C(X) is a quasideterminantal representation (QDR) of F . We also give
some conditions which make it easier to check whether a given matrix is a QDR of F .

7There are ample examples of sets A that have small generating sets (and even small Gröbner bases),
which can be found using a variety of standard tricks and methods (e.g. increasing the dimension of the
affine space from some Fn to Fn′ , n′ > n, such that the new n′ − n “helper variables” make it possible to
construct a small Gröbner basis that consists of only small-degree polynomials). We will use such tricks
in some of our illustrations and applications.
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Building NIZKs from QDRs. Assuming C(X) is a QDR of F , we propose a linear-
algebraic NIZK argument Πnizk for showing that x ∈ Lpk,F . We prove that Πnizk is sound
under a CED assumption. Importantly, CED is falsifiable if A = A(F ) has a polynomial
number of elements. Otherwise, CED is in general non-falsifiable (except in some relevant
cases, see Section 5.10), but belongs to the class of “inefficient-challenger” assumptions
(usually considered more realistic than knowledge assumptions, see [Pas13]). Furthermore,
CED can be reduced to a single, natural gap assumption: the hardness of breaking DDH
in a group G2 given a CDH oracle in a different group G1. We refer to 5.10 for more
details.

Constructing QDRs. The remaining, highly non-trivial, problem is to construct a QDR
of F , such that the constructed NIZK argument is efficient. In the rest of the paper, we
study this problem.

First, we propose a general framework to construct NIZK arguments for Lpk,F where
F (χ) can be computed by an efficient algebraic branching program. Let Π be an ABP
that computes F , with the node set V and the edge set E, and let ` = |V | − 1. Given the
methodology of [IK00; IK02], one can represent Π as an `× ` matrix IK(X), such that
det(IK(X)) is equal to the output of the ABP. We show that such IK(X) is a QDR. Thus,
we obtain an efficient computationally-sound NIZK for Lpk,F under a CED assumption.

Applications. We consider several natural applications of our framework.

Univariate polynomials. Given a univariate polynomial F (X) = ∏(X − ξi) of degree-d,
for different roots ξi, we construct a simple matrix C(X). The resulting NIZK argument
is about 30% shorter and 20% more computationally efficient than the set membership
proof that stems from [CH20, Section C]; see the comparison in Table 5.1.

Commitments to points on an elliptic curve. We construct a NIZK argument to prove that
the committed point (X, Y ) belongs to the given elliptic curve Y 2 = X3 + aX + b. Such
NIZK proofs are popular in cryptocurrency applications, [Ben+14]. The construction of
C(X, Y ) is motivated by a classical algebraic-geometric (possibility) result that for any
homogeneous cubic surface F (X, Y, Z), there exists a 3× 3 matrix of affine maps that
has F (X, Y, Z) as its determinant [Dic21; Bea00].

OR proofs. In Section 5.6, we look at the special case of OR proofs and study three
instantiations of our general protocol to OR arguments. We discuss the advantages and
downsides of each.

Non-Principal Ideals. Importantly, in Section 5.8, we capture the very general scenario
where I(A) has a “nice-looking” generating set (F1, . . . , Fτ ) (i.e. τ is small and each
polynomial has a small degree). Some cryptographically important examples include
arithmetic circuits, R1CS, Boolean circuits, and arithmetic constraint satisfaction systems.
Thus, we obtain efficient NIZKs for NP.
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5.2 Preliminaries

For a matrix A ∈ Zn×np and i ∈ [1, n], let C(i,1) be the submatrix obtained from C by
removing the ith row and the first column.
Cryptography. A bilinear group generator Pgen(1λ) returns p =
(p,G1,G2,GT , ê, [1]1, [1]2), where G1, G2, and GT are three additive cyclic groups
of prime order p, [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2), and
ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear pairing. We require
the bilinear pairing to be Type-3 [DGP08], that is, we assume that there is no efficient
isomorphism between G1 and G2. We use the additive implicit notation of [Esc+13], that
is, we write [a]ι to denote a[1]ι for ι ∈ {1, 2, T}. We denote ê([a]1, [b]2) by [a]1 • [b]2. Thus,
[a]1 • [b]2 = [ab]T . We freely use the bracket notation together with matrix notation; for
example, if AB = C then [A]1 • [B]2 = [C]T . We also define

[A]2 • [B]1 := ([B]>1 • [A]>2 )> = [AB]T .

Let Pν := {[a0]1 + ∑ν
i=0[ai]1Xi : ai ∈ Zp for i ∈ [0, ν]} ⊂ G1[X] be the set of linear

multivariate polynomials over G1 in ν variables.
Algebraic languages [CC18; CH20] are parameterized languages of the shape LΓ,θ =

{x : ∃w,Γ(x) · w = θ(x)}, where x is the input, w is the witness, Γ and θ are affine maps,
such that x and θ(x) are vectors, and Γ(x) is a matrix. One can construct Gennaro-Lindell
smooth projective hash functions (GL-SPHFs [GL03; Ben+13; Ben16]) for all algebraic
languages.

Let k ∈ {1, 2, . . .} be a small parameter related to the matrix distribution. In the
case of asymmetric pairings, usually k = 1. Let D`k be a probability distribution over
Z`×k
p , where ` > k. We denote Dk+1,k by Dk. We use the matrix distribution, L1, defined

as the distribution over matrices ( 1
a ), where a←$Zp.

In the Elgamal encryption scheme [ElG84], the public key is pk = [1‖sk]1, and

Encpk(m; r) = (r[1]1‖m[1]1 + r[sk]1) .

To decrypt, one computes [m]1 = Decsk([c]1) ← −sk[c1]1 + [c2]1. In what follows, we
denote [c]1 = Enc(m; r) for a fixed public key pk = [1‖sk]1. Elgamal’s IND-CPA security
is based on L1-KerMDH, that is, DDH.

The DLIN cryptosystem [BBS04] is less efficient than Elgamal, with the ciphertext
consisting of 3 group elements instead of 2. However, it remains secure in the case of
symmetric pairings. Its IND-CPA security is based on L2-KerMDH, that is, DLIN [BBS04].
Briefly,

[c]ι ← Encι(χ; r1, r2) := (χ‖r1‖r2)
[ 0 0 1

sk1 0 1
0 sk2 1

]
ι

= [r1sk1‖r2sk2‖χ+ r1 + r2]ι ∈ G3
ι

for public key pkι = [1‖sk1‖sk2]ι and randomiser (r1, r2). The decryption formula is
[χ]ι ← −1/sk1 · [c1]ι − 1/sk2 · [c2]ι + [c3]ι.



56 5. Paper I

The following Extended Kernel Diffie-Hellman assumption ExtKerMDH [CH20] gener-
alizes the well-known KerMDH assumption [MRV16]. (Section 5.A defines KerMDH.)
We also define in parallel a new, slightly weaker version of this assumption, CED (compu-
tational extended determinant).

Definition 5.2.1 (Dk-(`− 1)-ExtKerMDH). Let `, k ∈ N, and Dk be a matrix distribution.
The Dk-(` − 1)-ExtKerMDH assumption holds in Gι relative to Pgen, if for all PPT
adversaries A, the following probability is negligible:

Pr
 δ ∈ Z(`−1)×k

p ∧ γ ∈ Z`×k
p ∧ C ∈ Z`×`p ∧ p← Pgen(1λ), [D]ι←$Dk,

(γ‖C)(Dδ ) = 0 ∧ rk(γ‖C) ≥ ` ([γ‖C]3−ι, [δ]ι)← A(p, [D]ι)

 .

We define Dk-(`− 1)-CED analogously, except that we change the condition rk(γ‖C) ≥ `

to rk(C) = `.

CED is weaker than ExtKerMDH since a successful adversary has to satisfy a stronger
condition (rk(C) ≥ ` instead of rk(γ‖C) ≥ `). Formally:

Lemma 5.2.2. Let `, k, and Dk be as in Definition 5.2.1. If Dk-(`−1)-ExtKerMDH holds,
then Dk-(`− 1)-CED holds.

Proof. Let A be an adversary that breaks Dk-(`−1)-CED with probability ε. We construct
the following adversary B that breaks Dk-(`− 1)-ExtKerMDH:

B(p, [D]ι)

([γ‖C]3−ι, [δ]ι)← A(p, [D]ι);
return ([γ‖C]3−ι, [δ]ι);

If A succeeds, then by Definition 5.2.1, (γ‖C)(Dδ ) = 0 and rk(γ) ≥ `. However, if
rk(γ) ≥ ` then also clearly rk(γ‖C) ≥ `. Thus, B succeeds with probability ≥ ε.

CED suffices for the security of all NIZK arguments of the current paper. Moreover, in
Section 5.10, we reduce CED to a gap assumption. It seems that ExtKerMDH cannot be
reduced to the same assumption. Finally, CED is a natural assumption since we always
care about rk(C) and not rk(γ‖C) ≥ `.

Despite the general definition, in the rest of the paper (following [CH20]), we will be
only concerned with the case k = 1 and Dk = L1.
NIZK Arguments. An adaptive NIZK Π for a family of language distribution {Dp}p

consists of five probabilistic algorithms:

(1) Pgen(1λ): generates public parameters p that fix a distribution Dp.

(2) Kgen(p): generates a CRS crs and a trapdoor td. For simplicity of notation, we
assume that any group parameters are implicitly included in the CRS. We often
denote the sequence “p← Pgen(1λ); (crs, td)← Kgen(p)” by (p, crs, td)← Kgen(1λ).
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(3) P(crs, lpar, x, w): given a language description lpar ∈ Dp and a statement x with
witness w, outputs a proof π for x ∈ Llpar.

(4) V(crs, lpar, x, π). On input of a CRS, a language description lpar ∈ Dp, a statement
and a proof, accepts or rejects the proof.

(5) Sim(crs, td, lpar, x). Given a CRS, the trapdoor td, lpar ∈ Dp, and a statement x,
outputs a simulated proof for the statement x ∈ Llpar.

Note that the CRS does not depend on the language distribution or language pa-
rameters, i.e. we define fully adaptive NIZKs for language distributions. The following
properties need to hold for a NIZK argument.

A proof system Π for {Dp}p is perfectly complete, if

Pr
 V(crs, lpar, x, π) = 1 (p, crs, td)←$ Kcrs(1λ); lpar ∈ Supp(Dp);

(x, w) ∈ Rlpar; π←$ P(crs, lpar, x, w)

 = 1

A proof system Π for {Dp}p is computationally sound, if for every efficient A,

Pr
 V(crs, lpar, x, π) = 1 (p, crs, td)←$ Kcrs(1λ);

∧x /∈ Llpar lpar ∈ Supp(Dp); (x, π)← A(crs, lpar)

 ≈ 0

with the probability taken over Kcrs.
Π for {Dp}p is perfectly zero-knowledge, if for all λ, all (p, crs, td) ∈ Supp(Kcrs(1λ)),

all lpar ∈ Supp(Dp) and all (x, w) ∈ Rlpar, the distributions P(crs, lpar, x, w) and
Sim(crs, td, lpar, x) are identical.
Σ-Protocols. A Σ-protocol [CDS94] is a public-coin, three-move interactive proof
between a prover P and a verifier V for a relation R, where the prover sends an initial
message a, the verifier responds with a random e←$Zp and the prover concludes with a
message z. Lastly, the verifier outputs 1, if it accepts and 0 otherwise. In this work we
are concerned with three properties of a Σ-protocol: completeness, optimal soundness
and honest-verifier zero-knowledge.
CH compilation. Couteau and Hartmann [CH20] compile Σ-protocols to NIZKs in the
CRS model for algebraic languages by letting [e]2 be the CRS. The basic Couteau and
Hartmann compilation is for a Σ-protocol, inspired by [Mau09], for algebraic languages.
We will describe it in Section 5.9.

5.3 Quasideterminantal Representations

Next, we define quasideterminantal representations (QDRs) C(X) of a polynomial F (X).
We prove a technical lemma in Section 5.3 which shows how one can check whether a
concrete matrix C(X) is a QDR of F . We use this definition in Section 5.4, where, given
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a QDR C(X), we define the NIZK argument for the associated language Lpk,F (defined
in Equation (5.1)), and prove its security.

We first define the class of languages we are interested in. Initially, we are interested
in the case where A = A({F}) for a single polynomial F . Fix p ← Pgen(1λ). For a
fixed Elgamal public key pk, let lpar := (pk, F ). (Implicitly, lpar also contains p.)
Let [ct]1 = Enc([χ]1; r) = (Enc([χi]1; ri))i. We use freely the notation F (Dec([ct]1)) =
F ([χ]1) = [F (χ)]1. In Section 5.4, we describe a general technique that results both in
efficient NIZK arguments for languages

Lpk,F = {[ct]1 : ∃χ such that Dec([ct]1) = [χ]1 ∧ χ ∈ Z(F )} . (5.1)

For example, if F (X) = X2 −X, then Lpk,F corresponds to the language of all Elgamal
encryptions of Boolean values under the fixed public key pk.
Intuition. To motivate the definition of QDRs, we first explain the intuition behind
the new NIZK argument. Recall from Definition 5.2.1 that an adversary breaks the L1-
(`− 1)-CED assumption if, given [D]2 = [ 1

e ]2 ←$L1 (i.e., e←$Zp), he returns ([γ‖C]1 ∈
G`×(`+1)

1 , [δ]2 ∈ G(`−1)×1
2 ), such that rk(C) ≥ ` and

γ +C( eδ ) = 0. (5.2)

Following [CH20], in our arguments [e]2 (i.e., [D]2) is given in the CRS and [δ]2 is
chosen by the prover. More precisely, the prover sends Enc([γ‖C]1) and [δ]2 (together
with some elements that make it possible to verify that Equation (5.2) holds using
encrypted values) to the verifier.

The matrix C must have full rank whenever the prover cheats, i.e. F (χ) 6= 0. We
achieve this by requiring that det(C(X)) = F (X). Then, rk(C) = `.

We guarantee that C is efficiently computable by requiring that C(X) is a matrix of
affine maps, and [C]1 = [C(χ)]1 for [χ]1 = Dec([ct]1). This also minimizes communication
since each element of Enc([C(χ)]1) can be recomputed from Enc([χ]1) by using the
homomorphic properties of Elgamal.

On the other hand, assume that the prover is not honest (i.e., det(C(χ)) = F (χ) 6= 0)
but managed to compute Enc([γ]1) and [δ]2 accepted by the verifier. Assume that
the reduction knows sk (the language trapdoor). Then, the reduction obtains [χ]1 by
decryption and recomputes [C(χ)]1. Since det(C(χ)) 6= 0 but the verifier accepts (i.e.,
Equation (5.2)), then one can break the CED assumption by returning [(γ‖C)(χ)]1 and
[δ]2.

Definition

We now define quasideterminantal representations (QDRs) C(X) of polynomial F . QDRs
are related to the well-known notion of determinantal representation from algebraic
geometry, see Section 5.B for a discussion.
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Definition 5.3.1 (Quasideterminantal Representation (QDR)). Let F (X) ∈ Zp[X] be a
ν-variate polynomial. Let ` ≥ 1 be an integer. A matrix C(X) = (Cij(X)) ∈ Zp[X]`×`

is a QDR of F , if the following requirements hold. Here, C(X) = (h‖T )(X), where
h(X) is a column vector.

Affine map: For each i and j, Cij(X) = ∑ν
k=1 PkijXk + Qij, for public Pkij, Qij ∈ Zp,

is an affine map.

F -rank: det(C(X)) = F (X).

First column dependence: For any χ ∈ Z(F ), h(χ) ∈ colspace(T (χ)).

The quasideterminantal complexity qdc(F ) of F is the smallest QDR size of F . (Clearly,
qdc(F ) ≥ deg(F ).)

For example, C(X) =
(

0 X
X−1 1−X

)
is a QDR of F (X) = X(X − 1). The first column

dependence property follows since
(

0
χ−1

)
=
(

χ
1−χ

)
w iff (χ,w) = (0,−1) or (χ,w) = (1, 0),

i.e., χ ∈ Z(F ). On the other hand, C(X) =
(
X 0
0 X−1

)
is not a QDR (of the same F ) since

( χ0 ) =
(

0
χ−1

)
w iff (χ,w) = (0, 0).

The first column dependence property is nicely connected to a computational re-
quirement we need for our NIZK. However, it can be difficult to check whether a given
matrix satisfies this condition. We now give two alternative conditions that imply the
first column dependence property, and which are easier to check.

Lemma 5.3.2. Suppose a matrix C satisfies the affine map and F -rank properties. If
it in addition satisfies one of the following properties, it also satisfies the first column
dependence property.

(1) High right rank: For any χ ∈ Zνp, rk(T (χ)) = `− 1.

(2) Invertible right-submatrix: there exists i, s.t. det(C(i,1)(χ)) 6= 0 for any χ.

Proof. (1). Consider any χ ∈ Z(F ). By the F -rank property, det(C(χ)) = 0 and thus
rk(C(χ)) ≤ `− 1. Suppose h(χ) 6∈ colspace(T (χ)). Then rk(C(χ)) > rk(T (χ)). By the
high right rank property, `− 1 ≥ rk(C(χ)) > rk(T (χ)) = `− 1, which is a contradiction.
Thus, h(χ) ∈ colspace(T (χ)).

(2). From the invertible right-submatrix property, rk(C(i,1)(χ)) = ` − 1, and thus
rk(T (χ)) = `− 1.

E.g., any matrix C(X) that contains non-zero elements on its upper 1-diagonal and
only 0’s above the upper 1-diagonal is automatically a QDR of F (X) := det(C(X)). See
Sections 5.5 and 5.6 for more.
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Corollaries

The affine map property is needed since we use a homomorphic cryptosystem which
makes it possible to compute

Enc([Cij(χ)]1) =
ν∑
k=1

PkijEnc([χk]1) +QijEnc([1]1)

given only Enc([χ]1). The F -rank property follows directly from the definition of CED.
The first column dependence property, guarantees that the QDR C(X) satisfies the
following two properties, required later:

Efficient prover: There exist two PPT algorithms that we later explicitly use in the
new NIZK argument (see Figure 5.2) for Lpk,F . First, comp1(p,χ,C(X)), that
computes [γ]1 and a state st. Second, comp2(st, [e]2), that computes [δ]2. We
require that if F (χ) = 0, then ([γ]1, [δ]2) satisfy Equation (5.2). We denote
the sequential process ([γ]1, st) ← comp1(p,χ,C(X)), [δ]2 ← comp2(st, [e]2) by
([γ]1, [δ]2)← comp(p, [e]2,χ,C(X)).

Zero-knowledge: For ([γ]1, [δ]2) ← comp(p, [e]2,χ,C(X)), δ is uniformly random.
This requirement is needed for the zero-knowledge property of the resulting NIZK
argument.

To be able to construct an efficient Σ-protocol for Lpk,F , we need to replace the efficient
prover assumption with the following assumption.

Efficient prover over integers: as the “efficient prover” requirement, but one uses e
everywhere instead of [e]2, and δ instead of [δ]2.

In all our instantiations, the two variations of comp are related as follows:
comp(p, [e]2,χ,C(X)) is the same as comp(p, e,χ,C(X)) but applies an additional
[·]2 to some of the variables.

Remark. We will explicitly need the independence of [γ]1 from [e]2 for Σ-protocols and
thus for CH-compilation. It is not a priori clear if it is needed for NIZK arguments in
general. However, if γ = f(e) for some non-constant affine map f , then one cannot
efficiently compute [γ]1 given only [e]2, since we rely on type-III pairings and those two
values belong to different source groups. Thus, independence of [γ]1 from [e]2 seems
inherent in the case of type-III pairings.

Lemma 5.3.3. Assume F is as in Definition 5.3.1 and that C(X) is a QDR of F . Then

(1) C has the efficient-prover property.

(2) C has the zero-knowledge property.
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comp1(p,χ,C(X)):

Write C(χ) = (h‖T )(χ);y←$Z`−1
p ;

γ ← T (χ)y; st← (p,χ,C(X);y);
return ([γ]1, st);

comp2(st, ψ(e)):

Write C(χ) = (h‖T )(χ);
Compute w such that T (χ)w = h(χ);
ψ(δ)← −(wψ(e) + ψ(y)); return ψ(δ);

Figure 5.1: compi algorithms assuming h(χ) ∈ colspace(T (χ)). Here, ψ = id in the case
of the Σ-protocol, and ψ = [·]2 in the case of the NIZK argument.

Proof. Recalling C(X) = (h‖T )(X), we rewrite Equation (5.2) as

γ + h(X)e+ T (X)δ = 0 . (5.3)

Assume C(X) is a QDR of F . From the first column dependence property, we get
that for any χ ∈ Z(F ), there exists a w, such that T (χ)w = h(χ). Thus for such χ,
Equation (5.3) holds iff

γ + T (χ)(we+ δ) = γ + T (χ)we+ T (χ)δ = 0 .

This gives rise to the following algorithm to compute γ and δ. In comp1, one samples
y←$Z`−1

p , and outputs γ ← T (χ)y. In comp2, one solves T (χ)w = h(χ) for w, and
sets δ ← −(we + y). Clearly, γ and δ satisfy Equation (5.2), and γ is computed
independently of e. Thus, the efficient prover property holds. Since y is uniformly
random, so is δ = −(we+y). Hence, the zero-knowledge property is satisfied. We depict
the algorithms in Figure 5.1.

Finally, we show that any matrix which satisfies the efficient prover property as well as
the affine map and F -rank properties must satisfy the first column dependence property.
Thus, the latter property is actually needed.

Lemma 5.3.4. Let C(X) be a matrix that satisfies the affine map, F -rank and efficient
prover properties. Then C satisfies the first column dependence property.

Proof. Fix p,χ, and C(X) = (h‖T )(X), and let compi be any (potentially inefficient)
algorithms that output ([γ]1, [δ]2), such that [γ]1 does not depend on e. Consider any
([γ]1, st) ← comp1(p,χ,C(X)). For any e and the given st, let [δe]2 ← comp2(st; [e]2).
Suppose that γ does not depend on e. Fix any e 6= e′. Since Equation (5.2) and thus
Equation (5.3) holds for both e (and thus δ = δe) and e′ (and thus δ = δe′),

h(χ)(e− e′) + T (χ)(δe − δe′) = 0 .

Thus, h(χ) = T (χ)((δe − δe′)/(e′ − e)), and thus h(χ) ∈ colspace(T (χ)).
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5.4 Argument for Algebraic Set of Principal Ideal

Fix p← Pgen(1λ) and define Dp := {lpar = (pk, F )}, where

(1) pk is an Elgamal public key for encrypting in G1, and

(2) F is a polynomial with qdc(F ) = poly(λ), i.e., there exists a poly(λ)-size QDR C(X)
of F . (In Sections 5.5 and 5.6, we will show that such QDRs exist for many F -s.)

Before going on, recall that Cij(X) = ∑ν
k=1 PkijXk +Qij for public Pkij and Qij. To

simplify notation, we will use vector/matrix format, by writing

C(X) =
ν∑
k=1
PkXk +Q .

As always, we denote Enc([a]1; r) := (Enc([ai]1; ri))i. We often omit χ in notation like
[C(χ)]1, and just write [C]1.

Protocol Description

Let Lpk,F be defined as in Equation (5.1). The new Σ-protocol and NIZK argument for
Lpk,F are based on the same underlying idea. Since the new NIZK is a CH-compilation
of the Σ-protocol, it suffices to describe intuition behind the NIZK.

In the new NIZK argument (see Figure 5.2), P uses comp1 to compute [γ]1 (together
with state st), encrypts [γ]1 by using fresh randomness %, and then uses comp2 (given crs =
[e]2) to compute [δ]2. If P is honest, then by the definition of QDRs of F , Equation (5.2)
holds, i.e., γ +C(χ)( eδ ) = 0. The latter is equivalent to γ + (∑k Pkχk)( eδ ) = −Q( eδ ). V
needs to be able to check that the last equation holds, while given only an encryption of
[γ]1. To help V to do that, P sends a vector of randomizers [z]2 to V as helper elements
that help to “cancel out” the randomizers used by the prover to encrypt [γ]1 and [χ]1.

The new NIZK argument is given in Figure 5.2.

Efficiency

Next, we estimate the efficiency of the NIZK argument. Note that if we use the comp
algorithm given in Figure 5.1, we see that the algorithm computes w and y such that
[δ]2 = −(w[e]2 + y[1]2). This lets us write [ eδ ]2 = ( 1

−w )[e]2 +
(

0
−y

)
[1]2. This allows us

to compute [z]2 as (∑ν
k=1 rkPk) ( 1

−w )[e]2 + (%+∑ν
k=1 rkPk)

(
0
−y

)
[1]2, which can be done

with 2` exponentiations in G2. This leads to the following lemma. Its proof follows by
direct observation.

Lemma 5.4.1. Consider Πnizk with QDR C. Define TP (C) := |{(i, j) : ∃k, Pkij 6= 0}|,
and TQ(C) := |{(i, j) : Qij 6= 0}|. Let c be the time needed to run comp, eι is the time of
an exponentiation in Gι, and p is the time of a pairing. Then
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Kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2,χ,C(X));
%←$Z`p; [ctγ ]1 ← Enc([γ]1;%) ∈ G`×2

1 ;
[z]2 ← %[1]2 + (∑ν

k=1 rkPk) [ eδ ]2 ∈ G`
2.

Return π ← ([ctγ ]1, [δ, z]2) ∈ G`×2
1 ×G2`−1

2 .

V(crs, lpar, x = [ct]1, π): check [I`]2 • [ctγ ]1 +∑ν
k=1 (Pk [ eδ ]2 • [ctk]1) =? (−Q [ eδ ]2) •

[0‖1]1 + [z]2 • pk.

Sim(crs, td, lpar, x = [ct]1): δ←$Z`−1
p ;

z←$Z`p; [ctγ ]1 ← Enc(−Q( eδ )[1]1; z)−∑ν
k=1Pk( eδ )[ctk]1;

Return π ← ([ctγ ]1, [δ, z]2) ∈ G`×2
1 ×G2`−1

2 .

Figure 5.2: The new NIZK argument Πnizk for Lpk,F .

(1) the prover’s computation is dominated by c + 2` · e1 + 2` · e2,

(2) the verifier’s computation is dominated by (TP (C) + TQ(C)) · e2 + 2(2 + ν)` · p,

(3) the communication is 2` elements of G1 and 2`− 1 elements of G2.

For the argument to be efficient, we need comp to be efficient (according to Section 5.3,
it must be efficient to solve the system T (χ)w = h(χ) for w, where C(X) = (h‖T )(X)),
and the matrices Pk and Q have to be sparse.

In Section 5.5, we propose a way to construct C(X) that satisfies these restrictions
for any F (X) that can be computed by a polynomial-size ABP. In Section 5.6, we study
other interesting cases.

The estimate in Lemma 5.4.1 is often over-conservative. For example, let δ′ = ( eδ ).
If Pkij1 = Pkij2 =: P ′ for j1 6= j2, then the verifier has to perform one exponentiation
P ′([δ′j1 ]2 + [δ′j2 ]2) instead of two. The same holds when Qij1 = Qij2 for some j1 6= j2.
Moreover, when the exponent is a small constant (in the extreme case, 1 or −1), then
one does not have to perform a full-exponentiation.

Security of the NIZK Argument

Theorem 5.4.2. Let {Dp}p be the family of language distributions, where Dp = {lpar =
(pk, F )} as before. Here, F (X) is a ν-variate polynomial of degree d, where ν, d ∈ poly(λ).
Let C(X) ∈ Zp[X]`×` be a QDR of F . The NIZK argument Πnizk for {Dp}p from
Figure 5.2 is perfectly complete and perfectly zero-knowledge. It is computationally
(adaptive) sound under the L1-(`− 1)-CED assumption in G2 relative to Pgen.
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Proof. Completeness: To see that the NIZK argument is complete, transform the
verification equation as follows:

[I`]2 • [ctγ ]1 +
ν∑
k=1

(Pk [ eδ ]2 • [ctk]1) =? (−Q [ eδ ]2) • [0‖1]1 + [z]2 • pk ⇐⇒

[ctγ ]1 +
ν∑
k=1
Pk( eδ )[ctk]1 =? Enc([−Q( eδ )]1; z) ⇐⇒

Enc([γ]1;%) +
ν∑
k=1
Pk( eδ )Enc([χk]1; rk) =? Enc([−Q( eδ )]1; z) ⇐⇒

Enc
(

[γ +C(χ)( eδ )]1;%+
(

ν∑
k=1

rkPk

)
( eδ )− z

)
=? Enc([0]1; 0)

which holds since the prover is honest and due to the definition of z.
Perfect zero-knowledge: Fix any λ, (p, td) ∈ Supp(Kcrs(1λ)) and compute crs =

[td]2. Then fix lpar ∈ Supp(Dp) and (x, w) ∈ Rlpar. In the honest prover’s algorithm,
since % is uniformly random, then also z is uniformly random. By the zero-knowledge
property (see Section 5.3), δ output by an honest prover is uniformly random. On the
other hand, Sim (see Figure 5.2) also samples uniformly random δ and z. Finally, in both
the prover’s and simulator’s case, [ctγ ]1 is the unique value that makes the verifier accept
the argument π. Hence, the distributions of the prover and the simulator are perfectly
indistinguishable.

Computational soundness. Let A be a soundness adversary that, for honestly
generated crs and any lpar ∈ Supp(Dp) (including C), breaks Πnizk in time τ and with
probability ε. We construct the following L1-(`−1)-CED adversary B. (See Definition 5.2.1
for the definition of CED.)

The CED challenger creates p ← Pgen(1λ), [D]2 = [ 1
e ]2 ←$L1 and sends (p, [D]2)

to B. B runs (crs, td)← Kcrs(p). B runs the setup algorithm of Elgamal to compute a
random secret key sk and public key pk from the correct distribution. B fixes any F such
that lpar = (pk, F ) ∈ Supp(Dp), and sends crs = [e]2 and lpar to A. Let C be a fixed
poly(λ)-size QDR of F .

Assume that A returns an accepting input-argument pair (x = [ct]1, π), such that
x 6∈ Llpar, i.e., [χ]1 ← Dec([ct]1) is such that F (χ) 6= 0. B uses sk to decrypt [ct]1 to [χ]1
and [ctγ ]1 to [γ]1. B recomputes [C(χ)]1 ←

∑
Pk[χk]1 +Q. B returns [γ‖C(χ)]1 and

[δ]2 to the CED challenger.
Since A is successful, the verification equation in Figure 5.2 holds, and thus also the

following “decryption” of the verification equation holds:

[I`]2 • [γ]1 +
ν∑
k=1

(Pk [ eδ ]2 • [χk]1) = (−Q [ eδ ]2) • [1]1 .

Thus, γ +C(χ)( eδ ) = 0, i.e., Equation (5.2) holds. Since det(C(χ)) = F (χ) 6= 0, C has
full rank. Thus, B breaks CED.
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5.5 Efficient Instantiation Based on ABP

In this section we construct QDRs, that we denote by IK(X), for any polynomial F that
can be efficiently computed by algebraic branching programs (ABPs, [Nis91; BG99]).
This results in NIZKs for the class of languages Lpk,F , where F is only restricted to have
a small ABP. However, in many cases, the resulting matrix IK(X) is not optimal, and
this will be seen in Section 5.7. Thus, following sections consider alternative construction
techniques of such matrices.

Preliminaries: Algebraic Branching Programs

A branching program is defined by a directed acyclic graph (V,E), two special vertices
s, t ∈ V , and a labeling function φ. An algebraic branching program (ABP, [Nis91;
BG99]) over a finite field Fp computes a function F : Fνp → Fp. Here, φ assigns to each
edge in E a fixed affine (possibly, constant) function in input variables, and F (X) is the
sum over all s− t paths (i.e., paths from s to t) of the product of all the values along the
path.

Algebraic branching programs capture a large class of functions, including in particular
all log-depth circuits, boolean branching programs, boolean formulas, logspace circuits,
and many more. For some type of computations, they are known to provide a relatively
compact representation, which makes them especially useful. See [IK00; IK02; IW14]
and the references therein.

Ishai and Kushilevitz [IK00; IK02] related ABPs to matrix determinants as follows.

Proposition 5.5.1. [IK02, Lemma 1] Given an ABP abp = (V,E, s, t, φ) computing
F : Fνp → Fp, we can efficiently (and deterministically) compute a function IK(χ)
mapping an input χ ∈ Fνp to a matrix from F`×`p , where ` = |V | − 1, such that:

1. det(IK(χ)) = F (χ),

2. each entry of IK(χ) is an affine map in a single variable χi,

3. IK(χ) contains only −1’s in the upper 1-diagonal (the diagonal above the main
diagonal) and 0’s above the upper 1-diagonal.

Specifically, IK is obtained by transposing the matrix you get by removing the column
corresponding to s and the row corresponding to t in the matrix adj(X)−I, where adj(X)
is the adjacency matrix for abp.

Note that the matrix IK is transposed compared to what is found in [IK02, Lemma 1],
to ensure consistency with the notation from the CED assumption.
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NIZK for Algebraic Branching Programs

Lemma 5.5.2. Let abp = (V,E, s, t, φ) be an ABP that computes a ν-variate polynomial
F (X). Then IK(X) is a QDR of F with ` = |V | − 1.

Proof. Items 1 and 2 of Proposition 5.5.1 state directly that the affine map and reducibility
properties of Definition 5.3.1 hold. From 3 of Proposition 5.5.1, it follows that IK(X)(`,1)

is an upper triangular matrix where the diagonal which only consists of −1’s. Clearly,
det(IK(χ)(`,1)) 6= 0 for any χ; thus, it follows from Lemma 5.3.2 that the first column
dependence property is also satisfied. The claim ` = |V | − 1 is obvious.

In particular, qdc(F ) ≤ |V | − 1.

Efficiency of comp. We next specialize the general compi algorithms given in Figure 5.1
to ABP. For this, we just have to write down how to efficiently do the next two steps:

(1) Compute γ = T (χ)y. Due to the shape of IK(χ) and thus of T (χ), one can clearly
compute γ as γi ←

∑i−1
j=1 Tij(χ)yj−1 − yi for each i ∈ [1, `].

(2) Solve T (χ)w = h(χ) for w. Let T ∗ be the matrix obtained from T (χ) by omitting
its last row, and similarly let h∗ be the vector obtained from h(χ) by omitting its
last element. One finds w by solving T ∗w = h∗ by forward substitution, as follows:
wi ←

∑i−1
j=1 Tij(χ)wj − hi(χ) for each i ∈ [1, `− 1].

Lemma 5.5.3. Let N(v) be the neighbourhood of a node v in the underlying ABP.
Assuming C(X) = IK(X), the computational complexity of comp is dominated by 2(|E|−
|N(s)|)−|N(t)| field multiplications, ` exponentiations in G1, and 2(`−1) exponentiations
in G2.

Proof. Clearly, computing γ requires at most |E| − |N(s)| field multiplications, and
computing w requires at most |E| − |N(s)| − |N(t)| field multiplications. Finally, in
the case of the NIZK argument, computing [γ]1 requires ` exponentiations in G1, and
computing [δ]2 requires 2(`− 1) exponentations in G2.

5.6 Applications

Univariate F (Set-Membership Proof)

Consider an algebraic set A ∈ Zp of size poly(λ), generated by τ univariate polynomials
F1, . . . , Fτ ∈ Zp[X]. As before, we aim to prove that an Elgamal-encrypted χ satisfies
χ ∈ A, i.e., Fi(χ) = 0 for all i. In the univariate case, all ideals are principal [ALO15,
Section 1.5], and thus any ideal can be written as I = 〈F 〉 for some F . Thus, A = A(F )
for F ← gcd(F1, . . . , Fτ ) [ALO15, Section 1.5].
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s a1 · · · ad−1 t
X − ξ1 X − ξ2 X − ξd−1 X − ξd IKpath(X) =

X−ξ1 −1 0 ... 0
0 X−ξ2 −1 ... 0
... ... ... ... ...
0 0 0 ... −1
0 0 0 ... X−ξd


Figure 5.3: The ABP abpdpath(X, ξ) for F (X) = ∏d

i=1(X − ξi) and IKpath(X)

Kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x = [ct]1, w = (χ, r)): ([γ]1, [δ]2)← comp(p, [e]2, χ,C(X));
%←$Zdp; [ctγ ]1 ← Enc([γ]1;%) ∈ Gd×2

1 ; [z]2 ← %[1]2 + r [ eδ ]2 ∈ Gd
2;

return π ← ([ctγ ]1, [δ, z]2).

V(crs, lpar, x = [ct]1, π): check [Id]2 • [ctγ ]1 + [ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0‖1]1 =? [z]2 •pk.

Sim(crs, td, lpar, x = [ct]1): δ←$Zd−1
p ; z←$Zdp; [ctγ ]1 ← Enc(−Q( eδ )[1]1; z)− ( eδ ) ·

[ct]1; return π ← ([ctγ ]1, [δ, z]2).

Figure 5.4: The NIZK argument for Lpk,F , where F (X) is a monic univariate polynomial
with qdc(F ) = d.

Moreover, I(A(F )) = I(Fred) [ALO15, Section 1.5], where Fred has the same roots as
F but all with multiplicity one. That is, if F (X) = ∏(X − ξi)bi , for bi ≥ 1 and mutually
different ξi, then Fred = ∏(X − ξi). This reduced polynomial Fred can be efficiently
computed as Fred = F/ gcd(F, F ′), [ALO15, Section 1.5]. Since we are constructiong
NIZKs for algebraic sets, in this section, we will assume that F (X) = Fred(X) = ∏(X−ξi)
for mutually different roots ξi. (This will be the case if we assume A = {ξi} for
polynomially many ξi.) Thus, it suffices to prove that F (χ) = 0, where F is a reduced
polynomial. As before, for efficiency reasons, we assume that F has degree poly(λ).

We now apply the ABP-based protocol to a univariate reduced polynomial F . We
depict the ABP abpdpath(X, ξ) in Figure 5.3. The ABP consists of a single path of length
d with edges labelled by values X − ξi. Clearly, abpdpath(X, ξ) computes F (X). The
corresponding matrix IKpath(X) is also given in Figure 5.3.

Figure 5.4 depicts the resulting set-membership NIZK argument that X ∈ {ξi}.

Lemma 5.6.1. Let F (X) be a univariate reduced polynomial. The ABP-based NIZK
argument for Lpk,F has prover’s computation of at most 3d exponentiations in G1 and
4d − 2 exponentiations in G2, verifier’s computation of 7d − 1 pairings and at most d
exponentiations in G2, and communication of 2d elements of G1 and 2d− 1 elements of
G2.

Proof. Prover: First, we write down the concrete formulas for the comp algorithm from
Figure 5.1.
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1. Computation of γ = T (χ)y: one sets γ1 ← −y1, γi ← (χ − ξi)yi−1 − yi for
i ∈ [2, d− 1], and γd ← (χ− ξd)yd−1. (d− 1 field operations.)

[γ]1 can then be computed by using at most d exponentiations in G1. However, if
either (a) χ = ξd or (b) χ− ξi is small for all i, then d− 1 exponentiations suffice.

2. Solving T (χ)w = h(χ) for w: wi ← −
∏i
j=1(χ− ξj) for i ∈ [1, d− 1].

This allows us compute [δ]2 in the following way: Define [ai]2 := wi[e]2. We can
recursively compute [ai]2 as [a1]2 = (χ− ξ1)[e]2 and [ai]2 = (χ− ξi)[ai−1]2, and so
computing each [ai]2 requires at most 1 exponentiation. Note that if χ = ξj, then
[aj ]2 = [0]2 and thus requires no exponentiations. Further, each [ai]2 = [0]2 for each
i ≥ j, which then also do not require exponentiations.

We finally compute [δi]2 = [ai]2 + [yi]2, which gives us a total of at most 2d − 2
exponentiations in G2, and we only achieve this bound if χ = ξd,

Since field operations are cheap, comp is dominated by at most d exponentiations in G1

to compute [γ]1 and 2d− 2 exponentiations in G2 (up to d− 2 of which can have a small
exponent χ− ξi) to compute [δ]2. In addition, the prover performs 2d exponentiations in
G1 to compute [ctγ ]1 and 2d exponentiations in G2 to compute [z]2. Thus, the prover
performs 3d (3d− 1 if χ = ξd) in G1 and 4d− 2 exponentiations in G2.

Verifier: We first note that Q [ eδ ]2 = −ξ ◦ [ eδ ]2 − [ δ0 ]2 ∈ Gd
2. Thus,

[ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0‖1]1 = [ eδ ]2 • [ct]1− (ξ ◦ [ eδ ]2 + [ δ0 ]2) • [0‖1]1 = [κ]T − [ δ0 ]2 • [0‖1]1 ,

where [κi]T = [( eδ )i]2•([ct]1 − ξi ◦ [0‖1]1). Here, ( eδ )i is the ith coefficient of the vector ( eδ ).
Thus, Q [ eδ ]2 can be computed in 3d− 1 pairings. Thus, the verifier’s total computation
is 7d− 1 pairings. Note that the verifier executes at most d exponentiations; however,
this number is smaller if the exponents are small. Moreover, one can usually precompute
all values [ξi]1.

Communication: 2d group elements to transfer the ciphertexts [ctγ ]1, d− 1 group
elements to transfer [δ]2, and d group elements to transfer the randomizers [z]2, 4d− 1
group elements in total.

Special Case: OR Arguments

In an OR argument, the language is Lpk,X(X−1), that we will just denote by L{0,1},
assuming that pk is understood from the context. The case of OR arguments is of
particular interest because of its wide applications in many different scenarios. Indeed,
one of the most direct applications of [CH20] is a new OR proof with the argument
consisting of 7 group elements. Due to the importance of L{0,1}, in Section 5.C, we
will detail three example NIZK arguments that are all based on CED-matrices. The
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X X2

s F (X)

Y

X

X

Y

Xa

b

−Y
IK(X, Y ) =

(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

Figure 5.5: ABP example for F (X, Y ) = X3 + aX + b− Y 2.

first argument is based on abp2
path, and the other two arguments are based on known

Σ-protocols from the literature. Interestingly, the third example is not based on ABPs;
the added discussion clarifies some benefits of using the ABP-based approach.

Elliptic Curve Points

In Figure 5.5, we depict an ABP and IK(X, Y ) for the bivariate function F (X, Y ) =
X3 +aX+b−Y 2 (i.e., one checks if (X, Y ) belongs to the elliptic curve Y 2 = X3 +aX+b).
In Section 5.7, we will propose a non-ABP-based QDR for the same task. ABPs for
hyperelliptic curves Y 2 + H(X)Y = f(X) (where deg(H) ≤ g and deg f = 2g + 1) of
genus g can be constructed analogously.

NIZK arguments that committed (X, Y ) belongs to the curve are interesting in practice
since one often needs to prove in zero-knowledge that a verifier of some pairing-based
protocol accepts. Such a situation was studied in [Ben+14], who proposed to use cycles
of elliptic curves, such that the number of points on one curve is equal to the size of
the field of definition of the next, in a cyclic way. Using the NIZK, resulting from the
example of the current subsection, one can use a bilinear group with group order p to
prove that the encrypted coordinates belong to an elliptic curve where the finite field has
size p.
Different normal form. Motivated by [PSV12], we also consider the following less
common normal form for an elliptic curve, F (X, Y ) = (X + aY )(X + bY )(X + cY )−X,
for mutually different a, b, c. Then, one can construct the following ABP-based 3 × 3
QDR: (

X+aY −1 0
0 X+bY −1
−X 0 X+cY

)
.

5.7 On Bivariate Case

Dickson [Dic21] proved that for any degree-d bivariate polynomial F (X), there exists
a d × d matrix C(X) of affine maps that has F (X) as its determinant. Plaumann
et al. [PSV12] described efficient algorithms for finding C(X) for some families of
polynomials F ; in their case, C(X) is usually symmetric and can satisfy some other
additional requirement like semidefiniteness. Since the ABP-based approach often blow
ups the dimension of the matrix, we will next use the results of [Dic21; PSV12] to
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construct a d × d matrix C(X). However, the resulting matrix is usually not a QDR,
which results in additional complications. We provide several concrete examples in the
case F (X, Y ) describes an elliptic curve. Plaumann et al. [PSV12] provided also examples
for the case d ∈ {4, 5}, noting however that finding a determinantal representation of F
becomes very time-consuming for d ≥ 5. In Section 5.D, we will provide an example for
d = 5. We refer to [PSV12] for algorithms and general discussion.

Optimized Solutions for Elliptic Curves

Let F (X, Y ) = X3 + aX + b − Y 2 be a polynomial that describes an elliptic curve.
In Section 5.6, we described a small ABP for checking that (X, Y ) ∈ E(Zp), where
E(Zp) : F (X, Y ) = 0. However, this resulted in a 4 × 4 matrix IK(X, Y ). Next, we
construct 3 × 3 matrices, of correct determinant, for two different choices of F . In
general, there are several inequivalent linear symmetric determinantal representations of
F , [PSV12]. In both cases, we chose the matrix by inspection.

Case F (X, Y ) = X3 + aX + b − Y 2 for a 6= 0. In Section 5.D, we show that in case
there exists a 3 × 3 determinantal representation that is not a QDR, and discuss the
possible issues that arise when one tries to use our NIZK argument in such a case.

Case F (X, Y ) = X3 + b− Y 2. We will tackle this case in Section 5.D.

5.8 Handling Non-Principal Ideals

Next, we extend the new framework to constructing a NIZK argument that an Elgamal-
encrypted χ satisfies χ ∈ A for any algebraic set A = A(I). Namely, assume that I(A)
has a known generating set (F1, . . . , Fτ ) for some τ . We prove that χ ∈ A by proving
that Fi(χ) = 0 for each Fi. Thus, Dp = {(pk,A)}, where I(A) = 〈F1, . . . , Fτ 〉 and each
Fi has qdc(Fi) = poly(λ).

The argument system can be implemented in polynomial time and space, assuming that
(1) we know a generating set with small τ = poly(λ) and with small-degree polynomials,
(2) for each Fi, we know a small QDR Ci(X) of Fi, and (3) we can construct an efficient
NIZK argument system for showing that det(Ci(X)) = 0. The previous sections already
tackled the last two issues. In this section, we study issue (1). However, the issues are
related. In particular, steps (2) and (3) are most efficient for specific type of polynomials
Fi, and when solving (1), we have to take this into account.

NIZK for NP

Next, we use the described methodology to implement arithmetic circuits, and then extend
it to R1CS (a linear-algebraic version of QAP [Gen+13]) and aCSPs (arithmetic constraint
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satisfaction systems), i.e, constraint systems where each constraint is a small-degree
constant that depends on some small number of inputs. We also show how to directly
use our techniques to implement the Groth-Sahai-Ostrovsky constraint system [GOS06]
that have efficient reductions to corresponding circuits. Interestingly, this seems to result
in the first known pairing-based (random-oracle-less) NIZK for general aCSPs; although
see [Sze20] for a recent use of aCSPs to construct SNARKs.
Arithmetic circuits. Let C be an arithmetic circuit over Zp, with n gates (including
input gates) and m wires. We construct an algebraic set AC = (χ1, . . . , χn) ∈ Znp , such
that χ ∈ AC iff C(χ) = 0, as follows. First, χ corresponds to the vector of wire values.
As in the case of QAP [Gen+13], we assume that each gate is a weighted multiplication
gate that computes

Fi :
∑

j

uijχij

∑
j

vijχij

 7→ χi

for public uij , vij , and ij , where for the sake of efficiency, the sum is taken over a constant
number of values.

1. First, each χi corresponds to the value of the output wire of ith gate, with χj,
j ≤ m0 corresponding to the inputs of the circuit. We also assume that the last few
wire values correspond to the output values of the circuit.

2. Second, for each gate i > m0, we introduce the polynomial Fi(χ) = χi −
(∑ uijχij)(

∑
vijχij).

Then AC = {(χ1, . . . , χm) : Fi(χ) = 0 for all i > m0}. To construct a NIZK for showing
χ ∈ AC, we do as before:

(1) We let the prover Elgamal-encrypt χ.

(2) We show that Fi(χ) = 0 for all i by using the NIZK argument from Section 5.4.

Note that each polynomial in this case is quadratic, and thus one can construct a 2× 2
QDR

C(χ) =
(∑

uijχij −1
−χi

∑
vijχij

)
.

According to [GS08], the Groth-Sahai proof for this task has commitment length
(2m+ 1)(|G1|+ |G2|) and argument length (2m+ 2n+ 2)(|G1|+ |G2|). The new NIZK has
commitment length 2m|G1| and argument length n(4|G1|+ 3|G2|). Assuming m ≈ n and
|G2| = 2|G1|, the new NIZK has 3 times shorter commitments/encrypts and 20% shorter
proofs. The new NIZK has approximately 1.5–2 times smaller prover’s and verifier’s
computation. Since the computation in [GS08] can probably be optimized, we have not
included complete comparison.
Extension: R1CS. In R1CS (rank-1 constraint system [Gen+13]), one has n constraints
(∑ uijχi)(

∑
vijχi) = ∑

wijχi in m variables χi, for arbitrary public matrices U = (uij),
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Table 5.2: Comparison of falsifiable NIZKs for Boolean circuit satisfiability: the Groth-
Sahai proof, as optimized by Ghadafi et al. [GSW09], and the new NIZK from Section 5.8.
Here, |Gι| is the length of one element from Gι

Protocol |crs| |com| |π| P comp. V comp.
Groth-Sahai [GSW09] 4(|G1|+ |G2|) 2(m+ 1)(|G1|+ |G2|) (6m+ 2n+ 2)(|G1|+ |G2|) (12m+ 4n+ 4)(e1 + e2) 16(2m+ n)p
New, Section 5.8 |G2| 2m · |G1| (m+ n)(4|G1|+ 3|G2|) (m+ n)(5e1 + 4e2) 13(m+ n)p

V = (vij), and W = (wij). There is clearly a simple reduction from arithmetic circuits to
R1CS. The described solution for arithmetic circuits can be used to construct a NIZK
argument system for R1CS, by defining Fi(χ) = (∑uijχi)(

∑
vijχi)−

∑
wijχi and

C(χ) =
( ∑

uijχij −1
−
∑

wijχij

∑
vijχij

)
.

Extension: Arithmetic Constraint Satisfaction Problems (aCSPs). Fix F = Zq.
Recall that for a q ≥ 1, a q-aCSP instance F over F is a collection of functions F1, . . . , Fτ

(called constraints) such that each function Fi depends on at most q of its input locations.
That is, for every j ∈ [1, τ ] there exist i1, . . . , iq ∈ [1, n] and f : Fq → F such that
Fj(χ) = f(χi1 , . . . , χiq) for every χ ∈ Fn. Then F is satisfiable if Fj(χ) = 0 for each j.

One can extend R1CS to q-aCSP for small constant q, assuming that Fj are (small-
degree) polynomials for which one can construct poly-size QDRs. Intuitively, F is
the generating set for some polynomial ideal I = I(A), and thus the examples of this
subsection fall under our general methodology. One can possibly use some general
techniques (see Section 5.8 for some examples) to minimize the generating sets so as to
obtain more efficient NIZKs.

Specialization: Boolean Circuits. By using techniques from [GOS06], one can
construct a NIZK for any Boolean circuit that, w.l.o.g., consists of only NAND gates.
Intuitively, one does this by showing that each wire value is Boolean, and then showing that
each NAND gate is followed correctly. The latter can be shown by showing that a certain
linear combination of the input and output wires of the NAND gate is Boolean. Thus,
here one only uses polynomials of type fi(χ) = A(χ)2 −A(χ), where A(χ) = ∑

aijχj for
some coefficients aij.

In Table 5.2, we compare the resulting NIZK with the optimized Groth-Sahai proof
for Boolean circuits by Ghadafi et al. [GSW09]. Here, m is the number of wires and n is
the number of gates. In the case of the AES circuit described in [GSW09], m = 33880
and n = 34136. Assuming |G2| = 2|G1| and e2 = 2e1, we get that the NIZK of [GSW09]
has commitment length 203283|G1|, argument length 814662|G1|, prover’s computation
1629324e1, and verifier’s computation 1630336p. The new NIZK has commitment length
67760|G1|, argument length 680160|G1|, and prover’s computation 884208e1, and verifier’s
computation 884208p. Hence, the new NIZK has 3 times shorter commitments, 20%
shorter arguments, and 1.84 times smaller prover’s and verifier’s computation.
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Various Examples

Next, we give very generic background on generating sets and after that, we give some
examples of the cases when it pays off directly to work with aCSPs (and not just arithmetic
circuits) and then use the described methodology to construct the NIZK. We emphasize
that one does not need a Gröbner basis and thus sometimes there exist smaller generating
sets. In fact, there exist many alternative methods for constructing efficient aCSPs not
directly related to generating sets at all; and the Gröbner basis technique is just one
of them — albeit one that is strongly related to our general emphasis on polynomial
ideals. As we see from the examples, the efficiency of NIZK depends on a delicate balance
between the size of the generating set and the degree of the polynomials in that set.
Really, it follows from Lemma 5.4.1 that if the generating set contains polynomials Fi
for which QDRs have sizes `i, then the resulting NIZK has communication complexity
(2∑ `i)(|G1|+ |G2|)− τ |G2|.

Basic Background on Generating Sets. Generating sets of an ideal can have vastly
different cardinality. For example, Z is generated by either {1} or by the set of all primes.
Since a Gröbner basis [Buc65] is, in particular, a generating set, one convenient way of
finding a generating set is by using a Gröbner basis algorithm; however, such algorithms
assume that one already knows a generating set. Fortunately, the Buchberger-Möller
algorithm [MB82] (as say implemented by CoCoA8) can compute a Gröbner basis for I(A),
given any finite set A.

Worst-Case Multi-Dimensional Set-Membership Proof. We performed an exhaus-
tive computer search to come up with an example of a 3-dimensional set of five points
that has the least efficient NIZK argument in our framework. One of the examples we
found9 is

A = {(2, 5, 1), (2, 4, 2), (2, 5, 3), (1, 2, 4), (3, 1, 5)} .

In this case, we found a reduced degree-lexicographic Gröbner basis


(y − z − 2)(y + z − 6), 1
18(6x(3y − 5)− 37y + (z − 4)z + 68),

1
9
(
9x2 − 33x+ y − (z − 4)z + 22

)
,
1
3(−12x+ 5y + z(z(3z − 23) + 53)− 34)


that consists of three quadratic and one cubic polynomials. Clearly, here, each degree-
d polynomial has an optimal-size d × d QDR. In the only non-trivial case (the cubic
polynomial), one can use the matrix

C4(x, y, z) =
(

z 1 0
53/3 23/3−z −4

x−5y/12+17/6 0 −z

)
.

8http://cocoa.dima.unige.it/
9In the case of many other sets, the NIZK will be much more efficient. We will provide one concrete

example in Section 5.E.
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Thus, one can construct a NIZK argument with communication of 2(2 + 2 + 2 + 3) = 18
elements of G1 and 18− 4 = 14 elements of G2. Since, usually, elements of G2 are twice
as long as elements of G1, it means that, in the worst case, such a NIZK argument will
only be 4.6 times longer than a single OR proof. This is also the upper bound on the
NIZK communication according to our exhaustive search, further discussion would be
outside the scope of the current paper.

The most efficient known alternative seems to add (structure-preserving) signatures
(SPSs) of 5 points to the CRS, letting the prover encrypt a signature of the chosen
point, and then proving that the encrypted value is a valid signature of some point.
(See, e.g., [RKP09].) This alternative has both a much larger CRS and worse concrete
complexity compared to our NIZK argument. Moreover, it assumes that the underlying
signature scheme is unforgeable.
Range proofs. In Section 5.C, we will show how to use our techniques to construct
range proofs, i.e., proofs that the committed value χ belongs to some interval [0, N ].
Couteau and Hartmann’s approach can be used to propose range proofs of efficiency
Θ(logN) by using the binary decomposition of χ. In Section 5.C, we note that the use of
the NIZK from Section 5.6 helps us to obtain a NIZK with better verifier’s computation.

5.9 Back to Algebraic Languages

The well-known methodology of diverse vector spaces (DVSs, [Ben+13; Ben16]) has
been used to successfully create efficient smooth projective hash functions (SPHFs) for
algebraic languages. Moreover, by now several constructions of NIZKs based on such
SPHFs are known, [ABP15; CH20]. For all such constructions, the first step is to construct
language parameters Γ and θ (see Section 5.2). Unfortunately, existing constructions of
the language parameters are all somewhat ad hoc.

Next, we improve on the situation by proposing a methodology to construct (Γ,θ)
for any Lpk,A, where A is any algebraic set for which Section 5.8 results in an efficient
NIZK. We start the process from a QDR Ci of Fi, where 〈F1, . . . , Fτ 〉 is some generating
set of I(A), and output concrete parameters (Γ,θ). The problem of constructing such Ci

was already tackled in the current paper, with many examples (including the case when
Ci is based on an ABP). As the end result, we construct explicit language parameters
(Γ,θ) for a variety of languages where no such small parameters were known before.
Moreover, even in the simple case of univariate polynomials, where previous solutions
were known [Ben+13; CH20], the new parameters are smaller than before.

We consider various NIZKs that one can construct for given (Γ,θ). For every fixed
(Γ,θ), the NIZK from Section 5.4 is more efficient than the QA-NIZK of [ABP15] and
usually more efficient than the CHM NIZK of [CH20]. Finally, we briefly discuss resulting
GL-SPHFs [GL03] based on the new language parameters.
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Preliminaries. We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the
resulting NIZK in Section 5.F. There, we will also state the efficiency of their construction
as a function of (Γ,θ). We also restate Theorem 18 from [CH20] about the security of
the CHM NIZK.

On Algebraic Languages for Elgamal Ciphertexts

Next, we derive language parameters Γ and θ for an arbitrary Lpk,F , such that θ(x) ∈
colspace Γ(x) iff x ∈ Lpk,F . In the case where I(A) = 〈F1, . . . , Fτ 〉 is not a principal ideal,
one can then “concatenate” all τ parameters Γ(x) and θ(x).

We start the derivation from the equation T (χ)w = h(χ) in Figure 5.1. To simplify
notation, let E(χ; r) := Enc([χ]1; r)> ∈ G2

1 be a transposed ciphertext. Let E(T (χ))
(resp., E(h(χ))) denote an element-wise (transposed) encryption of T (χ) (resp., h(χ)),
where χi is encrypted by using randomizer ri (that is, χi is “replaced” by [cti]>1 ) and
constants are encrypted by using the randomizer 0. We define [Γ(x)]1 and [θ(x)]1 as
follows:

[Γ(x)]1 = (E(T (χ))‖E(0d×d; Id)) ∈ G2d×(2d−1)
2 , [θ(x)]1 = E(h(χ)) ∈ G2d

2 . (5.4)

Thus, [Γ]1w∗ = [θ]1 is an “encrypted” version of T (χ)w = h(χ), where [Γ]1 contains
additional columns and w∗ contains additional rows (compared to w) to take into account
the randomizers used to encrypt χi. Note that E(C(χ)) = E(∑Pkχk +Q;∑Pkrk).
Example 5.9.1. Let F (X) = (X − 0)(X − 1), and thus d = 2. Recall that then
C(χ) =

(
χ −1
0 χ−1

)
and thus T (χ) =

(
−1
χ−1

)
and h(χ) = ( χ0 ). Since Enc([0]1; 1) = [1‖sk]1

and Enc([0]1; 0) = [0‖0]1, Equation (5.4) results in

[Γ]1 =
 E(−1; 0) E(0; 1) E(0; 0)
E(χ− 1; r) E(0; 0) E(0; 1)

 =


0 1 0
−1 sk 0
ct1 0 1

ct2 − 1 0 sk


1

∈ G4×3
1 , [θ]1 =

[ ct1
ct2
0
0

]
1
.

A variation of this [Γ,θ]1 was given in [Ben+13; CH20]. To motivate Theorem 5.9.2, note
that w∗1 = w = −χ is a solution of T (χ)w∗1 = h(χ). Setting ŵ := (w∗2‖w∗3)> = r

(
1
−w∗1

)
=

r
(

1
χ

)
results in Γw∗ − θ = (0‖0‖0‖ − χ(χ− 1))>, which is equal to 04 iff χ ∈ {0, 1}.

Theorem 5.9.2. Lpk,F = LΓ,θ.

Proof. (1) Assume x = Enc(χ) ∈ Lpk,F . By the first column dependence property of
Definition 5.3.1, there exists w such that T (χ)w = h(χ), i.e., C(χ)( 1

−w ) = 0. To show
that x ∈ LΓ,θ, we need to construct w∗ such that θ = Γw∗. First, we set w∗i ← wi

for i ≤ d− 1. This guarantees that Dec([θ]1) = Dec([Γ]1)w∗. Next, we have to set the
remaining coefficients of w∗i so that also the randomizers in (E(T )‖E(0d×d; Id))w∗ = E(h)
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match. Denoting ŵ = (w∗d, . . . , w∗2d−1)>, this is achieved by setting ŵ ← (∑Pkrk)( 1
−w ).

Really, then

(E(T )‖E(0d×d; Id))w∗ − E(h(χ)) =E (C) ( −1
w ) + E(0d×d; Id)ŵ

=E
(
C;

∑
Pkrk

)
( −1
w ) + E(0d; ŵ)

=E
(
0d;

(∑
Pkrk

)
( −1
w ) +

(∑
Pkrk

)
( 1
−w )

)
=E(0d; 0d) .

(2) Assume that x = Enc(χ) ∈ LΓ,θ, and thus [θ]1 ∈ colspace([Γ]1). Let w∗ be
such that θ = Γw∗. After entry-wise decrypting, we get Γ∗ = (T (χ)‖0)w∗ = h(χ).
Let w = (w∗1, . . . , w∗d)>. Hence, T (χ)w = h(χ), which means that C(χ)( −1

w ) = 0. If
x 6∈ Lpk,F then det(C(χ)) 6= 0. Since −1 is non-zero, this is a contradiction.

In Section 5.F, we will give two more (lengthy) examples to illustrate how w∗ is
chosen.
Handling Non-Principal Ideals. Assume I(A) has a generating set (F1, . . . , Fτ ) for
τ > 1, and that for each Fi, we have constructed the language parameter Γi,θi. We can
then construct the language parameter for Lpk,A by using the well-known concatenation
operation, setting

Γ =
(

Γ1 ... 0
... ... ...
0 ... Γτ

)
and θ =

(
θ1
...
θτ

)
.

On the Couteau-Hartmann Disjunction. In Section 5.F, we describe the Couteau-
Hartmann disjunction that results in Γ of size (3d − 1) × (3d − 2) and compare it to
Equation (5.4). For the sake of completeness, we also reprove the efficiency of the CHM
NIZK from [CH20].

Efficiency of Set-Membership NIZKs: Comparisons

In Table 5.1 we give a concrete efficiency comparison in the case of set-membership. This
is motivated by the fact that this is probably the most complex language for which [CH20]
provides a concrete NIZK with which we can compare our results. Because of the still
large dimensions of Γ, using the CHM Σ-protocol as in [CH20] for LΓ,θ = Lpk,F has quite
a big overhead. Thus, the NIZK in Lemma 5.6.1 is quite a bit more efficient. However, it
compares favorably to [CH20]. In the following lemma, we state its efficiency.

Lemma 5.9.3. Let F be a univariate degree-d polynomial and let C(X) be the abppath-
based QDR of F from Section 5.6. Let [Γ]1 be constructed as in Equation (5.4). Then,
the CHM NIZK argument requires (5d− 3)e1 + 4de2 from the prover, 7d− 1 pairings from
the verifier, and 4d− 1 group elements.

Proof. In this proof, we use the notation of Lemma 5.4.1. Note that

TΓ = {|(i, j)| : Tij 6= 0}+ {|(i, j)| s.t. j > 1 : Pkij 6= 0 for some k}+ 2 · `
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and

Tθ = {|(i, j)| : hij 6= 0}+ {|i| : Pki1 6= 0 for some k} .

For a general C, the efficiency estimate follows from Proposition 5.F.1 and the above
formulas for TΓ and Tθ. Hence, we only give concrete estimates for the case of univariate
F .

The prover can compute [Γ(x)]1r in TΓ = 5d− 3 exponentiations in G1, and [d]2 in
2n = 2 · 2d = 4d exponentiations in G2. The verifier executes TΓ = 5d − 3 pairings to
compute [Γ]1 • [d]2, Tθ = 2 pairings to compute [θ(x)]1 • [e]2, and n = 2d pairings to
compute [a]1 • [1]2, in total 7d− 1 pairings.

Note that the computation of the language parameters Γ,θ induces some cost. How-
ever, this computation is usually done once in advance. It is also not expensive, both in
the case of the new NIZK and the CHM NIZK [CH20] requiring one to compute [ξi]1 for
each root ξi.

GL-SPHFs for Algebraic Sets

We give an example of GL-SPHFs (Gennaro-Lindell smooth projective hash func-
tions [GL03]) based on the new lpar = (Γ,θ). We refer the reader to [CS02; Ben+13;
Ben16] for a formal definition of GL-SPHFs. Briefly, recall that an SPHF is de-
fined for a language parameter lpar and associated language Llpar. A SPHF consists
of an algorithm hashkg(lpar) to generate the private hashing key hk, an algorithm
projkg(lpar, hk) to generate a public projection key hp from hk, and two different hashing
algorithms: hash(lpar, hk, x) that constructs an hash H, given the input x and hk, and
projhash(lpar, hp, x, w) that constructs a projection hash pH, given the input x and its
witness w. It is required that (1) H = pH when x ∈ Llpar, and that (2) H looks random
when x 6∈ Llpar, given (lpar, hp, x).

In the GL-SPHFs [GL03], lpar and the projection key hp can depend on x, while in
other types of SPHFs, x is only chosen after lpar and hp are fixed. In the “DVS-based”
constructions of SPHFs of [Ben+13], one starts with [Γ]1 ∈ Gn×t

1 and [θ]1 ∈ Gn
1 that

may or may not depend on x = [Γ]1w. One samples a random hk = α←$Znp , and sets
hp ← α>[Γ]1. For x = [Γ]1w, one computes pH = projhash(lpar, hp, x, w) ← hp · w and
H = hash(lpar, hk, x)← hk · x.

For any A(I) for which the NIZK of Section 5.4 is efficient, one can also construct an
efficient SPHF by constructing Γ and θ as in Equation (5.4).

Example 5.9.4 (GL-SPHF for the language of elliptic curve points.). Let A = {(X, Y ) :
Y 2 = X3 +aX+b} as in Section 5.6. Then, one can use lpar = (Γ,θ) from Example 5.F.4
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to define hk←$Z8
p, hp← α>[Γ]1 =α3ct11 + α4ct12 + aα8 − α2, α7ct11 + α8ct12 − α4,−α7ct21 − α8ct22 − α6,

α1 + α2sk, α3 + α4sk, α5 + α6sk, α7 + α8sk

> ,

and, in the case x ∈ Llpar, pH = H = [α>Γw]1 =
χ1 (−α3ct11 − aα8 + α4χ1 + α2)− χ1 (α7χ1ct11 + ct12 (α8χ1 + α4)) +

χ2 (α7ct21 + α8ct22 + α6) + r1 (α1 + χ1 (α3 + χ1 (α7 + α8sk) + α4sk) + α2sk) +

r2 (α5 − χ2 (α7 + α8sk) + α6sk)


1

.

5.10 On Falsifiability of CED
In the current paper, we significantly expand the class of languages for which the Couteau-
Hartmann framework allows for the construction of efficient NIZKs. However, for many
of these languages, the underlying variant of the CED assumption is not falsifiable in the
sense of Naor [Nao03]. At first sight, even though the Couteau-Hartmann framework
leads to particularly compact NIZKs, relying on a non-falsifiable assumption seems to
limit the interest of the result severely: if one is willing to rely on non-falsifiable in the
first place, then there are countless pairing-based SNARGs and SNARKs which will
achieve much more compact proofs [Gro10; Lip12; Gen+13] (albeit the prover cost will
be much higher in general).

Next, we discuss the falsifiability of the CED assumption. In Section 5.10, we study the
falsifiable CED case, by clarifying for which languages there exist (algebraic) polynomial-
time algorithms to check F (χ) = 0. In particular, we point out that for many examples of
the current paper, the CED assumption is already falsifiable. After that, we concentrate
on the cases when this is not so.

In Section 5.10, we show that despite their unfalsifiability, CED assumptions are fun-
damentally different in nature from knowledge-of-exponent assumptions (which underlie
the security of existing SNARK candidates [Gro10; Lip12; Gen+13]). We will prove that
CED assumptions are implied by a new but natural gap assumption [OP01] that KerMDH
stays secure in G2 even given a CDH oracle in G1.

In Section 5.10, we modify our NIZKs to make the CED assumption falsifiable by
letting the prover additionally encrypt input elements in G2. If the polynomial F is
quadratic, then the soundness reduction can use them to check whether the prover’s
inputs belong to the language or not, thus making CED falsifiable. Since each gate of an
arithmetic circuit is a quadratic polynomial, one can construct a NIZK for arithmetic
circuits under a falsifiable assumption. The reason why we do not start with this solution
is the added cost. First, the additional elements make the argument longer. Second,
as probably expected, one cannot use Elgamal but has to use the less efficient DLIN
cryptosystem [BBS04].
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Thus, if CED is falsifiable, then one can use an Elgamal-based solution. Otherwise, one
has a security-efficiency tradeoff: one can either rely on a non-falsifiable gap-assumption
or use a slightly less efficient DLIN-based falsifiable NIZK.

On Languages for Which CED Is Falsifiable

The CED assumption is falsifiable if there exists an efficient verification algorithm Vf ,
such that given an arbitrary ciphertext tuple x = [ct1, . . . , ctν ]1 and an sk-dependent
trapdoor T, Vf(p, pk, x,T) can efficiently check whether Decsk([ct1, . . . , ctν ]1) ∈ Lpk,F .
As in the rest of the paper, we take T = sk. Thus, given a ciphertext tuple [ct]1, Vf

can use sk to decrypt it and obtain the plaintext [χ]1. Vf then forms the QDR [C(χ)]1
from [χ]1. If F (χ) 6= 0 (that is, x 6∈ Lpk,F ), then [C(χ)]1 has full rank. Otherwise, it has
rank < `. Thus, if F (X) is such that it is possible to check efficiently whether F (χ) = 0,
given [χ]1, we can construct an efficient falsifiability check Vf . (Note that this approach
is different from Couteau-Hartmann, who required T to be a matrix.)

First, if |A| = poly(λ), then Vf just checks if [χ]1 is equal to [a]1 for any a ∈ A. Thus,
the NIZK for the univariate case in Section 5.6 and the NIZK for boolean circuits in
Section 5.8 rely on a falsifiable CED assumption. (This assumes that all polynomials have
degree poly(λ), and the circuits are polynomial-size.) In general, the NIZK in the case of
non-principal ideal, Section 5.8, is based on falsifiable CED iff A(I) has polynomial size.

The outliers are the cases of principal ideals of multivariate polynomials (since then
|A(I)| can be exponential as in the set of points (X, Y ) on an elliptic curve) and some
instances of non-principal ideals where |A(I)| is super-polynomial. In the latter case,
we can clarify the situation further. Namely, given a generating set 〈F1, . . . , Fτ 〉, by
Bézout’s theorem, A(I) has at most size ∏ degFi. Assuming each degFi is poly(λ),∏ degFi is super-polynomial if τ = ω(1). Thus, constant-size set-membership arguments
in Section 5.8 or aCSPs for constant-size arithmetic circuits in Section 5.8 are based on
falsifiable CED. However, range proofs and superconstant-size arithmetic circuits are
based on non-falsifiable CED.

The super-polynomial size of A(I) does not mean that efficient Vf does not exist. E.g.,
assume Fj(X) = ∏

i(Xi − sj) for each j. The ideal 〈Fj〉, for a single j, has exponential
size. However, given [χ]1, one can check if Fj(χ) = 0 by checking if χi = sj for some j.
This can be generalized to the case Fj is a product of affine multivariate polynomials∑
aikXk + bik. Clearly, F (χ) = 0 iff one of its affine factors is equal to 0. So, Vf can

check if there exists an i such that ∑ aik[χk]1 + bik[1]1 = [0]1. Generalizing this, one can
efficiently establish whether [C]1 is full-rank if the Leibniz formula for the determinant,
det(C) = ∑

σ∈Sn(sgn(σ)∏n
i=1 Ci,σi), contains only one non-zero addend.

On the other hand, since Vf has only access to [χ]1, there is not much hope that the
CED assumption is falsifiable if F is a product of irreducible polynomials, such that at
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least one of them has a total degree greater than one, unless we add some additional,
carefully chosen, elements to the proof for this purpose. In the general case, this is not
efficient, but the number of additional needed elements might not be prohibitive for some
applications.

Finally, the falsifiability of CED depends only on the polynomial F and not on the
specific C. One could find two different CED-matrices Ci for F , such that the first one
results in a more efficient NIZK argument, but the second one has a specific structure
enabling one to construct efficient Vf .

CED as a Gap Assumption

We show that CED follows from a new gap assumption, which states that given p ←
Pgen(1λ), even if one finds some structural properties in G1 that allows breaking CDH
over this group, this does in general not guarantee an efficient algorithm for solving
KerMDH [MRV16] over the other group G2. More formally:

Definition 5.10.1. Assume that the (exponential-time) oracle O([x, y]1) outputs [xy]1.
D`−1,k-CDHG16⇒KerMDHG2 holds relative to Pgen, if ∀ PPT A,

Pr
[
p← Pgen(1λ);D←$D`−1,k; [c]3−ι ← AO(p, [D]ι) : D>c = 0k ∧ c 6= 0`−1

]
≈λ 0 .

Theorem 5.10.2. Let ` − 1, k ∈ N. If the Dk-CDHG1 6⇒KerMDHG2 assumption holds
relative to Pgen, then Dk-(`− 1)-CED holds in G1 relative to Pgen.

of Theorem 5.10.2. Let A be an CED adversary, as in Definition 5.2.1, that succeeds with
a non-negligible probability εA. We construct the following CDHG16⇒KerMDHG2 adversary
B.
B receives p← Pgen(1λ) and [D]2 ← Dk, and feeds them to A. Assume A is successful.

B obtains ([γ‖C]1, [δ]2) ← A(p, [D]2), where γ ∈ Z`×k
p , C ∈ Z`×`p , and δ ∈ Z(`−1)×k

p .
Write

(γ‖C) =
(
XL XR
vL vR

)
,

where XR ∈ Z(`−1)×(`−1)
p and say vL ∈ Z1×(k+1)

p . Since A is successful, we get rk(C) ≥ `

and thus XR is invertible. Next, A’s winning condition (γ‖C)(Dδ ) = 0 rewrites to

XL ·D +XR · δ = 0 , vL ·D + vR · δ = 0 ,

which gives, when XR is invertible, D>c = 0, where

c← (uL − uR ·X−1
R ·XL)> ∈ Zk+1

p .

Since10 rk(C) ≥ `, we get c 6= 0. Using Gaussian elimination, one can compute c by an
arithmetic circuit over Zp. Thus, B can compute [c]1 from [γ‖C]1 with the help of O

10Note that this is the point where we need to use CED instead of ExtKerMDH since we cannot deduce
c 6= 0 from rk(γ‖C) ≥ `.
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that allows it to multiply exponents over G1. B returns [c]1 to the challenger. Clearly, B
breaks KerMDH with probability εA.

Note that in particular, this re-proves the result of [CH20] that CED is secure in
the generic bilinear group model (since a CDH oracle in G1 does not help to break any
assumption in G2 in the generic bilinear group model).

DLIN-Based NIZK Based on Falsifiable CED

While constructing a Sub-ZK QA-NIZK, [Abd+20] had to check efficiently if C is
invertible, given only [C]1. We will next study whether we can apply their technique.
It is not straightforward to apply it since their case is somewhat different: there, C is
a k × k (in particular, k ∈ {1, 2}) public matrix sampled from Dk and then given as
a part of the CRS. In our case, C can have an arbitrary poly(λ) dimension, and it is
reconstructed from the input to the NIZK argument.

To explain the technique of [Abd+20], consider the case [C]1 ∈ G2×2
1 . [Abd+20] added

to the CRS certain additional elements in G2 (namely, [C11, C12]2), such that it became
possible to check publicly (by using pairings) whether detC = 0 by checking whether
[C11]1 • [1]2 = [1]1 • [C11]2, [C12]1 • [1]2 = [1]1 • [C12]2, and [C22]1 • [C11]2 = [C21]1 • [C12]2.
One cost of publishing the additional elements in [Abd+20] was that it changed the
assumption they used from KerMDH to the less standard SKerMDH assumption [GHR15].
As we see next, we have to use the DLIN cryptosystem [BBS04] instead of the Elgamal
cryptosystem. However, as a result, we will obtain a NIZK for any F , computable by a
poly-size arithmetic circuit, sound under a falsifiable CED assumption. Another benefit
of it is to demonstrate that our framework is not restricted to Elgamal encryptions.

Next, we show how to construct a NIZK, based on a falsifiable CED assumption, for
the polynomial F (X, Y ) = X2 − Y . We ask the prover to also encrypt X in G2. In the
soundness reduction, a CED-adversary uses the latter, after decryption, to check whether
[X]1 • [X]2 = [Y ]1 • [1]2. We must ensure that the verifier only accepts the proof if [X]2
is correct, i.e., [X]1 • [1]2 = [1]1 • [X]2. Since Elgamal is not secure given symmetric
pairings, we cannot use the secret key or the same randomness in both groups. Hence,
we use the DLIN encryption scheme. Given sk = (sk1, sk2) and pkι = [1‖sk1‖sk2]ι, we
define lpar := (pk1, pk2, F ). Then, Llpar := {([ct1, ct2]1, [ct1]2)}, where

[ct1]ι = Encι(X; r1, r2) = [r1sk1‖r2sk2‖X + r1 + r2]ι

and
[ct2]1 = Enc1(Y ; r3, r4) = [r3sk1‖r4sk2‖Y + r3 + r4]1 .

We prove that [ct1, ct2]1 are encryptions of X and Y such that X2 = Y , by using the QDR
C(X, Y ) =

(
X −1
−Y X

)
. The use of the DLIN encryption scheme just affects the efficiency
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and the communication size of the protocol. In addition, one can check that [ct1]1 and
[ct1]2 encrypt the same X in two different groups by checking that [ct1]1•[1]2 = [1]1•[ct1]2.

Since the DLIN encryption is doubly-homomorphic like Elgamal, then the argument
of Section 5.4 stays essentially the same, with Elgamal encryptions replaced by DLIN
encryptions, and the dimensions of randomizers and ciphertexts increasing slightly. In the
soundness proof, given that the prover also outputs Enc2(X; r1, r2), the constructed CED
adversary obtains plaintexts [X, Y ]1, [Z]2 and, then can efficiently verify if the statement
X2 = Y holds.

Combining this idea with the rest of our framework, we can construct a NIZK for any
language of DLIN-encryptions for any F , based on a falsifiable CED assumption. This is
since one can check that F = 0 by checking that an arithmetic circuit evaluates to 0, and
each gate of an arithmetic circuit evaluates a quadratic function. For example, to prove
that Y 2 = X3 + aX + b, one can encrypt Y , Y ′, X, X ′, and X ′′, and then prove that
Y ′ = Y 2, X ′ = X2, X ′′ = XX ′, and Y ′ = X ′′ + aX + b.
Acknowledgment. Geoffroy Couteau was partially supported by the ANR SCENE.
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5.A More on Section 5.2

Matrix Assumptions

The following assumptions are, while relatively recently formalized, very standard. In
particular, MDDH generalizes DDH and KerMDH generalizes CDH. See [Esc+13; GHR15;
MRV16] for more discussion.

Let ι ∈ {1, 2}. D`,k-MDDHGι (Matrix Decisional Diffie-Hellman, [Esc+13]) holds
relative to Pgen, if ∀ PPT A, Advmddh

A,Pgen,Gι,D`,k(λ) := |ε0
A(λ)− ε1

A(λ)| ≈λ 0, where

εbA(λ) := Pr
 A(p, [A,y]ι) = 1

p← Pgen(1λ);A←$D`,k; w←$Zk
p;

if b = 0 then y←$Z`p else y ← Aw fi

 .

D`,k-KerMDHGι (Kernel Diffie-Hellman, [MRV16]) holds relative to Pgen, if ∀ PPT
A, Advkermdh

A,D`,k,ι,Pgen(λ) :=

Pr
[
A>c = 0k ∧ c 6= 0` p← Pgen(1λ);A←$D`,k; [c]3−ι ← A(p, [A]ι)

]
≈λ 0 .

D`,k-SKerMDH (Split Kernel Diffie-Hellman, [GHR15]) holds relative to Pgen, if ∀
PPT A,

Advskermdh
A,D`,k,Pgen(λ) := Pr

 A>(c1 − c2) = 0k ∧ p← Pgen(1λ);A←$D`,k;
c1 − c2 6= 0` ([c1]1, [c2]2)← A(p, [A]1, [A]2)

 ≈λ 0 .

According to Lemma 4 of [MRV16], in a bilinear group, if D`,k-MDDH holds then
also D`,k-KerMDH holds. According to Lemma 1 of [GHR15], if D`,k-KerMDH holds
in generic symmetric bilinear groups then D`,k-SKerMDH holds in generic asymmetric
bilinear groups.

5.B More on Section 5.3

Determinantal Representations

The following problem is well-studied in algebraic geometry, [Har92; V D10]. Given a
homogeneous polynomial f(X0, . . . , Xn) of degree-d find a d×d matrix C(X) = (Lij(X))
with affine maps as its entries such that

f(X) = det(Lij(X)) .

The resulting equation det(C(X)) = F (X) is known as F ’s determinantal representation.
More generally, one considers `× ` matrices C(X) with the same property. In this

case, the determinantal complexity dc(F ) of the polynomial F is the minimal size of any
determinantal representation of F . Clearly, dc(F ) ≥ deg(F ).
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Table 5.3: The efficiency of new NIZK arguments for L{0,1}. The communication is given
as (g1, g2, z), where gι is the number of Gι elements (ι = 1 in the Σ-protocols) and z
is the number of Zp elements. The computation is given as (e1, e2, p), where eι is the
number of exponentiations in Gι and p is the number of pairings.

Scheme |crs| |π| P comp V comp Assumpt.
Π∨simple, Π∨cg, Π∨cds (0, 1, 0) (4, 3, 0) (5, 4, 0) (0, 0, 13) CED

s X t
X X − 1 IKpath(X) =

(
X −1
0 X−1

) X

s t

X
−X

X IKcg15(X) =
(

X −1
−X X

)
Figure 5.6: The matrices for the ABP-based simple (ABP abp2

path(X, {0, 1}), left) and
the ABP-based Chaidos-Groth (right) argument for f(X) = X2 −X = X(X − 1) and
the corresponding matrices.

All plane curves and cubic surfaces have determinantal complexity equal to their
degree, [Dic21]. Dickson [Dic21] also proved a general theorem about the impossibility
of determinantal representations of size deg(F ) for general polynomials F . See [Dic21;
Bea00] for more information. Moreover, efficient algorithms for finding determinantal
representations, if they exist, have only been proposed lately [PSV12]; see also Section 5.8.

QDRs, as defined in Definition 5.3.1, additionally have the first column dependence
property, which is not required for determinantal representations. Not every determinantal
relation is a QDR (see Section 5.7 for some examples) and thus it is plausible that in
general, qdc(F ) > dc(F ).

5.C More on Section 5.6

On OR Proofs

Π∨simple and Π∨cg. The NIZK argument Π∨simple (see Figure 5.7) for L{0,1} follows from the
approach in Section 5.6, by using abp2

path.
On the other hand, Π∨cg (see Figure 5.7) follows from the approach in Section 5.6,

given the ABP in Figure 5.6 (right). It is based roughly on the Chaidos-Groth Σ-protocol
from [CG15], which itself is based on checking whether X ·X = X. We depict the ABPs
and corresponding matrices IK(X) in in Figure 5.6. The correctness of both arguments
follows from the fact that the solution of T (χ)w = h(χ) is w = −χ.

As seen from Figure 5.7, in both Π∨simple and Π∨cg, the prover’s computation is dominated
by 5 exponentiations in G1 (to compute [γ]1; 5 is sufficient since γ2 ∈ {−γ1, 0, γ1}) and
4 exponentiations in G2 (one to compute y[1]2 as part of the computation of [δ]2; 3 to
compute [z]2 as ( r

rχ )[e]2 + (% +
(

0
−ry

)
)[1]2). The argument length is 4 elements of G1
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kgen(p, lpar): e←$Zp; return (crs, td)← ([e]2, e) ;

P(crs, lpar, x, w): y←$Zp; γ ←
(
−1
χ−1

)
y ; γ ←

(
−1
χ

)
y ; γ ←

(
χ

1−χ
)
y ;

%←$Z2
p; [ctγ ]1 ← Enc([γ]1;%);

w ← −χ ; w ← χ− 1 ; [δ]2 ← −(w[e]2 + y[1]2); [z]2 ← %[1]2 + r [ eδ ]2;
return π = ([ctγ ]1, [δ, z]2).

V(crs, lpar, x, π): check [I2]2 • [ctγ ]1 + [ eδ ]2 • [ct]1 +Q [ eδ ]2 • [0‖1]1 =? [z]2 • pk;

Figure 5.7: Π∨simple (contains boxed entries), Π∨cg (contains dashed boxed entries), and
Π∨cds (contains dotted boxed entries)

and 3 elements of G2.
The verifier’s computation is dominated by 13 pairings. In the case of Π∨simple, this

follows from Q [ eδ ]2 = − [ δδ ]2; thus, [0‖1]1 •Q [ eδ ]2 = −[0‖1]1 • [ δδ ]2 can be computed in
1 pairing. In the case of Π∨cg, it follows from Q [ eδ ]2 = − [ δ0 ]2; thus, [0‖1]1 •Q [ eδ ]2 =
−[0‖1]1 • [ δ0 ]2 can be computed in 1 pairing.

Π∨cds. From the outset, the famous Cramer-Damgård-Schoenmakers (CDS) Σ-protocol
from [CDS94] looks quite different. The idea behind CDS is that to prove that χ ∈
{0, 1}, one follows the prover’s algorithm in the true branch (resulting in transcript
(aχ, eχ, zχ)) and the simulator’s algorithm in the other branch (resulting in transcript
(a3−χ, e3−χ, z3−χ)). To make sure that at least one branch is correctly computed, the
prover chooses ei such that e1 + e2 = e, where e is the verifier’s second message. Couteau
and Hartmann [CH20] described a CH-compilation of the CDS protocol.

Somewhat unexpectedly, one can use our generic framework also here, by defining the
QDR Ccds(X) =

(
0 X

X−1 1−X

)
. However, Ccds(X) does not belong to the class of matrices

considered by Ishai and Kushilevitz, [IK00; IK02] and thus not correspond to an ABP.
In Figure 5.7, we also depict the new NIZK argument Π∨cds that applies Figures 5.1

and 5.2 to Ccds(X). The property of CDS that the simulated branch depends on χ carries
over since one samples γ2−χ←$Zp and sets γ1−χ ← 0; i.e., the index i of the non-random
γi depends on χ. Intuitively, the prover simulates the branch 2− χ. The reason behind
it is that det(C(1,1)(χ)) 6= 0 if χ = 0 and det(C(1,2)(χ)) 6= 0 if χ = 1.

As a small optimization, [z]2 can computed as follows:

(1) [z]2 = %[1]2 + r [ e
(1−χ)e−y ]2 = r( %1

%2−ry ) [ 1 ]2 + r [ ee ]2, if χ = 0,

(2) [z]2 = ( %1
%2−ry )[1]2 + r [ e0 ]2, if χ = 1.

In both cases, the prover spends 3 exponentiations in G2. Thus, the prover’s computation
is dominated by 5e1 + 4e2.
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To see the verifier accepts note that here Q [ eδ ]2 = [ 0
δ−e ]2. In particular, [ eδ ]2 • [ct]1 +

Q [ eδ ]2 • [0‖1]1 = [ eδ ]2 • [ct]1 + [ 0
δ−e ]2 • [0‖1]1 can be computed in 5 pairings. In total, the

verifier executes 13 pairings.

Range Proof

The following example both has a long cryptographic pedigree and can be used to simply
explain how to expand our framework. In a range proof, the task is to prove that the
encrypted value belongs to a fixed range [0, N ]. Many range proofs have been proposed
in the cryptographic literature, [Bou00; LAN03; Lip03; CCs08; RKP09; CLs10; CLZ12;
Daz+19], due to their many applications and non-trivial constructions. It is possible
that the Couteau-Hartmann compilation works directly with some of the existing Σ-
protocol-based range proofs like [LAN03]. We will next show how to use our framework
to obtain a proof with Θ(logN) communication. Write η = blog2 Nc. In this case,
just setting AN = {x : 0 ≤ x ≤ N} results in an inefficient NIZK argument, since
GS(AN ) = {∏N

i=0(x− i)} contains a polynomial F of linear-in-N degree N + 1. (Since F
is univariate, one can use the solution of Section 5.6 in this case.)

One can instead use a different generating set of smaller-degree polynomials. Assuming
N = 2η − 1, a well-known idea in range proofs is to extend x to binary digits xi, and to
prove separately that each xi is Boolean. In the case N + 1 is not a power of two, one
can use an idea from [LAN03]. Namely, let bj := b(N + 2j)/2j+1c, where j ∈ [0, η]. Then,
χ ∈ [0, N ] iff χ = ∑η

j=0 bjχj for some χj ∈ {0, 1} [LAN03].
To translate this idea to our framework, we introduce additional indeterminates and

write

A′N =
(x, x0, . . . , xη) : x =

η∑
j=0

bjxj ∧ (bj ∈ {0, 1} for all j)
 .

Note that in the terms of algebraic geometry, A′N is a variety in the affine space Zη+2
p ,

such that AN is its projection to the affine space Zp.
Clearly,

GB(A′N) =
X2

η −Xη, . . . , X
2
0 −X0, X −

η∑
j=0

bjXj


is a (lexicographic) Gröbner basis for A′N that consists of one linear and η quadratic
polynomials. Thus, the resulting NIZK argument has communication complexity Θ(η) =
Θ(logN). A similar trick is useful in also other settings.

We can base range proofs on d-ary digits, for d ≥ 2, using an ABP-based univariate
NIZK to show that each Xj ∈ {0, . . . , d − 1}. One has to execute blogdNc basic
NIZK proofs. The resulting range proof has complexities depicted in Table 5.4. (The
complexities are such due to the fact that in this case, all values χ− ξi are small.) In
particular, the verifier’s computation (which is the most important measure in many
applications) is minimized when d = 3.
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Table 5.4: Complexities in the range proof. Every entry should be multiplied by log2 N .

P comp in (e1, e2) V comp in p Comm. in (|G1|, |G2|)

General ( 3d−1
log2 d

, 3d−1
log2 d

) 7d−1
log2 d

( 2d
log2 d

, (2d−1)
log2 d

)
d = 2 (also [CH20]) (5, 5) 13 (4, 3)

d = 3 (5.05, 5.05) 12.62 (3.79, 3.15)

As in the case of the multi-dimensional set-membership proof, an alternative is to
use signature-based solutions [RKP09; Daz+19] that offer somewhat better proof size
Θ(N/ logN)(|G1|+ |G2|). However, also here these solutions have a longer CRS size and
require that the underlying signature scheme is unforgeable. We leave it as an open
question how to combine the protocols of the current paper with signatures.

5.D More on Section 5.7

Elliptic Curve Points, Case F (X, Y ) = X3 + aX + b− Y 2 for a 6= 0

By inspection, we found the following 3× 3 matrix, where11 s =
√
−b/a:

C(X, Y ) =
(
Y −s X
X −1 s
a X Y

)
. (5.5)

Clearly, detC(X, Y ) = F (X, Y ). However, C is not a QDR. We will explain next what
does it mean in the concrete case.

Solving Equation (5.2) together with F (X, Y ) = 0 gives us the following formulas to
replace into Figure 5.1 depending on which minor of C is non-zero:

w ←



(
a(sY−X2)
a(Y−sX)

)
/(aX + b) if b+ aX 6= 0 ,(

as−XY
a+X2

)
/(sX + Y ) if sX + Y 6= 0 ,(

aX−Y 2

as+XY

)
/(sY +X2) if sY +X2 6= 0 .

Since Y 2 = X3 + aX + b, one can use formulas like X3 + b = Y 2 − aX to modify the
expressions. In particular, the three given expressions for w are equivalent if the three
denominators sX+Y = − det(C(1,1)), sY +X2 = − det(C(2,1)), and aX+b = a det(C(3,1))
are all non-zero.

Solving F (X, Y ) = 0 and det(C(i,1)) = 0 gives that the ith expression for w holds
except in either 3, 4, or 2 points. Since there is only one point (X, Y ) = (−b/a, bs/a)
where all F (X, Y ) = 0 and det(C(i,1)) = 0 hold, it means one can compute w in all but a
single point.

11Hence, this assumes that there exists a square root of −b/a modulo p, i.e., that there exists c such
that ac2 = −b, which is true for (p+1)/2 values of b. If b is not one of those values, one can by inspection
find a different matrix. Alternatively, one can use the ABP-based solution from Section 5.6.
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Thus, we can construct a NIZK argument, with ` = 3, assuming that there exists
a square root of −b/a modulo p. Moreover, it cannot be applied in the special case
(X, Y ) = (−b/a, bs/a). Thus, strictly speaking, the resulting NIZK is not for Lpk,F but
for a different language, and this outlines the need of QDRs. However, the resulting
argument could be still interesting in the case when in the honest case, (X, Y ) has some
restrictions.

Elliptic Curve Points, Case F (X, Y ) = X3 + b− Y 2

Consider the following less common normal form for an elliptic curve,

F (X, Y ) = (X + aY )(X + bY )(X + cY )−X ,

for mutually different a, b, c; w.l.o.g., let b 6= 0. By inspection, we found the following
matrix:

C>(X, Y ) =
(

X 0 −1
Y+s X+s 1

−sX+Y+s2 Y X

)
,

where s = b1/3 (assuming b has a cubic root). Then,

w ←



(
Y/(s+X)+1
−X

)
if s+X 6= 0 ,(

(s2−sX+X2+Y )/Y
−X

)
if Y 6= 0 ,(

−s2+2sX+(X−1)Y
−sX2+b+Y (X−Y )

)
/(X(s+X)− Y ) if X(s+X)− Y 6= 0 .

None of these formulas succeeds if all F (X, Y ) = s+X = Y = X(s+X)− Y = 0, which
can only happen if (X, Y ) = (−s, 0).

Fifth-Degree Example

Next, we give a fifth-degree example directly from [PSV12]:

F (X, Y ) =X5 + 3X4Y − 2X4 − 5X3Y 2 − 12X3 − 15X2Y 3 + 10X2Y 2 − 28X2Y + 14X2+
4XY 4 − 6XY 2 − 12XY + 26X + 12Y 5 − 8Y 4 − 32Y 3 + 16Y 2 + 48Y − 24 ,

and

C(X, Y ) =
X+Y 0 0 0 0

0 X+2Y 0 0 0
0 0 X−Y 0 0
0 0 0 X−2Y 0
0 0 0 0 X+3Y−2

+
 0 2 1 0 0

2 0 0 0 1
1 0 0 2 1
0 0 2 0 −1
0 1 1 −1 0

 .

As noted in [PSV12], this is just one of 33280 possible solutions for the latter (integer)
matrix. In this case, one can write 5 different formulas for χ1, depending on which
submatrix C(I,1)(X, Y ) has a non-zero determinant. One can check that there are four
points for which all these submatrices have a zero determinant.

Note that there is no obvious small-dimensional ABP-based solution in this case.
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5.E More on Section 5.8

Another Multi-Dimensional Set-Membership Proof

To demonstrate that one does not always need a set-membership proof of the worst-case
size, we will next work out an example for the following set

A = {(2, 1, 2), (1, 4, 2), (3, 1, 3), (1, 2, 3)} ⊂ Z3
p .

By using CoCoA, we found the following lexicographic Gröbner basis

GBlex(I) =
{

(z − 3)(z − 2), (y − 1)(y + 2z − 8), x+ 1
3(5y − 8)z − 3y + 3

}
of size 3. (The corresponding degree-lexicographic and degree-reverse-lexicographic
Gröbner bases have size 6.) By following our methodology, to show that χ ∈ A, we show
that Fi(χ) = 0 for each Fi ∈ GBlex(I). More precisely:

• We show that (z − 3)(z − 2) = 0, by using C1 =
(
z−2 −1

0 z−3

)
.

• We show that (y − 1)(y + 2z − 8) = 0, by using C2 =
(
y−1 −1

0 y+2z−8

)
.

• We show that 3x+ y(5z − 9)− 8z + 9 = 0, by using C3 =
(

y −1
3x−8z+9 5z−9

)
.

Thus, one needs 3 NIZK arguments for quadratic polynomials (` = 2). By Lemma 5.4.1,
the NIZK argument for A has thus communication of 3 · 2 · 2 = 12 elements of G1 and
3(2 · 2− 1) = 9 elements of G2.

As in all examples in Section 5.8, we used Gröbner-basis techniques to find a small
aPCS for A. Clearly, any arithmetic circuit for checking that χ ∈ A has size larger than
3. In particular, in this concrete case, it seems that one needs to use the full power of
aPCS.

An alternative generating set, that is not a Gröbner basis, is

GS(I) = {(x− 1)(y − 1), (x− 3)(y − 2)(z − 2), (x− 2)(y − 4)(z − 3)}

of size 3. While GS is tidier, the argument for GS(A) is slightly less efficient since two
of the polynomials are cubic. Thus, here, one can construct three QDRs of size 2, 3, and
3. The resulting NIZK has communication of 2 · 2 + 2 · 2 · 3 = 16 elements of G1 and
(2 · 2− 1) + 2 · (2 · 3− 1) = 13 elements of G2.

5.F More on Section 5.9

CHM NIZK

We describe the CHM (Couteau-Hartmann-Maurer) Σ-protocol and the resulting NIZK,
see Figure 5.8. For further reference, we state the following results. We refer to Section 5.A
and [CH20] for unexplained notions and notation.
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P(lpar = [Γ,θ]1; [x]1, w) V([Γ,θ]1; [x]1)

r←$Ztp
[a]1 ← [Γ(x)]1r [a]1

e←$Zpe

d← ew + r d

[Γ(x)]1d
?= [θ(x)]1e+ [a]1

P(lpar = [Γ,θ]1, crs = [e]2; [x]1, w) V(lpar = [Γ,θ]1, crs = [e]2; [x]1)

r←$Ztp
[a]1 ← [Γ(x)]1r
[d]2 ← [e]2w + r[1]2 ([a]1, [d]2)

[Γ(x)]1 • [d]2
?= [θ(x)]1 • [e]2 + [a]1 • [1]2

Figure 5.8: The CHM Σ-protocol for algebraic languages LΓ,θ (above) and its Couteau-
Hartmann compilation ΠC

Σ (below)

Proposition 5.F.1 (Efficiency of the CHM Σ-Protocol and CH Compilation). Assume
[Γ]1 ∈ Gn×t

1 and [θ]1 ∈ Gn
1 . Let TΓ := {|(i, j)| : Γij 6= 0} and Tθ := {|i| : θi 6= 0}. In the

CHM Σ-protocol, the prover executes TΓ ≤ nt exponentiations and the verifier executes
TΓ + Tθ + n ≤ nt+ n exponentiations; the communication is n group elements and t+ 1
integers. In the compiled protocol, the prover executes TΓ ≤ nt exponentiations in G1 and
2n exponentiations in G2, and the verifier executes TΓ + Tθ + n ≤ nt+ 2n pairings; the
communication is n|G1|+ t|G2|.

Proposition 5.F.2 (Couteau-Hartmann). Consider the NIZK argument ΠC
Σ, described in

Figure 5.8, for any algebraic language distribution Dlpar outputting pairs lpar = [Γ,θ]1 ∈
Pn×tν × Pnν .

1. It is sound under the L1-t-CED assumption in G2 relative to Pgen.

2. If the language distribution is witness-sampleable with trapdoors Tlpar ∈ Zn×np , then
ΠC

Σ is sound under the falsifiable L1-t-CED assumption in G2 relative to Pgen.

3. If the language distribution is m-trapdoor reducible, then ΠC
Σ is sound under the

falsifiable L1-(t−m)-CED assumption in G2 relative to Pgen.

Note that [CH20] proved the soundness under KerMDH assumptions, but it is easy to
see that the soundness also holds under CED assumptions.

More Examples

To simplify parsing, we have omitted the use of bracket notation in examples, writing say
0 instead of [0]1.
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Example 5.F.3. Let F (X) = ∏4
i=1(X − ξi). Then

[Γ]1 =



0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct1 0 0 0 1 0 0

ct2 − ξ2 −1 0 0 sk 0 0
0 ct1 0 0 0 1 0
0 ct2 − ξ3 −1 0 0 sk 0
0 0 ct1 0 0 0 1
0 0 ct2 − ξ4 0 0 0 sk



∈ Z8×7
p , [θ]1 =


ct1

ct2−ξ1
0
0
0
0
0
0

 .

In this case, w1 = −(χ− ξ1), w2 = −(χ− ξ1)(χ− ξ2), w3 = −(χ− ξ1)(χ− ξ2)(χ− ξ3),
and ŵ = r( 1

−w ) = r(1‖χ− ξ1‖(χ− ξ1)(χ− ξ2)‖(χ− ξ1)(χ− ξ2)(χ− ξ3)).

Example 5.F.4 (Elliptic curve.). Let F (X, Y ) = X3 + aX + b− Y 2 and

C(X, Y ) =
(
X −1 0 0
0 X −1 0
Y 0 0 −1
b a X −Y

)

be as in Figure 5.5. Then for [ct1]1 = Enc(χ1; r1) and [ct2]1 = Enc(χ2; r2),

[Γ]1 =



0 0 0 1 0 0 0
−1 0 0 sk 0 0 0
ct11 0 0 0 1 0 0
ct12 −1 0 0 sk 0 0
0 0 0 0 0 1 0
0 0 −1 0 0 sk 0
0 ct11 −ct21 0 0 0 1
a ct12 −ct22 0 0 0 sk



, [θ]1 =


ct11
ct12

0
0

ct21
ct21

0
b

 .

In this case, w> = (w∗1‖ . . . ‖w∗3) = (−χ1‖ − χ2
1‖ − χ2), and

ŵ =
(
w∗4
...
w∗7

)
=
(( 1 0 0 0

0 1 0 0
0 0 0 0
0 0 1 0

)
· r1 +

( 0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 −1

)
· r2

)
· ( 1
−w )

=
(
r1 0 0 0
0 r1 0 0
r2 0 0 0
0 0 r1 −r2

)
·
( 1
χ1
χ2

1
χ2

)
=
( r1

r1χ1
r2

r1χ2
1−r2χ2

)
.

Clearly,

Γ ·w∗ =
 −χ1E(−1;0)+r1E(0;1)

−χ1E(χ1;r1)−χ2
1E(−1;0)+r1χ1E(0;1)

−χ2E(−1;0)+r2E(0;1)
−χ1E(a;0)−χ2

1E(χ1;r1)−χ2E(−χ2;−r2)+(r1χ2
1−r2χ2)E(0;1)


=
 E(χ1;r1)

E(−χ2
1;−r1χ1)+E(χ2

1;0)+E(0;r1χ1)
E(χ2;0)+E(0;r2)

E(−aχ1;0)+E(−χ3
1;−r1χ2

1)+E(χ2
2;r2χ2)+E(0;r1χ2

1−r2χ2)


=
 E(χ1;r1)

E(0;0)
E(χ2;r2)

E(χ2
2−aχ1−χ3

1;0)

 (∗)=
 E(χ1;r1)
E(0;0)
E(χ2;r2)
E(b;0)

 = E(h(χ)) ,

where (∗) holds iff F (χ) = 0.
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CHM NIZK based on Couteau-Hartmann Disjunction

On the Couteau-Hartmann Disjunction. Next, we describe the Couteau-Hartmann
disjunction that results in Γ of size (3d− 1)× (3d− 2) and compare it to Equation (5.4).

In Appendix C of [CH20], the authors describe a method of constructing the parameters
[Γ]1 and [θ]1 of LΓ,θ for the disjunction of two algebraic languages LΓi,θi , i ∈ {0, 1}. That
is, x ∈ LΓ,θ iff LΓi,θi for at least one i. Briefly, they define

Γ :=


01×M1 1 01×M0 1
0N0×M1 0N0 Γ0 θ0

Γ1 θ1 0N1×M0 0N1

 , θ :=
 −1

0N0+N1

 (5.6)

Thus, a disjunction from matrices [Γi]1 of size Ni ×Mi ends up with a matrix [Γ]1 of size
(N1 +N2 +1)× (M1 +M2 +2). In the honest case, a valid witness is either (w>0 ,−1, 0, 0)>

or (0, 0,w>1 ,−1)>, where wi is a valid witness corresponding to the ith disjunct.
We will demonstrate how it differs from our parametrization for the two examples

given above.
First, when F (X) = X − ξ and thus [ct]1 = [r[1]1‖r[sk]1 + ξ[1]1]1, then C = (χ− ξ)

and thus

[Γ]1 =
 [1]1

[sk]1

 ∈ G2×1
1 , [θ]1 =

( ct1
ct2−[ξ]1

)
,

with w = r. Applying the disjunction of Equation (5.6) to it for two different values of ξi
and ciphertexts [cti]1, i ∈ {1, 2}, we get (omitting the bracket notation)

Γ =


0 1 0 1
0 0 1 ct1,1
0 0 sk ct1,2−ξ1
1 ct1,1 0 0
sk ct1,2−ξ2 0 0

 ∈ Z5×4
p ,θ =

( −1
0
0
0
0

)
,

with w = (r1,−1, 0, 0)> or w = (0, 0, r2,−1)>. This should be compared with 4 × 3
matrix Γ of [Ben+13] (see also Example 5.9.1). Going one step forward, for d = 4, the
Couteau-Hartmann disjunction results in a matrix of size (2 · 5 + 1)× (2 · 4 + 2) = 11× 10,
which should compared with the matrix Γ of Example 5.F.3 that has size 8× 7. In the
general case d = 2c for some c ≥ 1, the resulting matrix has dimensions

(3d− 1)× (3d− 2) .

As noted before, the new solution results in matrices of size 2d× (2d− 1).
Efficiency. For the sake of completeness, we reprove the following lemma, also given
in [CH20]. Note that w has zero elements which means that the computation of [d]2 by
the prover is more efficient than by the general result Proposition 5.F.1.

Lemma 5.F.5. Let d = 2c, and assume in recursion Γ0 and Γ1 always have equal
dimensions. The CH compiled NIZK argument, as in Figure 5.8, corresponding to Γ of
this subsection as in Equation (5.6), requires (7d − 4)e1 + (3d − 1)e2 from the prover,
(9d− 2)p from the verifier, and the communication is (3d− 1)|G1|+ (3d− 2)|G2|.



100 5. Paper I

Proof. Prover’s computation. The prover needs to compute [Γ(x)]1r and [e]2w + r[1]2.
If d = 1 then the multiplication [Γ(x)]1r can be executed in T1 = 2 exponentiations.

If d = 2 then it takes T2 = 10 exponentiations. Assume that for fixed d ≥ 2, the multipli-
cation takes Td exponentiations. Then, T2d can be executed in 2Td + 4 exponentiations.
Solving this recurrence relation gives that Td = 7d− 4 in G1.

On top of this, the prover computes [d]2 ← [e]2w + r[1]2. If d = 1 then this can be
executed in 2 exponentiations. At each recursion step, w will still have one non-small
element and r will have dimension 3d − 2. Thus, this takes 1 + (3d − 2) = 3d − 1
exponentiations in G2.

Verifier’s computation. Since Γ has 6d− 2 non-zero elements, the verifier has to
execute 6d− 2 pairings to compute [Γ]1 • [d]2. In addition, she has to execute 1 pairing
to compute [θ(x)]1 • [e]2, and n = 3d− 1 pairings to compute [a]1 • [1]2, in total 9d− 2
pairings.

Communication. n|G1|+ t|G2| = (3d− 1)|G1|+ (3d− 2)|G2|.
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Abstract

An extractable one-way function (EOWF), introduced by Canetti and Dakdouk
(ICALP 2008) and generalized by Bitansky et al. (SIAM Journal on Computing vol.
45), is an OWF that allows for efficient extraction of a preimage for the function.
We study (generalized) EOWFs that have a public image verification algorithm.
We call such OWFs verifiably-extractable and show that several previously known
constructions satisfy this notion. We study how such OWFs relate to subversion
zero-knowledge (Sub-ZK) NIZKs by using them to generically construct a Sub-ZK
NIZK from a NIZK satisfying certain additional properties, and conversely show
how to obtain them from any Sub-ZK NIZK. Prior to our work, the Sub-ZK
property of NIZKs was achieved using concrete knowledge assumptions.

6.1 Introduction

Extractability is a way to formalize what an algorithm knows. It is a notion essential to
modern cryptography which dates back to the works of Goldwasser et al. [GMR85] who
proposed proofs of knowledge, and later formalized for interactive proofs by Bellare and
Goldreich [BG93].1 For non-interactive proofs, Damgård [Dam92] proposed knowledge-of-
exponent assumptions, which are non-falsifiable assumptions2 saying that any efficient
algorithm that produces group elements that satisfy a specific relation must know their
discrete logarithms.

Investigating extractable primitives, Canetti and Dakdouk [CD08] introduced the
notion of extractable one-way functions (EOWFs). These are one-way functions f such
that any adversary who produces an image of f must “know” its preimage. One formalizes
this by saying that for every adversary A that outputs a value y ∈ im(f), there exists an
extractor Ext that, given A’s auxiliary input and randomness, can output a preimage for
y under f . In the case of black-box (resp., non-black-box [Bar01; Bar+01]) extractability,
Ext is universal and has no access (resp., has access) to A’s code.

Until the work of Bitansky et al. in [Bit+16], EOWFs were only known under very
strong knowledge-of-exponent assumptions [Bit+12], making little attempt to justify
how extraction would work. Bitansky et al. defined generalized extractable one-way
functions (GEOWFs) and constructed a GEOWF based on sub-exponential learning with
errors (or, alternatively, any delegation scheme) and non-black-box extraction, given
that the auxiliary input of the adversary is bounded. They also prove that GEOWFs
secure against auxiliary input of polynomially unbounded length do not exist assuming

1Extractability in interactive protocols is well-studied and involves a technique called rewinding. In
this paper we focus on extractability for non-interactive protocols.

2Essentially, one cannot efficiently check if an adversary breaks the assumption.
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indistinguishability obfuscation (which seems an increasingly plausible assumption given
recent progress [JLS20; WW20]).
Extractability and SNARKs. Extractability assumptions are widely used in various
flavors of non-interactive zero-knowledge (NIZK) protocols, which are useful tools in
ensuring privacy and correctness of cryptographic protocols. Succinct non-interactive
zero-knowledge arguments of knowledge (zk-SNARKs, [Gro10; Lip12; Gen+13; Gro16])
are NIZKs that have sublinear-length proofs and are knowledge-sound (for any valid
proof, the prover must “know” a witness). The knowledge-soundness property of a
SNARK relies on being able to extract the witness from an adversary that outputs a
valid argument. SNARKs are extremely popular due to practical applications such as
verifiable computation and privacy-preserving cryptocurrencies (e.g., Zcash [Ben+14]).

An interesting question is which assumptions are necessary for SNARKs. Due to
the impossibility result of Gentry and Wichs [GW11], any adaptively sound SNARK
must rely on non-falsifiable assumptions. However, while non-falsifiable assumptions are
necessary, they need not be knowledge assumptions. In fact, Bitansky et al. [Bit+12]
showed that extractable collision-resistant hash functions (ECRHs) are necessary and
sufficient to construct a SNARK that is adaptively sound and only privately verifiable.
More precisely, they construct a designated verifier SNARK for NP from an ECRH and
(an appropriate) private information retrieval, and construct a (specific variant of) ECRH
from a designated verifier SNARK and a CRH. They also showed that ECRH implies
EOWF.
Extractability and Subversion Zero-knowledge. Efficient SNARKs are typically defined in
the common reference string (CRS) model, where one assumes that the prover and the
verifier have access to a CRS generated by a trusted third party. However, in practice,
such a party usually does not exist; this is important since a malicious CRS generator may
cooperate with the prover to break soundness, or with the verifier to break zero-knowledge.
Thus, it is preferable to construct SNARKs, and NIZKs in general, in weaker trust models
than the CRS model.

The general notion of parameter subversion has been studied in [Rus+16]. Bellare et
al. [BFS16] defined subversion zero-knowledge (Sub-ZK), where zero-knowledge holds
even in the case of a dishonestly generated CRS, and constructed a Sub-ZK NIZK
argument. Subsequently, [Abd+17; Fuc18; Abd+20b] constructed Sub-ZK SNARKs
and [Abd+20a] constructed succinct Sub-ZK quasi-adaptive NIZKs [JR13]. As noted
in [Abd+20a], Sub-ZK in the CRS model is equivalent to zero-knowledge in the minimal
bare public key (BPK, [Can+00]) model where the authority is only trusted to store the
public key of each party. Since auxiliary-string non-black-box NIZK is impossible in the
BPK model [GO94], one needs to use non-auxiliary-string non-black-box techniques to
achieve Sub-ZK [Abd+20a]. Existing Sub-ZK NIZKs extract a CRS trapdoor from the
(possibly malicious) CRS generator, and then use the CRS trapdoor to simulate the NIZK
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argument. Prior to our work, extraction in Sub-ZK NIZKs was done using a concrete
knowledge-of-exponent assumption.

As previously mentioned, the work of Bitansky et al. [Bit+12] established that
extractable collision-resistant hash functions are necessary to obtain adaptive soundness
of SNARKs. A natural extension of this question is then to ask:

Which assumptions are necessary to obtain Sub-ZK for NIZKs and SNARKs?
Are those assumptions stronger than the ones required to obtain adaptive
soundness of SNARKs?

Our Contributions

Inspired by (G)EOWFs, we propose a new generic assumption3: the existence of verifiably-
extractable (generalized) OWFs (VE(G)OWFs). We argue that VEGOWFs are a natural
extension of GEOWFs introduced by Bitansky et al. [Bit+16], and show that in fact their
GEOWF construction can easily be turned into a VEGOWF. Moreover, while Bitansky
et al. [Bit+16] showed that a GEOWF can be transformed into a EOWF under certain
assumptions, we similarly show that any VEGOWF can be transformed into a VEOWF
with no further assumptions. To circumvent the impossibility result that EOWF and
similar primitives do not exist assuming indistinguishability obfuscation, our definitions
include non-black-box extractability as in [Bit+16] and assume a benign distribution of
auxiliary inputs as suggested in [BP15b].

Answering the first research question, we show that VEGOWFs are vital in under-
standing subversion zero-knowledge. Firstly, we show that VEGOWFs allow for the
transformation of any perfect NIZK with a publicly verifiable CRS into a Sub-ZK NIZK.
Secondly, we show the necessity of VEGOWFs by showing that the existence of a Sub-
ZK NIZK with certain properties implies that the NIZK’s CRS generation algorithm
must be a VEOWF. We also prove that if a NIZK has perfect zero-knowledge and
well-formedness of the CRS can be efficiently verified, then we automatically obtain
a statistical two-message private-coin witness-indistinguishable argument. Obtaining
statistical two-message witness-indistinguishable arguments (either public or private coin)
was an open question until recently [Bad+20; Goy+20; LVW20]. Similar observations
were previously made about specific Sub-ZK SNARKs in[Fuc18].

We answer the second research question by showing that the assumption corresponding
to this primitive seems weaker than that of extractable collision-resistant hash functions.
In particular, we show that VEGOWFs can be built either from knowledge assumption
or knowledge-sound NIZKs, and we also propose candidate VEGOWFs from various
signature schemes.

3Generic assumptions postulate the existence of a cryptographic primitive, such as OWFs and
one-way permutations. Meanwhile, concrete assumptions are used for concrete constructions, such as the
RSA assumption [RSA78] for the RSA cryptosystem.
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By showing connections to Sub-ZK NIZK, our work further demonstrates the impor-
tance of extractable OWFs as an independent primitive. This tool, which has not been
thoroughly studied, seems to lead the way to protocols that are otherwise difficult to
achieve. We encourage further study into extractable functions under weaker (or different)
assumptions as there are significant differences between various non-black-box techniques.

6.2 Technical Overview

Extending the notions of EOWF [CD08] and GEOWF [Bit+16], we define Verifiably-
Extractable Generalized One-Way Functions (VEGOWFs), show several instantiations of
these and show how it is related to subversion resistant zero-knowledge. Intuitively, an
EOWF f is a one-way function such that for any PPT adversary A, there exists a PPT
extractor ExtA, such that if A outputs y ∈ im(f), then ExtA (given access to A’s auxiliary
input) retrieves x such that f(x) = y. Meanwhile, a GEOWF g generalizes EOWFs by
introducing a relation RG such that for every PPT A, there exists an extractor ExtA,
such that if A outputs y ∈ im(g), then ExtA (given access to A’s auxiliary input) returns
z such that (y, z) ∈ RG. It is required that it is difficult for any adversary who is only
given y to compute such z, i.e., RG is a hard relation.

Verifiably-Extractable (Generalized) OWFs

A Verifiably-Extractable Generalized OWF (VEGOWF) G = {ge}e is a GEOWF which
additionally allows one to efficiently check whether extraction will succeed for a given
value y. More precisely, we define a relation RGe and a set YExt ⊇ im(ge) such that
(i) given y one can efficiently verify whether y ∈ YExt and
(ii) if y ∈ YExt then there exists an extractor ExtA that given non-black-box access to A

extracts z such that (y, z) ∈ RGe.
Note that extraction should work even if y ∈ YExt\ im(ge), and in general, it might be hard
to decide if y ∈ im(ge). We say that a VEGOWF is keyless if e is the security parameter
λ; in this case we write RG instead of RGe. The formal definition of VEGOWFs can be
found in Section 6.4.

We denote both properties together as RG-verifiable-extractability. The requirements
for RG-hardness remain the same as for GEOWFs. We introduce verifiably-extractable
OWFs (VEOWF) as a special case of VEGOWFs where the corresponding relation is
RGe = {(ge(x), x)}.

Generic transformations. We show that any VEGOWF can be transformed to a
VEOWF with a simple technique that was first mentioned in [Bit+16], in a slightly
different context. However, since the transformation incurs some efficiency loss, we still
consider VEGOWFs to be a weaker primitive and base our subversion zero-knowledge
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application on VEGOWFs. We also give a construction of a VEGOWF from any GEOWF
by evaluating the GEOWF on two different inputs and attaching a NIWI proof (in the
plain model) that at least one of the functions was evaluated correctly. Together they
give a surprising result that any GEOWF can be transformed to a VEOWF under the
relatively mild assumptions (e.g., decisional linear assumption) required by the NIWI.
We note that similar techniques have been previously used in specific applications. For
example, [Bit+17] uses similar idea to obtain a 3-round zero-knowledge argument from
any (non-verifiable) EOWF. We believe it is valuable to point out that this technique
works as a general transformation. See Section 6.4 for more details.

Robust Combiners. We show that n VEGOWFs can be combined to a new VEGOWF,
which is secure if any t > n/2 of the initial functions is secure. A robust combiner [Har+05;
Her05; FLP08] for VEGOWFs is useful since many of the proposed VEGOWFs rely on
strong assumptions. With combining we only need to trust that some of those strong
assumptions hold without knowing which. Details are provided in Section 6.4.

We show several VEGOWFs and VEOWFs under various assumptions like bounded
auxiliary input size, knowledge assumptions, and the random oracle.

VEGOWF from the BCPR construction. In the first construction, we show that the
keyless GEOWF G from [Bit+16, Fig. 4] is, in fact, a VEGOWF against any adversary
with bounded auxiliary input if we assume that the used delegation scheme has efficient
public CRS-verifiability. We recall that a delegation scheme DS [Aie+00] allows one to
prove statements of the form “a machineM outputs y on input x in time t”. A delegation
proof πDS must be faster to verify than the statement itself. The CRS-verifiability means
that one can efficiently check if the DS CRS crsDS is a valid CRS.

In the BCPR construction, each function ge computes a CRS crsDS for a delegation
scheme DS, and then evaluates a PRG on a random value. The relation RG(y, z) holds
for y = (crsDS, v) and z = (A, πDS, pad), if πDS is a DS-proof, using crsDS as the CRS,
for the statement that A on input 1λ outputs v. (pad is a padding.) The proof of
RG-hardness is as in [Bit+16], and follows from the security of the PRG together with
an argument about Kolmogorov complexity. The RG-verifiable-extractability follows
from the CRS-verifiability and completeness of the delegation scheme. See Section 6.4
for more details.

We note that even if the delegation scheme is not CRS-verifiable, one could still make
the BCPR EOWF a VEGOWF using the generic transformation presented in Section 6.4.

VEGOWFs from knowledge-of-exponent assumptions. Secondly, we show that
many knowledge-of-exponent assumptions naturally imply VEGOWFs. For these VE-
GOWFs, the input key e consists of a bilinear group description and possibly some
additional information.
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We first construct of a VEOWF based on the Bilinear Diffie–Hellman Knowledge-of-
Exponent (BDH-KE) assumption from [Abd+17] which states that if an adversary on
input p (the asymmetric bilinear group description) outputs ([x]1, [x]2) for some x then
he knows x.4 Here, e = p and gp(x) = ([x]1, [x]2). See Section 6.C for more details.

We also construct a VEGOWF based on the Diffie–Hellman Knowledge of Exponent
(DH-KE) assumption introduced in [BFS16]. The key is a description p of a symmetric
bilinear group, and gp(x, y) = [x, y, xy]1. The DH-KE assumption states that is is possible
to extract at least one of x and y. This results in a VEGOWF with respect to the relation
RGp([x, y, xy]1, z) = 1 iff z = x or z = y.

We discuss these and other similar VE(G)OWF constructions in Section 6.4.

VEGOWFs from knowledge sound NIZKs. Thirdly, inspired by [Dak09; Lep02],
we build VEGOWFs using knowledge-sound NIZKs. Suppose that we have a knowledge-
sound NIZK Π for a relation R and that R has an efficient sampling algorithm S which
produces instances that are hard on average. We define ge(rS , rπ) such that it samples
(x, w)← S(rS), uses rπ as random coins to generate a proof π for x, and outputs (x, π). The
input e is either the CRS or a description of a hash function (in the random oracle model).
We define RGe((x, π), w) = 1 iff π satisfies NIZK verification and (x, w) ∈ R. Since Π
is knowledge-sound, we obtain RG-verifiable-extractability by using Π’s verification on
(x, π). RG-hardness is satisfied since π is simulatable and S produces hard instances on
average.

As an interesting instantiation, if we let S output ([x] , x) for a random x and use
Schnorr’s Σ-protocol together with the Fiat-Shamir heuristic as a NIZK, we obtain a
very efficient VEOWF ge(x, r) := (x = [x] , a = [r] , z = H([x] , [r]) · x+ r) where H is a
hash function and verification works by asserting that H(x, a)x + a = [z]. See Section 6.4
for more details.

VEGOWFs from signature schemes. Finally, we propose a novel heuristic for coming
up with new VEGOWFs and knowledge-type assumptions in general. The intuition
behind signature schemes is that only the one with (at least some) knowledge of the
signing key sk can sign a message. Thus, it gives a very simple formula for looking
for new VEGOWFs. Let Σ = (Kgen, Sign,Vf) be a digital signature scheme. Then,
gp(sk) = (vk = Kgen(sk), σ = Sign(sk,m = 0)) is a candidate for a VEGOWF where p is
some parameter for the signature scheme, in particular when vk ∈ Kgen can be efficiently
tested. Of course, this is just a heuristic since at least the standard notion of existential
unforgeability does not require that the signer knows the secret key.

We then proceed by going over many concrete signatures schemes and investigate
the security of the corresponding VEGOWF candidate. We see that in some cases the
VEGOWF is insecure (e.g., Lamport’s one-time signature [Lam79] and RSA signature),

4We use the additive notation for bilinear groups G1,G2,GT where [x]i denotes xgi using the fixed
generator gi of Gi described in p. A bilinear map • allows us to compute [x]1 • [y]2 = [xy]T .
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in some cases it gives a VEGOWF that we already considered before (e.g., Schnorr’s
signature scheme [Sch90] and Boneh-Boyen signature [BB04]) and in some cases we obtain
(plausibly secure) VEGOWFs that have not been considered before. In the latter set is for
example the DSA signature which gives quite a unique function in a non-pairing-based
group and (and a slight modification of) the hash-and-sign lattice based signature scheme
of [GPV08], which gives the first lattice based VEGOWF candidate.

Constructing Sub-ZK NIZK from VEGOWF

We propose two generic constructions of a Sub-ZK NIZK. The first construction produces
a knowledge-sound Sub-ZK NIZK from any knowledge-sound Sub-WI NIWI5 and keyless
VEGOWF. The second construction produces a sound Sub-ZK NIZK from a sound
Sub-WI NIWI, a keyless extractable commitment, and a VEGOWF.
Knowledge-sound Sub-ZK NIZK. For the first construction, we propose a knowledge-
sound Sub-ZK NIZK for any NP-relation R using a variant of the well-known FLS
disjunctive approach [FLS90]. Namely, we use a knowledge-sound Sub-WI NIWI Πwi for
the composite relation R′, where ((x, ŷ), (w, ẑ)) ∈ R′ iff either (x, w) ∈ R or (ŷ, ẑ) ∈ RG.
Here G = {ge} is a keyless VEGOWF with respect to RG and ŷ ∈ YExt being added to
Πwi’s CRS. Knowledge-soundness of the new protocol will follow from the knowledge-
soundness of Πwi together with the RG-hardness of G, and subversion zero-knowledge
follows from the verifiable-extractability of G and the Sub-WI property of Πwi. This
construction preserves succinctness, and thus we obtain a Sub-ZK SNARK from a keyless
VEGOWF and a Sub-WI SNARK. We later note that any perfectly zero-knowledge
SNARK with efficient CRS verification is automatically a Sub-WI SNARK. See Section 6.5
for the full details of the construction.
Sub-ZK NIZK. Secondly, we construct a Sub-ZK NIZK Π for any NP-relation R.
It similarly uses the FLS approach with a keyless VEGOWF, but additionally uses a
commitment to a trapdoor. Specifically, Π implements a Sub-WI NIWI Πwi for the
relation R′, where ((x, c, ŷ), (w, ẑ, r̂)) ∈ R′ iff (x, w) ∈ R or c = C.com(ẑ, r̂) such that
RG(ŷ, ẑ) = 1, where G is a keyless VEGOWF with respect to RG and C = (com,Open,Vf)
is a keyless extractable commitment scheme.

A proof in Π consists of a commitment c and a proof in Πwi, so this construction is less
efficient than the previous one. However, this does not rely on Πwi being knowledge-sound,
so the construction is still of interest. The soundness of Π follows from the soundness
of Πwi together with the RG-hardness of G and the extractability of C. Note that
Πwi will already guarantee that c is a valid commitment. Therefore, we do not need
the commitment itself to have an efficient image verification procedure and can obtain

5Although in the literature NIWI often refers to the plain model, in this context we allow for a CRS.
A Sub-WI NIWI needs to remain witness indistinguishable even if the CRS is subverted. We note that
any CRS-less NIWI is trivially a Sub-WI NIWI.
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VEGOWF

NIWI GEOWF

KS Sub-WI NIWI Sub-WI NIWI ExtCom

Injective EOWF

KS Sub-ZK NIZK Sub-ZK NIZK VEOWF

Figure 6.1: Relations between argument systems and extractable functions. Multiple
arrows pointing to the same node means that each source node is required to construct
the destination node. KS denotes knowledge-sound.

it from any (even non-verifiable) injective EOWF. Sub-ZK follows from the verifiable-
extractability of G, the Sub-WI property of Πwi and the hiding property of C. See
Section 6.5 for the full details of the construction.

Statistical ZAPRs with adaptive soundness. We observe that if a NIZK has
perfect zero-knowledge and CRS-verifiability, then we immediately obtain a statistical
two-message private-coin witness-indistinguishable argument. Obtaining statistical two-
message witness-indistinguishable arguments that are public-coin (ZAP) or private-coin
(ZAPR) was considered a significant open problem, until recent breakthroughs [Bad+20;
Goy+20; LVW20]. Note that existing Sub-ZK SNARKs [Abd+17; Fuc18] are already
statistical ZAPRs with adaptive soundness. Compared to previous statistical ZAP/ZAPR
constructions, the soundness of SNARKs is based on less standard assumptions, but they
have much better efficiency. Similar observations about Sub-ZK SNARKs were previously
made by Fuchsbauer in [Fuc18].

Instantiations. The relations between our primitives are summarized in Figure 6.1.

Table 6.1 shows a selection of instantiations for our generic constructions and compares
them to previous work. We can achieve a keyless extractable commitment from any
keyless injective VEOWF (or even from keyless injective EOWF if the commitment does
not have to be image verifiable). In particular, this includes a VEOWF based on the
symmetric discrete logarithm (SDL) assumption and the BDH-KE assumption, and a
VEOWF based on the security of a non-interactive version of Schnorr’s protocol.

We can construct a Sub-ZK NIZK by combining a keyless extractable commitment, a
VEGOWF, and a Sub-WI NIWI. For example, we may use the Sub-WI NIWI of [GOS06]
based on DLIN or [BP15a] based on iO and OWF. In comparison, [BFS16] proposed a
Sub-ZK NIZK which is based on the DLIN and DH-KE assumptions. We can obtain a
KS Sub-ZK NIZK by combining a KS Sub-WI NIWI with a VEGOWF. In Table 6.1, we
consider the case where we use [FO18] as the KS Sub-WI NIWI component, together with
a VEGOWF which holds under the same assumptions. In Section 6.5, we also show that
existing Sub-ZK SNARKs [Abd+17; Fuc18] can be slightly modified to achieve Sub-ZK
from any VEGOWF rather than a specific knowledge-of-exponent assumption.
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Soundness Knowledge Soundness Sub-ZK
[BFS16] DH-KE + CDH x DH-KE + DLIN
Sec. 6.5 injective VEOWF x injective VEOWF + DLIN
Sec. 6.5 injective VEOWF x injective VEOWF + iO
[Abd+17] GGM GGM BDH-KE

[Fuc18, Sec. 4] q1-PDH + q2-PKE q1-PDH + q2-PKE SKE
[Fuc18, Sec. 5] q1-PDH + q2-PKE + q3-SDH q1-PDH + q2-PKE + q3-TSDH SKE
[Fuc18, Sec. 6] GGM GGM SKE

Sec. 6.5 DH-KE + DL DH-KE + DL DH-KE + DLIN

Table 6.1: Instantiations of our generic constructions in comparison to previous work.
SKE denotes the Square Knowledge-of-Exponent assumption, GGM denotes the generic
group model, PDH denotes the Power Diffie-Hellman assumption, PKE denotes the Power
Knowledge-of-Exponent assumption, and TSDH denotes the Target Strong Diffie-Hellman
assumption.

Constructing VEOWF from Sub-ZK NIZK

It turns out that not only can Sub-ZK NIZK be constructed with the help of VEGOWF,
but (under certain restrictions) Sub-ZK NIZK also implies a VE(G)OWF. In that sense,
VEGOWF is both a necessary and a sufficient condition for achieving Sub-ZK NIZKs,
similar to how ECRH (also, under certain restrictions) is a necessary and a sufficient
condition for achieving a SNARK.

More technically, we consider a CRS generation function KgenR,p of a Sub-ZK NIZK
that takes as an input a randomly sampled trapdoor td and outputs a crs. We show
that this function has to be one-way if the NIZK is both computationally sound and
computationally zero-knowledge. Intuitively, if one-wayness would not hold, the soundness
adversary could recover td and use the simulator to construct a proof for a false statement.
We additionally require that KgenR,p is injective to avoid the situation where one-wayness
adversary computes td is which is particularly bad for simulation among all the possible
preimages of crs. Verifiable-extractability property follows straightforwardly from the
Sub-ZK property of the NIZK since it requires that td must be extractable. However,
here we also need to make some slight restrictions. Namely, the Sub-ZK extractor should
be able to extract the complete td, not only some part of it, which might still be sufficient
for simulating the proof.

6.3 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security parameter. All
adversaries are stateful. For an algorithm A, let im(A) be the image of A (the set of
valid outputs of A), let RNDλ(A) denote the random tape of A, and let r←$ RNDλ(A)
denote the random choice of values from RNDλ(A). We write that y ∈ range(A(x)) if
there is non-zero probability that the algorithm A outputs a value y given the input
x. We denote by negl(λ) an arbitrary negligible function and by poly(λ) an arbitrary
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polynomial function. We write a(λ) ≈λ b(λ) if |a(λ)− b(λ)| = negl(λ). For an NP-relation
R = {(x, w)}, let LR := {x : ∃w, (x, w) ∈ R} be the corresponding language.

In the pairing-based setting, we use the standard bracket notation together with
additive notation, i.e., we write [a]ι to denote agι where gι is a fixed generator of Gι and
a ∈ Zp for some prime p. Intuitively, pairings • : G1 ×G2 → GT are efficient (one-way)
functions that map ([a]1, [b]2) to [a]1 • [b]2 = [ab]T .

Let A = {Aλ}λ∈N, B = {Bλ}λ∈N be collections of efficiently sampleable sets, such
that |Bλ| > |Aλ| for each λ ∈ N. A polynomial-time function PRG : Aλ → Bλ is a
pseudorandom generator (PRG) if its output is computationally indistinguishable from a
truly random one.

(Generalized) Extractable OWF

An extractable one-way function (EOWF, [CD08]) g is an OWF with the property that
if A outputs a value in the image of g, then one can extract its preimage. A generalized
EOWF (GEOWF, [Bit+16]) is a function g with an associated hard relation RG, such
that given g(x), it is intractable to compute z such that RG(g(x), z) = 1. However, given
a machine (and its auxiliary input) that computes g(x), it is possible to extract z such
that RG(g(x), z) = 1. One obtains an EOWF when RG = {(g(x), z) : g(z) = g(x)}.
Unless stated otherwise, we assume that RG is efficiently checkable.

Bitansky et al. [Bit+16] show that, assuming the existence of indistinguishability
obfuscation, there do not exist EOWFs or GEOWFs with common auxiliary-input of
unbounded polynomial length. However, the result does not rule out their existence when
the common auxiliary input comes from some natural distribution, such as the uniform
distribution. Thus, nowadays zk-SNARKs explicitly assume that the auxiliary input is
benign, i.e., with overwhelming probability it does not encode a malicious obfuscation.
We also make the same assumption: if no bound for the auxiliary input is given, then we
assume that it is taken from a benign distribution.

We present a slight modification of the GEOWF definition of [Bit+16]. Note that
hardness is required to hold even against poly-length auxiliary inputs.

Definition 6.3.1 (GEOWFs). Let X = {Xλ}λ, Y = {Yλ}λ, Z = {Zλ}λ and K =
{Kλ}λ be collections of sets indexed by λ ∈ N. An efficiently computable family of
functions G = {ge : Xλ → Yλ | e ∈ Kλ, λ ∈ N} associated with an efficient (probabilistic)
key sampler KeySamp, is a GEOWF with respect to a relation RGe(y, z) on triples
(e, y, z) ∈ Kλ × Yλ × Zλ if it is:

RG-hard: for any PPT adversary A and any aux sampled from a benign distribution of
poly(λ)-bit strings

Pr
e←KeySamp(1λ)
x←$Xλ

[z ← A(e, ge(x), aux) : RGe(ge(x), z) = 1] ≤ negl(λ) .
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RG-extractable: For any PPT adversary A, there exists a PPT extractor ExtA, s.t. for
any benign distribution Dλ of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)

aux←Dλ

y ← A(e; aux), z ← ExtA(e; aux) :
y ∈ im(ge) ∧RGe(y, z) 6= 1

 ≤ negl(λ) .

The function is publicly verifiable if there exists a polynomial-time tester T such that for
any (e, x, z), RGe(ge(x), z) = T (e, ge(x), z).

We say that a GEOWF is keyless if, for each security parameter λ, there is only one
key e = 1λ. For ease of notation, we simply write gλ and RG in this case. A GEOWF is
an EOWF if RGe(ge(x), z) = {(e, ge(x), z) : ge(x) = ge(z)}.

Bounded auxiliary input. We also consider GEOWFs where the auxiliary input in
RG-extractability holds for any aux ∈ {0, 1}b(λ) (not just for a benign distribution) for
some fixed polynomial b. We call these b-bounded GEOWFs.

BCPR GEOWF and EOWF

Bitansky et al. [Bit+16] show that if the common auxilliary string of the adversary and
the extractor has an a priori bounded length b(λ), then one can implement extractable
one-way functions (EOWF) based on a pseudorandom generator and a universal delegation
scheme [KRR14; KPY19]. In a universal delegation scheme (cf. Section 6.A), one delegates
computation of some circuit M on input x to a prover, who must compute M(x) and
provide a proof π that he computed it correctly; any verifier that is given (M,x,M(x), π)
must be able to verify the proof in less time than computing M(x) itself. One can
construct universal delegation schemes under the subexponential learning with errors
assumption [KRR14] and even falsifiable assumptions [KPY19] for languages in BPP.

BCPR GEOWF. We briefly describe the construction from [Bit+16] of a GEOWF
secure against an adversary with (b(λ)− ω(1))-bounded auxiliary input.

Fix a polynomial b(λ). Let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let DS be a
universal delegation scheme that consists of a CRS generator DS.K, a prover DS.P, and
a verifier DS.V. We assume that using DS, one can construct a succinct proof πDS of
length DS.plen(λ) that a Turing machine M on input 1λ outputs some value v in time
T (λ), where T (λ) ∈ (2ω(log λ), 2poly(λ)) is some superpolynomial function. DS must satisfy
that the proof verification complexity is linear in M’s size and polylogarithmic in M’s
execution time T .

We define the function gλ : (s, r) 7→ (crsDS, v) and the corresponding relation RG(y, z)
as in Figure 6.2, where y = (crsDS, v) and z = (M, πDS, pad) with |z| = lpar(λ).

Proposition 6.3.2 ([Bit+16, Theorem 14]). G = {gλ}λ∈N, depicted in Figure 6.2, is a
GEOWF with respect to RG, against (b(λ)− ω(1))-bounded auxiliary input.
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gλ(s, r)

(crsDS, τ)← DS.K(1λ; r); // the generator for universal delegation
return (crsDS, v ← PRG(s));

RG(y, z)

parse y = (crsDS, v), z = (M, πDS, pad);
// |M| = b(λ), |πDS| = DS.plen(λ), |pad| = lpar(λ)− b(λ)− DS.plen(λ);

find the verification state τ corresponding to the reference string crsDS;
verify the statement “M(1λ) outputs v in T (λ) steps” by using πDS (DS proof);
return 1 iff the DS verifier accepts πDS;

Figure 6.2: BCPR GEOWF G (above) and the relation RG(y, z) (below).

This proposition relies on the security of DS and PRG. In addition, it uses a Barak-
type [Bar01] extractability paradigm (namely, the machine M is the adversary who outputs
y). It is worth noting that a similar approach with a number of extra steps [Bit+16,
Theorem 14] also allows one to construct a function family which is an EOWF against
(b(λ) − ω(1))-bounded auxiliary-input. We will see an adaptation of this approach
in Section 6.4.

NIZK and NIWI Arguments

We recall the definition of NIZK and NIWI arguments and their security properties. We
assume that RGen is a relation generator that output an NP relation R and a parameter
p (e.g., the group description). An argument system Ψ is a tuple of PPT algorithms
(K,P,V). The CRS generation algorithm K takes in (R, p) and outputs a crs and a
trapdoor td (which may be ⊥ if the argument does not have zero-knowledge). The prover
algorithm P takes in R, p, crs and (x, w) ∈ R and outputs a proof π. The verifier algorithm
V takes in (R, p, crs, x, π) and outputs either 0 (rejecting the proof) or 1 (accepting the
proof). A NIZK argument system will additionally have a simulator Sim that takes in
(R, p, crs, td, x) and outputs a simulated proof π for the statement x. Furthermore, a
subversion resistant argument will have a CRS verification algorithm CV that take in
(R, p, crs) and output either 0 (by rejecting the CRS) or 1 (by accepting the CRS).

Definition 6.3.3 (Perfect Completeness [Gro16]). A non-interactive argument Ψ is per-
fectly complete for RGen, if for all λ, all (R, p) ∈ range(RGen(1λ)), and (x, w) ∈ R,

Pr [crs← K(R, p) : V(R, p, crs, x,P(R, p, crs, x, w)) = 1] = 1 .

Definition 6.3.4 (Perfect CRS Verifiability). A non-interactive (subversion-resistant) argu-
ment Ψ is perfectly CRS-verifiable for RGen, if for all λ and all (R, p) ∈ range(RGen(1λ)),
Pr [(crs, td)← K(R, p) : CV(R, p, crs) = 1] = 1.
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Definition 6.3.5 (Computational Soundness). Ψ is computationally (adaptively) sound
for RGen, if for every PPT A,

Pr
(R, p)← RGen(1λ), (crs, td)← K(R, p), (x, π)← A(R, p, crs) :
x 6∈ LR ∧ V(R, p, crs, x, π) = 1

 ≤ negl(λ) .

Definition 6.3.6 (Computational Knowledge Soundness). Ψ is computationally (adap-
tively) knowledge-sound for RGen, if for every PPT A, there exists a PPT extractor ExtA,
such that

Pr


(R, p)← RGen(1λ), (crs, td)← K(R, p), r←$ RNDλ(A),
(x, π)← A(R, p, crs; r), w← ExtA(R, p, crs; r) :
(x, w) 6∈ R ∧ V(R, p, crs, x, π) = 1

 ≤ negl(λ) .

Above we assume that the input (R, p, crs; r) comes from a benign distribution and
thus avoids the impossibility result of [Bit+16].

Definition 6.3.7 (Statistically Composable ZK [Gro06]). Ψ is statistically composable
zero-knowledge for RGen, if for all (R, p) ∈ range(RGen(1λ)), and all computationally
unbounded A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr
(crs, td)← K(R, p), (x, w)← A(R, p, crs, td); π0 ← P(R, p, crs, x, w);
π1 ← Sim(R, p, crs, td, x) : (x, w) ∈ R ∧A(πb) = 1

 .

Ψ is perfectly composable ZK for RGen if one requires that εcomp0 = εcomp1 . In Theorem 6.6.3
we also consider a computational version of this definition, that is A is a PPT adversary
and the input td is not given as input to A.

Definition 6.3.8 (Statistically Composable Sub-ZK [Abd+17]). Ψ is statistically com-
posable subversion ZK (Sub-ZK) for RGen, if for any PPT subverter Z there exists a
PPT ExtZ , such that for all R ∈ range(RGen(1λ)), and all computationally unbounded
A, εcomp0 ≈λ εcomp1 , where εcompb =

Pr


r←$ RNDλ(Z), (crs, auxZ)← Z(R, p; r), td← ExtZ(R, p; r)
(x, w)← A(R, p, crs, td, auxZ), π0 ← P(R, p, crs, x, w);
π1 ← Sim(R, p, crs, td, x) : (x, w) ∈ R ∧ CV(R, p, crs) = 1 ∧ A(πb, auxZ) = 1

 .
Ψ is perfectly composable Sub-ZK for RGen if one requires that εcomp0 = εcomp1 .

Definition 6.3.9 (Witness Indistinguishability). Ψ is computationally witness indistin-
guishable (WI) for RGen, if for any PPT A, εwi0 ≈λ εwi1 , where εwib =

Pr
(crs, td)← K(R, p), (x, w0, w1)← A(R, p, crs), πb ← P(R, p, crs, x, wb) :

(x, w0) ∈ R ∧ (x, w1) ∈ R ∧A(πb) = 1

 .
Ψ is perfectly WI for RGen if one requires that εwi0 = εwi1 for unbounded A. Note that td
above might be ⊥ if Ψ is not zero-knowledge.
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Definition 6.3.10 (Sub-WI [BFS16]). Ψ is computationally Sub-WI for RGen, if for any
PPT subverter Z, εwi0 ≈λ εwi1 , where εwib =

Pr
(crs, x, w0, w1, auxZ)← Z(R, p), πb ← P(R, p, crs, x, wb) :

(x, w0) ∈ R ∧ (x, w1) ∈ R ∧ CV(R, p, crs) = 1 ∧ Z(πb, auxZ) = 1

 .
Ψ is perfectly Sub-WI for RGen if one requires that εwi0 = εwi1 for an unbounded Z. In
case Ψ does not utilise any common string we assume CV(R, p, ε) = 1.

6.4 Verifiably-Extractable Generalized OWFs

Definition

We study GEOWFs G = {ge} that come with an efficient (public) algorithm that decides
whether or not extraction is going to be successful. That is, we require that there exists an
extraction verification algorithm EV, such that EV(e, y) decides whether y ∈ YExt ⊇ im(ge),
where extraction succeeds for any y ∈ YExt. We also require that, with overwhelming
probability, extraction is successful for any adversary which outputs a value in YExt.
(Extraction may succeed even if y 6∈ YExt.) We call GEOWFs with such properties
Verifiably-Extractable Generalized OWFs (VEGOWFs).

Although for some VEGOWFs it may hold that YExt = im(ge), it is not necessarily the
case. For example in the BCPR GEOWF, one is not able to decide if y ∈ im(gλ), because
any such algorithm can be used to decide membership in im(PRG) which contradicts the
security of PRG. However, as we will show, extraction is successful for any y = (crsDS, v),
where crsDS is a valid DS CRS and v is any string output by an adversary with bounded
auxiliary input.

Define VEGOWFs as GEOWFs where the RG-extractability property has been
substituted with the following, stronger one. (It makes an implicit assumption that EV
exists.)

RG-verifiably-extractable with respect to YExt: Let im(ge) ⊆ YExt ⊆ Yλ, and let
EV be an efficient algorithm such that EV(e; y) = 1 iff y ∈ YExt. For any PPT
adversary A, there exists a PPT extractor Ext, s.t. for any benign distribution Dλ
of poly(λ)-bit strings,

Pr
e←KeySamp(1λ)

aux←Dλ

y ← A(e; aux), z ← Ext(e; aux) :
y ∈ YExt ∧ (y, z) 6∈ RGe

 ≤ negl(λ) .

If this definition holds for adversaries with auxiliary input length bounded by some
polynomial b(λ), we say that that the GEOWF is RG-verifiably-extractable against
b-bounded adversaries with respect to YExt.
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fe(i ∈ {0, 1}λ, x ∈ Xλ, y ∈ Yλ, z ∈ Xλ)

if i 6= 0λ then return ge(x);
elseif (y, z) ∈ RGe ∧ EVg(e; y) then return y;
else return ⊥;

ImVf(e; y)

return EVg(e; y) ∨ y = ⊥;

Figure 6.3: Transformation from a VEGOWF G = {ge}e to a VEOWF F = {fe}e.

We also require that there is a PPT algorithm t, such that for any x ∈ Xλ,
(ge(x), t(x)) ∈ RGe, that is, given x, t computes the “witness” for ge(x) in RG.

If there exists an algorithm ImV that decides membership in im(ge), then the GEOWF
is image-verifiable. Clearly, any image-verifiable GEOWF is also verifiably-extractable
with respect to YExt = im(ge). Furthermore, for an EOWF, RGe only consists of pairs
(ge(x), x) so extraction is not possible if one is given y 6∈ im(ge). Hence, for an EOWF,
verifiable-extractability is the same as image-verifiability.

Generic transformations

VEGOWF ⇒ VEOWF. Surprisingly, any VEGOWF can be transformed to a VEOWF
with the transformation in Figure 6.3 that adds very little overhead. The idea is to
include to a VEGOWF ge a branch input i ∈ {0, 1}λ. If i 6= 0λ, which happens with
an overwhelming probability, then ge works as usual and outputs ge(x). However, on
a trapdoor branch i = 0λ, the function uses its two extra inputs y and z. If y satisfies
EVg(e; y) and (y, z) ∈ RGe, it outputs y (or ⊥ if the condition is not met). One-wayness
follows since with overwhelming probability the function outputs y ∈ im(ge) and the
preimage has to contain either x such that ge(x) = y or z such that (y, z) ∈ RGe. By
outputting either t(x) (in the first case) or z (in the other case), one breaks RG-hardness.
On the other hand, the VEOWF extractor can use the VEGOWF extractor to recover z
from y when EVg(e; y) = 1 and then return a preimage (0λ,⊥, y, z).

A similar transformation was introduced in [Bit+16] to obtain EOWFs from GEOWFs.
However, they observed that an adversary can pick as input (0λ,⊥, y, z) with (y, z) ∈ RGe,
but y 6∈ im(ge). This makes the extraction impossible. Our construction does not run
into this issue since we assume that extraction is possible when EV(e; y) = 1.

Theorem 6.4.1. If G = {ge}e is RG-hard and RG-verifiably-extractable, then F = {fe}e

in Figure 6.3 is a VEOWF.

GEOWFs ⇒ VEGOWF. We now consider a generic transformation from a GEOWF
to a VEGOWF. One approach is to simply append a NIZK proof π which proves that the
given value was computed correctly. A problem with this approach is that it would require
a CRS computed by a trusted third party, which might not be desirable in a number of
settings. We therefore give a modification of this approach, where we instead rely on a
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ge(x1, x2, r)

y1 ← fe(x1); y2 ← fe(x2);
π ← P (Re, (fe(x1), fe(x2)), (x1, x2); r) ;
else return (y1, y2, π);

EV(e; (y1, y2, π))

return V(Re, (y1, y2), π);

Figure 6.4: Transformation from a GEOWF F = {fe}e to a VEGOWF G = {ge}e.

NIWI, which are known to exist in the plain model under various assumptions [BOV03;
GOS06; BP15a].

The intuition is that we create a new function g(x, y, r) = (f(x), f(y), π) where π is
a NIWI proof (created using randomness r) showing that either f(x) or f(y) belongs
to the image of f (in which case extraction will be possible). Verifiable-extractability
follows from extractability of the GEOWF as well as perfect soundness of the NIWI, and
hardness will follow from the hardness of f and witness-indistinguishability of the NIWI.

Consider a GEOWF F = {fe}e with an associated relation RG. Let Π = (P,V) be
a perfectly sound NIWI, and let the relation Re((y1, y2), (x′1, x′2)) hold iff y1 = fe(x′1) or
y2 = fe(x′2). We define a VEGOWF G = {ge}e with an extraction verification algorithm
EV in Figure 6.4 and define the hardness relation:

RG′e((y1, y2, π), (z1, z2)) := RGe(y1, z1) ∨RGe(y2, z2).

Similar techniques have been used before in conjunction with EOWFs (e.g, 3-round ZK
in[Bit+17]) but not, up to our knowledge, as a generic transformation.

Theorem 6.4.2. If F is a GEOWF with respect to RG, then G in Figure 6.4 is a
VEGOWF with respect to RG′.

Proof. Verifiable-extractability: Suppose an adversary A outputs y = (y1, y2, π) such
that EV(e; (y1, y2, π)) = 1. This means that the verifier V accepts the proof, and by
perfect soundness this shows that y1 ∈ im(fe) or y2 ∈ im(fe). Based on A, we can create
adversaries A1 and A2, which output y1 and y2, respectively. WLOG, assume that
y1 ∈ im(fe). By the definition of GEOWFs, there exists an extractor ExtA1 which is able
to extract z1 such that RGe(y1, z1) holds, and therefore we are able to extract z = (z1, z2)
such that RG′e(y, z) holds, which establishes verifiable-extractability.

RG′-hardness: Suppose there exists an adversary A against RG′-hardness. There-
fore, given (fe(x1), fe(x2), π = P(Re, (fe(x1), fe(x2)), (x1, x2); r) with x, y, r chosen uni-
formly at random, it outputs (z1, z2) such that, with noticeable probability ε(λ),
RG′e((fe(x1), fe(x2), π), (z1, z2)) holds.

We will now use A to break RG-hardness of fe. Suppose we are given as input fe(x)
for a randomly chosen x, and we wish to find z such that RGe(fe(x), z) = 1. To do this,
we choose x′ and r at random, and run A on one of the two inputs, chosen at random
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with probability 1/2:

(fe(x), fe(x′),P(Re, (fe(x), fe(x′)), (⊥, x′); r),
(fe(x′), fe(x),P(Re, (fe(x′), fe(x)), (x′,⊥); r).

Here ⊥ is some arbitrary element of the input space. By the witness-indistinguishability
of Π, these two inputs are indistinguishable from honestly generated values ge(x, x′, r)
and ge(x′, x, r), respectively, and these two values are equally distributed. Therefore,
A will output z such that RG(f(x), z) with probability ε(λ)/2 − negl(λ), which is a
noticeable probability, and therefore contradicts the assumption that F is RG-hard.

A robust combiner. Additionally, a simple robust combiner is possible for VEGOWFs
(or even for GEOWFs). Let us suppose that G = {ge1}e1 , F = {fe2}e2 , and H = {he3}e3

are candidate VEGOWFs for the respective relations RGg, RGf , and RGh. We do
assume that the associated extraction verification algorithm always accepts when given
a value in the image of each candidate, but we make no other assumption about the
security of the candidates.

We define a new VEGOWF T = {te}e by te(x, y, z) := (ge1(x), fe2(y), he3(z)) where
e = (e1, e2, e3) and the relation RGe is

(
(a, b, c), (z1, z2)

)
:
(
(a, z1) ∈ RGg

e1 ∧ (b, z2) ∈ RGf
e2

)
∨(

(a, z1) ∈ RGg
e1 ∧ (c, z2) ∈ RGh

e3

)
∨
(
(b, z1) ∈ RGf

e2 ∧ (c, z2) ∈ RGh
e3

)
 .

We define the new extraction verification algorithm to accept when all individual extraction
verification algorithms accept.

If any two of the candidates are hard for their respective relations, then T is RG-
hard. Similarly, if any two are extractable, then T is RG-extractable. The idea can be
generalized to n VEGOWFs for an arbitrary constant n, where it is sufficient that more
than n/2 are secure. An interesting open question is to construct a robust combiner
where fewer functions have to be secure.

The BCPR GEOWF is Verifiably-Extractable

We show that if a delegation scheme DS is CRS-verifiable, then the BCPR GEOWF from
Figure 6.2 is verifiably-extractable with respect to YExt = im(DS.K(1λ)) × {0, 1}b(λ)+λ.
That is, z contains the code of an adversary and the DS argument, independently of
whether or not y ∈ im(gλ).

The proof of the following theorem is very similar to the proof of Theorem 14
from [Bit+16]; we have reproduced it for the sake of completeness.

Theorem 6.4.3. Let DS be a delegation scheme that has publicly verifiable proofs and
CRS, and let PRG : {0, 1}λ → {0, 1}b(λ)+λ be a PRG. Let G = {gλ}λ∈N and RG be as in
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Figure 6.2. G is a VEGOWF for RG with respect to YExt = im(DS.K(1λ))× {0, 1}b(λ)+λ

and (b(λ)− ω(1))-bounded aux.

Proof. RG-hardness. Identical to the proof of Theorem 14 in [Bit+16].
RG-verifiable-extractability. Since DS is CRS-verifiable, there exists an algorithm

CV which decides if crsDS ∈ im(DS.K(1λ)). On input y = (crsDS, v), the new extraction
verification algorithm EV returns 1 if CV(crsDS) = 1 and |v| = b(λ) + λ.

We show that there is one universal PPT extractor Ext that can handle any PPT
adversaryA with advice of size at most b(λ)−ω(1). For an adversaryA (a Turing machine)
and advice aux ∈ {0, 1}b(λ)−ω(1), denote by Aaux the machine that, on input 1λ, runs
A(1λ; aux). Assume that (i) Aaux has description size at most b(λ) and that (i) on input
1λ, after at most tA < T (λ) steps, it outputs Aaux(1λ) := y = (crsDS, v) ∈ {0, 1}lpar′(λ).
(Recall YExt ⊆ {0, 1}lpar′(λ).) The extractor Ext(A, aux, 1tA) works as follows:

Ext(A, aux, 1tA)

Construct Aaux;
(crsDS, v)← Aaux(1λ); if EV((crsDS, v)) = 0 then return ⊥; fi ;
Compute a DS-argument πDS for the fact that “Aaux(1λ) = (crsDS, v)”;
return z ← (Aaux, πDS, pad);

It follows directly from the perfect completeness of DS that RG(y, z) = 1. Since this
holds for any (crsDS, v) ∈ YExt output by an adversary with (b(λ) − ω(1))-bounded
auxiliary input, we get RG-verifiable-extractability. By the relative prover efficiency of
the delegation scheme, the extractor’s running time is polynomial in the running time tA
of the adversary.

To instantiate the construction, we need a delegation scheme with public CRS and
proof verification. Firstly, SNARKs in [Mic00; Abd+17; Fuc18] satisfy both properties
and have succinct proofs. All of them are based on non-falsifiable assumptions, however,
here it is only needed that they are sound for the class P. Thus, even a tautological
security assumption (the corresponding SNARK is sound for BPP) would be falsifiable.
Such an assumption about [Mic00] was made say in [CLP13]. Secondly, some recent
suggestions for delegation schemes [KPY19; Kat+19] with public proof-verification are
based on non-tautological falsifiable assumptions. Unfortunately, it is not immediately
evident if those schemes also have CRS-verifiability. We leave the latter as an important
open problem.

VEGOWFs from Knowledge-of-Exponent Assumptions

Next, we construct VEGOWFs based on knowledge-of-exponent (KE) assumptions, a
logical direction partially motivated by [Dak09, Section 3.3.1.1]. In each case, the key is
a description p of an asymmetric or symmetric (in the latter case, we state it explicitly)
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bilinear group generated by a group generator algorithm Pgen(1λ). Note that if the group
generator Pgen is deterministic, i.e., each security parameter corresponds to a unique
group, this is a keyless EOWF.

The ABLZ VEOWF from BDH-KE. The ABLZ VEOWF is based on an idea from
Abdolmaleki et al. [Abd+17]. We define gp(x) := ([x]1, [x]2). The one-way property of
the ABLZ EOWF is equivalent to the Symmetric Discrete Logarithm (SDL) [Bic+10]
assumption, and extractability is equivalent to the BDH-KE assumption introduced
in [Abd+17]. Finally, one can verify if ([x]1, [y]2) ∈ im(gp) by checking that [x]1 • [1]1 =
[1]1 • [y]2. We give a formal proof that this is a VEOWF in Section 6.C. Note that this
VEOWF is injective.

VEGOWF from DH-KE. Some KE assumptions from the literature lead to VEG-
OWFs rather than VEOWFs. The Diffie-Hellman KE (DH-KE) assumption introduced
in [BFS16] states that any adversary which produces a DDH triple [x, y, xy]1 must know
at least one of x and y. Given a symmetric bilinear group, this gives rise to the following
VEGOWF. Define gp(x, y) := [x, y, xy]1 and the relation RGp([x, y, xy]1, z) = 1 iff z = x

or z = y. We can verify if [x, y, w]1 ∈ im(gp) by checking that [x]1 • [y]1 = [w]1 • [1]1. This
function is RG-hard if the discrete logarithm problem is hard and is verifiably-extractable
if the DH-KE assumption holds.

Further examples. There are also a number of other knowledge of exponent assumptions
in the literature, and these give rise to the following verifiably-extractable injective OWFs:

• g(p,[1,α]1)(x) := [x, xα]1 is a OWF under the discrete logarithm assumption and
verifiably-extractable for symmetric pairings under the knowledge-of-exponent
assumption [Dam92].

• gp(x) = ([1, x, . . . , xq]1, [1, x, . . . , xq]2) is a OWF under the q-PDL assumption [Lip12]
and verifiably-extractable under the q-PKE assumption [Dan+14].

• gp(x) = ([x, x2]1, [x]2) is a OWF under a well-known variant of the discrete logarithm
assumption and verifiably-extractable under the square knowledge of exponent
assumption [Fuc18].

• gp(x) = ([x]1, [1/x]2) is a OWF under the inverse-exponent assumption [SS01] and
verifiably-extractable under the tautological assumption, which we call inverse-KE,
that it is hard to compute [x]1, [1/x]2 without knowing x.

VEGOWFs from Knowledge-Sound NIZK

Dakdouk [Dak09, Section 3.3.3.2] observed that EOWFs can be constructed from the
proof of knowledge (PoK) assumption of Lepinski [Lep02] which states that a specific
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non-interactive Σ-protocol described in [Lep02] is secure. We generalize this idea, and
show how to use knowledge-sound NIZKs to build VEGOWFs.

Suppose that R is an NP relation with a sampler SR,p that outputs (x, w), such
that (i) it is efficient to verify that (x, w) is a possible output of SR,p, and (ii) with an
overwhelming probability it is computationally hard to guess w given x. Then we say that
this relation is SR,p-hard. Such samplers (and relations) are common in cryptography,
e.g., the discrete logarithm problem (x = [x]1, w = x for a uniformly random x) and the
short integer solution problem (x = A is a random matrix and w = x is a short integer
vector such that Ax = 0).

Consider a knowledge-sound NIZK Π = (Kgen,P,V, Sim) for a SR,p-hard relation
R, where P,V, Sim are the prover, the verifier, and the simulator. Kgen is the “key”
generation algorithm, such that Kgen(R, p) produces an auxiliary input auxΠ, provided to
P,V and Sim. If the NIZK uses a random oracle, then auxΠ may contain the description
of a hash function instantiating the random oracle. If the NIZK is CRS-based, then auxΠ

contains the CRS. The following theorem shows how to construct a VEGOWF given a
knowledge-sound NIZK.

Theorem 6.4.4. Define G := {gR,p,auxΠ}R∈RGen(1λ),p←Pgen(1λ),auxΠ∈Kgen(R,p), where
gR,p,auxΠ(rS , rΠ) sets (x, w) ← SR(rS), π produced by Π’s prover P for x, w, and then
outputs (x, π). Define the corresponding relation as RGR,p,auxΠ :=

{(ŷ, ẑ) : ŷ = (x, π) ∧ ẑ = w ∧ Π.V accepts π ∧ (x, w) ∈ R} . (6.1)

If R is SR-hard and Π is zero-knowledge, then G is RG-hard. If Π is a proof of knowledge,
then G is RG-verifiably-extractable.

Proof. RG-hardness: Let B be an adversary that given ŷ = (x, π), where π is a proof
for (x, w) returns ẑ, such that RGR,p,auxΠ(ŷ, ẑ) holds with non-negligible probability. We
construct an adversary B that breaks SR-hardness. On input (R, x), B sets auxΠ ←
Kgen(R, p), runs the simulator Sim and gets a simulated proof πSim. Since Π is zero-
knowledge, B outputs the same ẑ = w (with overwhelming probability) when run on
ŷ = (x, π) and ŷ = (x, πSim). Thus, B breaks the SR,p-hardness of R with non-negligible
probability.

RG-verifiable-extractability: Clearly, one can verify that ŷ ∈ im(gR,p,auxΠ) by
checking that the NIZK verifier accepts ŷ = (x, π), i.e., Π’s verifier accepts. We use the
knowledge-soundness extractor Ext from Π to build a G extractor ExtG. Let Aext be an
algorithm that on input (R, p, auxΠ) outputs ŷ ∈ im(gR,p,auxΠ). Since ŷ ∈ im(gR,p,auxΠ),
then ŷ = (x, π) and Π’s verifier accepts. ExtG runs Ext on the same input (R, p, auxΠ) given
to Aext. By knowledge-soundness, with an overwhelming probability, the Π-extractor Ext
outputs w, such that (x, w) ∈ R. ExtG sets ẑ ← w, and succeeds with the same probability
as Ext.
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For the sake of concreteness we instantiate the above result as follows. Let Σ be
the non-interactive version (e.g., by using the Fiat-Shamir transform) of the well-known
Schnorr’s protocol for proving the knowledge of the discrete logarithm of x = [x]1. Let
the VEGOWF key be e = (R, p, auxΠ = H), where p is the system parameters (group
description). Define ge(x, r) := ([x]1, a = [r]1, z = cx + r) = ŷ, where c = H([x]1, [r]1).
The verifier recomputes c and accepts if [z]1 = cx + a and c = H(x, a). Then RGe-
verifiable-extractability holds since Σ is knowledge-sound in the random oracle model and
the algebraic group model [FPS20]. If Σ is zero-knowledge in the random oracle model
and the discrete logarithm problem is hard, ge is also RGe-hard. Moreover, Σ can be
used to get an injective VEOWF since after the extractor extracts the witness x, it can
also compute r ← z − cx.

VEGOWFs from Signature Schemes

We propose the following heuristic approach for finding new candidates for VEGOWFs.
Suppose that Σ = (Kgen, Sign,Vf) is a digital signature scheme. If an adversary outputs
(vk, σ) such that vk ∈ Kgen and Vf(vk, σ,m = 0) = 1, then there exists an extractor that
can recover (some part of) sk. In other words, we follow the intuition that if someone can
sign a message (say m = 0 for simplicity), then she must possess the secret key. Moreover,
if vk ∈ Kgen can be efficiently verified, then we might be able obtain a VEGOWF.

Remark. Note that unforgeability of a signature scheme does not require that the signer
knows the secret key. It is only important that the adversary cannot produce valid
signatures for previously unsigned messages. A stronger notion of knowledge has been
formalized by signatures of knowledge [CL06], where the signer can sign messages under
any statement x ∈ L if it knows the corresponding witness. In general this is a very
strong notion and implies, e.g., simulation-extractable NIZKs. Therefore, we will not
focus on those constructions here.

There are signature schemes which do give believable VEGOWF candidates, but there
are also cases where it clearly fails.

Negative example: RSA signatures. Let H be a hash function, sk = d be the secret
key and vk = (n, e) be a public key such that de ≡ 1 (mod n). A signature of an integer
m is then σ = H(m)d mod n, and a signature σ of a message m is valid if σe ≡ H(m)
(mod n). However, RSA signatures are also not good candidates for a VEGOWF. The
adversary could easily compute vk = (n, 3) such that H(0) mod n is a perfect cube, then
output (vk, (H(0) mod n)1/3).

Positive example: Boneh-Boyen signatures. Boneh-Boyen [BB04] is a pairing-based
signature scheme where vk = [x]2 and sk = x←$Zp and Sign(sk,m) = [1/(x + m)]1.
In fact, gp(x) = (vk, Sign(0)) = ([x]2, [1/x]1) is an asymmetric version of a VEOWF
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candidate mentioned in Section 6.4. In particular, it is verifiably-extractable under a
similar tautological assumption.

Positive example: BLS signatures. BLS [BLS04] is another pairing-based signature
scheme where vk = [x]2, sk = x←$Zp, and Sign(sk,m) = xH(m) = [σ]1 where H hashes
into G1. Verification is done by checking that [σ]1[1]2 = H(m)[x]2. This gives us a
VEOWF candidate gp(x) = ([x]2, xH(0)).

Positive example: DSA. In the DSA signature scheme,6 we again have some discrete
logarithm secure group p = (G, p, g). The verification key is vk = gx for sk = x←$Zp,
σ = Sign(sk,M ∈ {0, 1}∗; r) = (u = gr mod p, v = r−1(HK(m) + xu) mod p), and the
verifier checks that 0 < u, v < p and u = (gHK(M)vku)v−1 mod p. DSA results in a
candidate VEOWF gp,K(x, r) = (gx, gr mod p, r−1(HK(m) + xu) mod p).

Hash-and-sign lattice signatures. We recall hash-and-sign lattice-based signatures
introduced by Gentry et al. [GPV08], which relies on the hardness of the short integer
solution problem. Let p be a prime, H be a hash function, and let A ∈ Zm×np be a
randomly generated matrix. Define L⊥p (A) := {y|Ay = 0 mod p}, and let T be a basis
of L⊥p (A) with short vectors. The trapdoor can be used to compute short vectors s s.t.
As = b, for any vector b. Set vk = A and sk = T .

To sign a message m, one first computes b = H(m), then outputs a short s = σA(b)
such that As = b. A signature σ of a message m is valid if it is short and if Aσ = H(m).
However, this does not work as a VEGOWF. The adversary could easily compute s with
a nice structure (e.g., a unit vector), then choose A such that As = H(0). An easy fix
is to set b = H(A,m) to prevent choosing A after setting s. This results in a candidate
VEOWF gp(x) = (A, σA(H(A,0))), where x is a short basis of L⊥p (A).

Negative example: Lamport’s one-time signature. We briefly remind the idea of
Lamport’s signature scheme [Lam79]. Let f : X → Y be a one-way function and suppose
we want to sign n-bit messages. The secret key sk is a 2× n matrix where skb,i←$X and
the public key vk is also a 2× n matrix where vkb,i = f(skb,i). In order to sign a message
m ∈ {0, 1}n, signer reveals skmi+1,i for i = 1, ... . . . , n. That is, the signer reveals half of
the secret key that corresponds to the bit-representation of m.

However, this one does not seem to be a good candidate for a VEGOWF. An adversary
could easily compute vk that contains a valid preimage for secret keys that correspond to
Sign(0) and rest of the vk is computed obliviously, for example, by hashing into a group
in case f(x) = gx.

Schnorr’s signature. We recall the signature scheme from [Sch90]. Let HK : {0, 1}∗ →
Zp be a collision-resistant hash function with a key K and let p = (G, p, g) be a description
of a prime p order group with a generator g. We assume that the discrete logarithm
assumption holds in G. The verification key vk = gx where sk = x←$Zp and Sign(sk,M ∈

6https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
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{0, 1}∗) = (gy, z = ex+ y) = σ where e = HK(gy,M) and y←$Zp. Verification is done
by checking that gσ = (gx)e · gy. The candidate VEOWF we obtain is gp,K(x, y) =
(gx, gy, HK(gy, 0)x+ y).

Due to a well-known weakness of the Fiat-Shamir paradigm, gp,K(x, y) is insecure.
The adversary can sample gy←$G without necessarily knowing y, sample z ← Zp, and
then compute gx = (gz/gy)1/(HK(gy ,0)). Hence the verification holds by definition but the
adversary may not know x, y. We can easily fix this by instead computing HK(gx, gy, 0),
which will give the VEOWF mentioned in Section 6.4.

6.5 Sub-ZK NIZKs Based on VEGOWFs

We give a generic construction of a knowledge-sound Sub-ZK NIZK from any VEGOWF
and any knowledge-sound Sub-WI NIWI in the CRS model. We also give a generic
construction of a sound Sub-ZK NIZK from any VEGOWF, any keyless extractable
commitment and any Sub-WI NIWI in the CRS model. Later, we show some interesting
instantiations of these constructions.

Constructing Knowledge-sound Sub-ZK NIZK

Let G = {gλ : Xλ → Yλ | λ ∈ N} be a keyless VEGOWF with respect to a publicly
testable relation RG on triples (1λ, ŷ, ẑ). We construct a knowledge-sound Sub-ZK NIZK
Π by using a knowledge-sound Sub-WI NIWI Πwi and G. To prove that x ∈ L, we use
Πwi to prove that (x, ŷ) ∈ L′, where ŷ ∈ YExt is a new element in the CRS for Π, and

R′ := {(xR′ = (x, ŷ), wR′ = (w, ẑ)) : (x, w) ∈ R ∨ (ŷ, ẑ) ∈ RG}

where L = {x | ∃w : (x, w) ∈ R} and L′ = {xR′ | ∃wR′ : (xR′ , wR′) ∈ R′}. We assume that
R is generated by a relation generator RGen(1λ). The full construction of Π can be found
in Figure 6.5.

The construction yields a knowledge-sound Sub-ZK NIZK, where knowledge-soundness
follows from the RG-hardness of G and the knowledge-soundness of Πwi, and subver-
sion zero-knowledge is achieved by the RG-verifiable-extractability of G as well as the
subversion witness-indistinguishability of Πwi.

Note that if R is implemented by a circuit of size k and RG is implemented by a
circuit of size l, then the efficiency of Π is the same as the efficiency of Π′ for the modified
circuit of size k + l. Note also that l is independent of R.

Theorem 6.5.1 (Knowledge-sound Sub-WI NIWI + VEGOWF =⇒ Knowledge-sound
Sub-ZK NIZK). Let Πwi be a non-interactive argument for R′ and let G = {gλ}λ∈N be a
keyless function family with a corresponding publicly testable relation RG.
(1) If Πwi is complete then Π is complete.
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K(R)

x̂←$Xλ;
ŷ ← gλ(x̂)
crs′ ← K′(R)
crs← (crs′, ŷ)
td← t(x̂)
return (crs, td)

CV(R, crs)

parse crs = (crs′, ŷ);
if CV(R′, crs′) = 1 ∧ ŷ ∈ YExt
then return 1
else return 0

Sim(R, crs, x, td)

parse crs = (crs′, ŷ);
return P′(R′, crs′, (x, ŷ), (⊥, td))

P(R, crs, x, w)

parse crs = (crs′, ŷ)
return π ← P′(R′, crs′, (x, ŷ), (w,⊥));

V(R, crs, x, π)

parse crs = (crs′, ŷ);
return V′(R′, crs′, (x, ŷ), π)

Figure 6.5: The Sub-ZK KS NIZK Π = (K,CV,P,V, Sim), where Πwi = (K′,CV′,P′,V′) is
a Sub-WI KS argument, and G = {gλ}λ∈N is a VEGOWF. Recall that t computes the
“witness” for gλ(x̂) in RG.

B(R′, crs′; r)

x̂←$Xλ; ŷ ← gλ(x̂);
crs← (crs′, ŷ);
(x, π)← A(R, crs; r);
return ((x, ŷ), π);

C(R′, ŷ, aux; r)

crs′ ← K′(R′);
(w, ẑ)← ExtwiB (R′, crs′; r);
return ẑ;

Figure 6.6: B, C in the knowledge-soundness proof of Theorem 6.5.1.

(2) If Πwi is knowledge-sound for R′ and G is RG-hard then Π is knowledge-sound for
R.

(3) If Πwi is Sub-WI for R′ and G is RG-verifiably-extractable, then Π is Sub-ZK for
R.

(4) If Πwi is a Sub-WI SNARK and G is a VEGOWF with respect to a relation RG
which takes inputs of polynomial size, then Π is a Sub-ZK SNARK.

Proof. Completeness: Straightforward.
Knowledge Soundness: Since Πwi is knowledge-sound, for every Πwi-adversary B

there exists a knowledge-soundness extractor ExtwiB such that if B(R′, crs′; r) returns an
acceptable instance–proof pair (xR′ = (x, ŷ), π) then ExtwiB (R′, crs′; r) returns wR′ = (w, ẑ)
which satisfies (xR′ , wR′) ∈ R′ with all but negligible probability εksnd.

Since G is RG-hard, for every G-adversary C, the probability that for random x̂,
C(1λ, ŷ = gλ(x̂), aux) = ẑ such that (ŷ, ẑ) ∈ RG is bounded by some negligible εhard.

Let A be an adversary for the knowledge-soundness of Π that succeeds with probability
εA. That is, for r←$ RNDλ(A), A(R, crs; r) returns with probability εA an instance x
and proof π such that the Π-verifier V accepts but no extractor equipped with the code
and randomness of A returns w such that (x, w) ∈ R.
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We construct the two adversaries B (against the knowledge-soundness of Πwi) and
C (against the RG-hardness of G), see Figure 6.6. We denote by bad the event that
ExtwiB fails, i.e., for xR′ output by B and wR′ output by ExtwiB , (xR′ , wR′) 6∈ R′. Clearly,
B succeeds if (i) A succeeds (from which it follows that A returns (x, π) such that
V accepts (x, π) and thus V′ accepts (xR′ , π)) and (ii) bad holds, since then the Πwi-
verifier V accepts a statement for which an extractor cannot extract a witness. Thus,
Pr[B succeeds] ≥ Pr[A succeeds ∧ bad].

On the other hand, C succeeds if (i) A succeeds (i.e., A returns (x, π) such that V
accepts (x, π)) and for w returned by any ExtA, (x, w) 6∈ R, and (ii) bad does not hold
(i.e., for wR′ extracted by ExtwiB , (xR′ , wR′) ∈ R′, which means that, since (x, w) 6∈ R,
(ŷ, ẑ) ∈ RG), and therefore C has output ẑ such that (ŷ, ẑ) ∈ RG. Thus, Pr[C succeeds] ≥
Pr
[
A succeeds ∧ bad

]
. Clearly,

εA = Pr[A succeeds] = Pr[A succeeds ∧ bad] + Pr
[
A succeeds ∧ bad

]
≤ Pr[B succeeds] + Pr[C succeeds]
≤ εksnd + εhard .

Hence any adversary against the knowledge-soundness of Π has a negligible probability
of succeeding, so Π is knowledge-sound.

Sub-ZK: Let Z be any subverter that, on input (R′; rZ), creates crs = (crs′, ŷ) such
that CV(R, crs) = 1, along with some auxiliary information auxZ . We construct the
following adversary B:

B(R′; rZ)

(crs′, ŷ), auxZ ← Z(R′; rZ); return ŷ;

Since CV(R, crs) = 1, we have that ŷ ∈ YExt. Since G is RG-verifiably-extractable, there
exists an extractor ExtB such that, with overwhelming probability 1−εext, ẑ ← ExtB(R; rZ)
where (ŷ, ẑ) ∈ RG.

The extractor ExtZ for Z works as follows: Given Z, construct B as above, and
output the result of ExtB. Clearly, ExtZ succeeds precisely when ExtB does. Let bad
denote the event where extraction fails, i.e. the ẑ returned by ExtB(R; rZ) does not satisfy
(ŷ, ẑ) ∈ RG. We then have that Pr[bad] = εext.

Consider an adversary Asub-zk against the Sub-ZK property of Π. Based on Z and
Asub-zk, we construct an adversary Asub-wi which succeeds precisely when Asub-zk succeeds
and extraction is successful.
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Asub-wi(R′, rZ)

((crs′, ŷ), auxZ ; ẑ)← (Z; ExtZ)(R′, rZ);

(x, w)← Asub-zk(R′, (crs′, ŷ), auxZ)

πb ← Owi(crs′, (x, ŷ), (w,⊥), (⊥, ẑ), auxZ);

return Asub-zk(πb, auxZ);

Here Owi is the challenger of the Sub-WI game that takes a NIWI instance x along
with two witnesses w0, w1 and returns a proof πb which uses wb for a randomly sampled
b←$ {0, 1}.
Asub-wi succeeds in the Sub-WI game when both i) (⊥, ẑ) is a valid witness (this

happens precisely when ExtZ succeeds, i.e. when bad holds) and ii) it distinguishes
(P′(R′, crs′, (x, ŷ), (w,⊥)), auxZ) and (P′(R′, crs′, (x, ŷ), (⊥, ẑ)), auxZ). By the definition of
P and Sim, these distributions equal (P(R, crs, x, w), auxZ) and (Sim(R, crs, ẑ, x), auxZ),
respectively. Thus Asub-wi succeeds when both bad holds and Asub-zk succeeds, so
Pr[Asub-wi succeeds] ≥ Pr[Asub-zk succeeds ∧ bad].

Let εsub-wi be the maximal advantage any adversary has in breaking Sub-WI of Πwi.
Then

Pr[Asub-zk succeeds] = Pr[Asub-zk succeeds ∧ bad] + Pr[Asub-zk succeeds ∧ bad]
≤ Pr[bad] + Pr[Asub-wi succeeds]
≤ εext + εsub-wi

Note that while computational (respectively, statistical) Sub-WI implies computational
(respectively, statistical) Sub-ZK, perfect Sub-WI implies perfect Sub-ZK only if there is
no chance of extraction failure for the VEGOWF, otherwise we get statistical Sub-ZK.

Sub-ZK SNARK: Suppose Πwi is succinct for R′, then there is some polynomial
poly and some c < 1 such that the size of any proof πwi from Πwi is bounded by
poly(λ) · (|(x, ŷ)|+ |(w, ẑ)|)c = poly(λ) · (|x|+ |w|+ |ŷ|+ |ẑ|)c ≤ poly′′ · (λ)(|x|+ |w|)c, for
some polynomial poly′′ since |ŷ| , |ẑ| are bounded by a polynomial. Since any proof in
Π′ for (x, w) ∈ R is a proof in Πwi for ((x, ŷ), (w, ẑ)) ∈ R′, this shows that any proof in
Π′ is succinct. The remaining properties of being a Sub-ZK SNARK have been proved
above.

Constructing Sub-ZK NIZK

Next, we propose a Sub-ZK NIZK Π which only relies on Πwi being sound, not knowledge-
sound, but Π will also not be knowledge-sound. As part of this construction, we rely
on a keyless extractable commitment scheme. We now give the definition of a keyless
extractable commitment scheme, and in Section 6.B we show how this can be constructed
based on injective EOWFs.
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Definition 6.5.2. We say that comλ : Mλ×Rλ → Cλ is a keyless extractable commitment
if it satisfies the following properties.

Computational hiding: For any PPT adversary A, ε0 ≈λ ε1, where

εb := Pr
(m1,m2)← A(1λ), r←$Rλ, c← comλ(mb; r) :
m1,m2 ∈Mλ ∧ A(c) = 1

 .

Perfect binding: For any adversary A and λ ∈ N,

Pr
(m1, r1,m2, r2)← A(1λ) :
comλ(m1; r1) = comλ(m2; r2) ∧m1 6= m2

 = 0 .

Non-black-box extractability: Let D be a family {Dλ}λ of efficiently sampleable
distributions. We say that comλ : Mλ×Rλ → Cλ is non-black-box extractable with
respect to auxiliary distribution D if for any PPT adversary A, there exists a PPT
extractor ExtA such that,

Pr
aux←$Dλ, c← A(1λ, aux),m← ExtA(1λ, aux),
c ∈ im(comλ) : c = comλ(m; r) for some r ∈ Rλ;

 ≥ 1− negl(λ) .

In some cases, we may have an efficient commitment verification function ComVλ

that outputs 1 on input c if and only if c ∈ im(comλ).

Let G = {gλ}λ∈N be a function family with associated relation RG. Let C =
(com,Open,Vf) be an extractable commitment scheme. Let Πwi be a NIWI argument for
the relation R′ =

{
((x, c, ŷ), (w, ẑ, r̂)) : ((x, w) ∈ R) ∨ (c = com(ẑ; r̂) ∧ (ŷ, ẑ) ∈ RG)

}
.

R′ =
{

((x, c, ŷ), (w, ẑ, r̂)) : ((x, w) ∈ R) ∨ (c = com(ẑ; r̂) ∧ (ŷ, ẑ) ∈ RG)
}
.

We set crs = (crs′, ŷ), where crs′ is the CRS of the underlying NIWI Πwi for R′ and crs
is the CRS of the NIZK for R. The argument consists of the commitment c and the
Πwi-argument π; see Figure 6.7.

Theorem 6.5.3 (Sub-WI NIWI + VEGOWF + ExtCom =⇒ Sub-ZK NIZK). Let Πwi

be a non-interactive argument, C be a commitment scheme, and G be a function family
with associated publicly testable relation RG.
(1) If Πwi is perfectly complete then Π is perfectly complete.
(2) If Πwi is sound, C is keyless and extractable, and G is RG-hard then Π is sound.
(3) If Πwi is Sub-WI, G is RG-verifiably-extractable, and C is keyless and hiding, then

Π is Sub-ZK.

Proof. Perfect completeness: obvious.
Soundness: Consider an adversaryA against the soundness of Π, which gets as input a

relationR as well as an honestly computed CRS crs, and outputs (x, π) such that x 6∈ L but
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K(R)

x̂←$Xλ;
ŷ ← gλ(x̂);
crs′ ← K′(R′);
crs← (crs′, ŷ);
td← t(x̂);
return (crs, td);

CV(R, crs)

parse crs = (crs′, ŷ);
if CV′(R′, crs′) = 1 ∧ y ∈ YExt;

then return 1
else return 0

Sim(R, crs, td = ẑ, x)

parse crs = (crs′, ŷ);
r←$ RNDλ(com);
c← com(ẑ; r);
π′ ← P(R′, crs′, (x, c, ŷ), (⊥, ẑ, r));
return π ← (c, π′)

P(R, crs, x, w)

parse crs = (crs′, ŷ);
r ← RNDλ(com);
c← com(xλ; r) where xλ←$Xλ;
π′ ← P′(R′, crs′, (x, c, ŷ), (w, xλ, r));
return π ← (c, π′);

V(R, crs, x, π)

parse π = (c, π′);
parse crs = (crs′, ŷ);
return V′(R′, crs′, (x, c, ŷ), π′);

Figure 6.7: The Sub-ZK NIZK Π = (K,CV,P,V, Sim), where Πwi = (K′,CV′,P′,V′) is a
Sub-WI NIWI, C is an extractable commitment scheme, and G = {gλ}λ∈N is a GEOWF.

Asnd(R′, crs′)

x̂←$Xλ; ŷ ← gλ(x̂);
crs← (crs′, ŷ);
(x, (c, π′))← A(R, crs);
return ((x, c, ŷ), π′);

C(R, crs)

(x, (c, π))← A(R, crs);
return c;

Ahard(R′, ŷ)

crs′ ← K(R′);
crs← (crs′, ŷ);
ẑ ← ExtC(R, crs);
return ẑ;

Figure 6.8: Asnd, C, Ahard in the soundness proof of Theorem 6.5.3.

π is accepted by the verifier V. This means that V(R, crs, x, π) = V′(R′, crs′, (x, c, ŷ), π′)
returns 1. We use A to construct two adversaries, one against the soundness of Πwi

and one against the RG-hardness of G, see Figure 6.8. Let in denote the event that
(x, c, ŷ) ∈ L′. Let ext denote the event that ExtC succeeds in extraction.

Note that, if A succeeds in breaking the soundness of Π by returning (x, (c, π′)) such
that (x, c, ŷ) 6∈ L′, then Asnd succeeds in breaking the soundness of Πwi. Therefore
Pr[A succeeds ∧ in] ≤ Pr[Asnd succeeds].

We also see that, if A succeeds in breaking the soundness of Π by returning (x, (c, π′))
such that (x, c, ŷ) ∈ L′ and the extractor ExtC is successful, then Ahard succeeds in
breaking the RG-hardness of G. Hence Pr[A succeeds ∧ in ∧ ext] ≤ Pr[Ahard succeeds].

We have that

Pr[A succeeds] ≤ Pr[A succeeds ∧ in] + Pr[A succeeds ∧ in ∧ ext] + Pr[ext]
≤ Pr[Asnd succeeds] + Pr[Ahard succeeds] + Pr[ext]

By the soundness of Π, the RG-hardness of G and the extractability of C, respectively,
we have thatPr[Asnd succeeds], Pr[Ahard succeeds] and Pr[ext] are all negligible. Hence
Pr[A succeeds] is negligible so Π is sound.
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Sub-ZK: Let Z(R; rZ) be a subverter that outputs crs = (crs′, ŷ) accepted by CV, as
well as some auxiliary information auxZ . We first construct a PPT algorithm A(R; rZ)
which invokes Z(R; rZ), obtains crs, and then outputs ŷ. Since CV(crs) = 1, A outputs
a value in YExt. Since G is RG-extractable, there exists an extractor ExtA(R; rZ) that
extracts ẑ such that RG(ŷ, ẑ) = 1 with overwhelming probability 1− εext. This ẑ is given
to the simulator Sim, which acts as described in Figure 6.7.

Let A be a PPT adversary which, on input R, crs, ẑ and auxZ , outputs (x, w) ∈ R.
We prove that A cannot distinguish between an honest proof generated with w and a
simulated proof using ẑ by providing a sequence of indistinguishable games. Let rSim and
rP be the randomness used by Sim and P, respectively, and let r be some independent
randomness. Let xλ be a random element of Xλ. Let εsw be the maximal probability of
breaking Sub-WI of Πwi = (K′,CV′,P′,V′), and let εhide be the maximal probability of
breaking the hiding property of C (see Definition 6.5.2). By the Sub-WI property of Πwi

and the hiding property of C, εsw and εhide are negligible.
Game 1: This is the output of the simulator Sim in the Sub-ZK game:

(cSim,P′(R′, crs′, (x, cSim, ŷ), (⊥, ẑ, rSim)), aux).
Game 2: We change the witness used by the prover P′ to use an actual witness for x,
and output (cSim,P′(R′, crs′, (x, cSim, ŷ), (w, xλ, r)), aux). Because Πwi is Sub-WI, this is
distinguishable from Game 1 with probability at most εsw.
Game 3: We now replace cSim with cP in Game 2 and output

(cP,P′(R′, crs′, (x, cP, ŷ), (w, xλ, r)), aux). By the hiding property of C, this is distinguish-
able from Game 2 with probability at most εhide.
Game 4: We now simply switch from using randomness r in the witness, to using
randomness rP, which gives us the output of the honest prover in the Sub-ZK game:
(cP,P′(R′, crs′, (x, cP, ŷ), (w, xλ, rP)), aux). By the Sub-WI property of Πwi, this is distin-
guishable from Game 3 with probability at most εsw.

Hence Game 1 and Game 4, which are the simulator and prover’s output in the
Sub-ZK game, respectively, are distinguishable with probability at most 2εsw + εhide

which is negligible, hence Π is Sub-ZK.

Instantiations and Statistical ZAPR

We show some interesting instantiations of the above construction and also make a simple,
but significant, connection between Sub-ZK NIZK and ZAPs with private random coin
(ZAPRs).

Firstly, we argue that there is a knowledge-sound Sub-ZK NIZK based on the DLin
and DH-KE assumptions. To the best of our knowledge, the only known knowledge-sound
Sub-ZK NIZKs are Sub-ZK SNARKs. Our construction therefore relies arguably on
weaker assumptions.
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Proposition 6.5.4. There exists a knowledge-sound Sub-ZK NIZK based on the DLin
and DH-KE assumptions with 3 group elements as the CRS and with a proof size of
Oλ(k + l) where k is the circuit size and l is size of a circuit verifying the image of the
DH-KE GEOWF.

Proof. In [FO18] it is proven that there exists a knowledge-sound NIWI in the plain
model based on the DLin and DH-KE assumptions. Since it has no CRS, it is also
Sub-WI. From Section 6.4, there exists a VEGOWF based on the DH-KE and discrete
logarithm (DL) assumptions (note that DLIN implies DL). We now apply our construc-
tion in Figure 6.5 using the knowledge-sound NIWI from [FO18] and the VEGOWF
from Section 6.4. It then follows from Theorem 6.5.1 that the resulting protocol is a
knowledge-sound Sub-ZK NIZK.

Let us next prove a helpful lemma that shows when NIWI is Sub-WI. The corollary
follows since perfect zero knowledge implies perfect WI.

Lemma 6.5.5. Suppose Ψ is perfectly WI for relation R and there exists an efficient
CRS validation algorithm CV. Then Ψ is Sub-WI.

Proof. Definition 6.3.9 for perfect WI states that for all honestly generated CRS crs (i.e.,
CRS in the image of K(R)), instances x, and corresponding witnesses w0, w1, no unbounded
adversary can distinguish a proof generated using either (crs, x, w0) or (crs, x, w1). Note
that if a subverter can create a valid crs such that A breaks Sub-WI with probability at
least ε > 0, the same A can break WI with probability at least ε/(|crs|+ |auxZ |) > 0 by
simply guessing crs and auxZ . Hence assuming perfect WI, verifying that a subverter-
generated CRS crs is in fact in the image of K(R) is enough to assure that perfect
subversion WI holds.

Corollary 6.5.6. If Ψ is perfectly zero-knowledge and there exist an efficient CRS valida-
tion algorithm, then Ψ is Sub-WI.

Therefore, the efficient SNARK constructions in [Abd+17; Fuc18], the updatable
SNARKs in [Gro+18; Mal+19], and the shuffle argument in [Agg+20] are all Sub-WI.
The same observation about Sub-ZK SNARKs was already made by Fuchsbauer in[Fuc18].
These arguments have a CRS validation algorithm and were already known to be Sub-ZK
under a knowledge assumption. However, the above result shows that they are perfect
Sub-WI without any assumptions. Moreover, any NIWI without a CRS is trivially
Sub-WI.

Firstly, it means that [Abd+17; Fuc18] are statistical ZAPRs with adaptive soundness.
The only other pairing-based ZAPR is [LVW20] which is less efficient and uses much
more advanced tools, but relies on weaker assumptions for soundness. Secondly, if we
use the SNARKs of [Abd+17; Fuc18] in Figure 6.5, we have Sub-ZK SNARKs from any
VEGOWF rather than from a specific knowledge assumption.
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Proposition 6.5.7. Suppose there exists a perfectly zero-knowledge SNARK with an
efficient CRS validation algorithm CV and there exists a VEGOWF. Then there exists a
Sub-ZK SNARK.

Proof. Since the given SNARK Π is perfectly ZK and has a CV algorithm, it follows from
Corollary 6.5.6 that it is perfectly Sub-WI. Applying our construction in Section 6.5 to
Π and the VEGOWF G to construct a new SNARK Π′, it then follows from part (4)
of Theorem 6.5.1 that Π′ is a Sub-ZK SNARK, as desired.

6.6 Characterising Sub-ZK NIZKs

We show that the CRS generation algorithm K of a NIZK is a VEOWF if and only if the
NIZK is Sub-ZK. Let RGen be a relation generator, and let Π = (K,P,V, Sim) be a NIZK
argument for RGen. We define a family of functions
GK =

{
KR,p : {td} → {crs} | (R, p) ∈ RGen(1λ), λ ∈ N

}
where KR,p takes in a uniformly

sampled trapdoor td and maps it deterministically to a crs. We assume that the distri-
bution (crs, td)← Kgen(R, p) is the same as (crs← KR,p(td), td←$ {td}). We use both
notations interchangeably in this section.

Let us start by establishing the following straightforward connection.

Theorem 6.6.1 (VEOWF GK =⇒ Sub-ZK). Suppose Π = (K,P,V, Sim) is a perfect
NIZK argument. If GK is a VEOWF with image verification algorithm ImV, then Π is
statistically composable Sub-ZK with respect to the CRS verification algorithm CV = ImV.

Proof. Consider a subverter Z which outputs a CRS crs. We only need to consider
the case where CV(crs) = 1 and thus crs ∈ im(KR,p). Since KR,p is a VEOWF and the
subverter Z outputs an image of KR,p, we know that there exists an extractor ExtZ
which with overwhelming probability outputs a simulation trapdoor td. Since Π is perfect
zero-knowledge, proofs π0 ← Sim(R, p, td, crs, x) and π1 ← P(R, p, crs, x, w) are identically
distributed.

Remark. The same result does not hold for statistical (or computational) NIZK since
there might be a negligible number of CRSs where td does not allow simulation, which
the subverter could output.

Following [Gro16], we say that the relation generator RGen has a εS-hard decisional
problem if there exist two samplers S and S ′ such that for (R, p)← RGen(1λ) (1) sampler
S(R, p) produces (x, w) ∈ R, and (2) S ′(R, p) produces x 6∈ LR. Furthermore, for
some negligible εS , it holds for all PPT adversaries A that |ε0 − ε1| ≤ εS , where εb =
Pr
[
(R, p)← RGen(1λ), (x0, w0)← S(R, p), x1 ← S ′(R, p) : A(R, p, xb) = 1

]
.
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A simple example of this is the language of Diffie-Hellman tuples where p = (G, g, p)←
RGen(1λ) is a group description, S outputs (x = (gx, gy, gxy), w = (x, y)) for random
x, y←$Zp, and S ′ outputs gx, gy, gz for random x, y←$Zp and z←$Zp \ {xy}.

Now let us establish the opposite connection between VEOWF and Sub-ZK. In general,
the extractor in subversion zero-knowledge definition does not need to extract the whole
preimage of the CRS function. It just needs to extract something which allows for
simulation of proofs. For example, this could be only a small part of the full trapdoor.
Due to this, we restrict ourselves slightly and lend the following notion from [Abd+20b].

Definition 6.6.2 (Trapdoor-Extractability [Abd+20b]). A subversion-resistant argument
Ψ for a relation RGen has trapdoor-extractability if for any PPT subverter Z there exists
a PPT extractor ExtZ , s.t. for all λ and (R, p) ∈ RGen(1λ),

Pr
r←$ RNDλ(Z), crs← Z(R, p; r), td← ExtZ(R, p; r) :
CV(R, p, crs) = 1 ∧ KR,p(td) 6= crs

 ≤ negl(λ) .

Theorem 6.6.3 (Sub-ZK =⇒ VEOWF GK). Assume Π is a NIZK argument for RGen,
which has εS-hard decisional problems. Let GK be as defined above. Assume the distribution
Dλ is benign. Then

1. if (i) Π = (K,P,V, Sim) is perfectly complete, computationally sound, and computa-
tionally zero-knowledge, and (ii) KR,p is injective, then GK is a one-way function;

2. if Π = (K,P,V, Sim,CV) is a statistically composable Sub-ZK argument with trapdoor
extractability, then GK is verifiably-extractable with GK.ImV = Π.CV respect to
auxiliary inputs (R, p, r) where (R, p)← RGen(1λ), r←$ {0, 1}poly(λ).

Proof. Soundness + ZK =⇒ One-Wayness. Suppose there exists a PPT adversary
A that breaks one-wayness of GK with probability εowf . That is, for a random (R, p)←
KeySampG(1λ), td←$ {td}, aux←$Dλ, the A(R, p, crs = KR,p(td), aux) outputs td′ such
that KR,p(td′) = crs with probability εowf .

We are going to construct a PPT adversary B that internally runs A together with
an auxiliary input aux. We build the soundness adversary B as follows:

1. B gets (R, p, crs) as an input;
2. B samples aux′←$Dλ and computes td′ ← A(R, p, crs, aux′);
3. B outputs x such that x ← S ′(R, p) (i.e. x 6∈ LR) along with a simulated proof
π ← Sim(R, p, crs, td′, x).

Since x 6∈ LR by definition, it means that B wins the soundness game if V(R, p, crs, x, π) =
1. We use games in Figure 6.9 to quantify the probability that V(R, p, crs, x, π) = 1 in
the soundness game.
Game 0: This is the original soundness game without the condition x 6∈ LR with the
adversary B inlined. The winning condition is just V(R, p, crs, x, π) = 1.
Game 1: We change Game 0 such that B samples a true statement-witness pair (x, w)←
S(R, p) instead.
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Game 0:

(R, p)← RGen(1λ);
(crs, td)← K(R, p); aux′←$Dλ;
td′ ← A(R, p, crs, aux′);
x← S ′(R, p);
π ← Sim(R, p, crs, td′, x);
return V(R, p, crs, x, π);

Game 1:

(R, p)← RGen(1λ);
(crs, td)← K(R, p); aux′←$Dλ;
td′ ← A(R, p, crs, aux′);
(x, w)← S(R, p);
π ← Sim(R, p, crs, td′, x);
return V(R, p, crs, x, π);

Game 2:

(R, p)← RGen(1λ);
(crs, td)← K(R, p); aux′←$Dλ;
td′ ← A(R, p, crs, aux′);
(x, w)← S(R, p);
π ← Sim(R, p, crs, td , x);
return V(R, p, crs, x, π);

Game 3:

(R, p)← RGen(1λ);
(crs, td)← K(R, p); aux′←$Dλ;
td′ ← A(R, p, crs, aux′);
(x, w)← S(R, p);
π ← P(R, p, crs, x, w);
return V(R, p, crs, x, π);

Figure 6.9: Security games for Theorem 6.6.3.

Game 2: We modify Game 1 such that the simulator gets the real trapdoor td as an
input rather than the trapdoor td′ extracted by A.
Game 3: Finally, instead of simulating the proof π, we use the witness w to create an
honest proof.

Let us denote the probability of Game i outputting 1 by εi. Firstly, it is clear that
ε0 is the probability of B winning (that is, outputting 1) in the soundness game since,
although, we do not check the condition x 6∈ LR, it always holds for the adversary B. We
now prove that distinguishing Game 0 and Game 1 succeeds with probability at most εS .

Lemma 6.6.4. For the probabilities ε0 and ε1 defined as above, |ε0 − ε1| ≤ εS .

Proof. Consider the following adversary C against the εS-hardness. Firstly, C gets as an
input (R, p, xb) where x1 is generated by S and x0 is generated by S ′. Then, C samples
(crs, td)← K(R, p) and aux′←$Dλ, computes td′ ← A(R, p, crs, aux′), and simulates the
proof π ← Sim(R, p, crs, td′, x). It returns the answer of V(R, p, crs, x, π).

By construction, the probability that C outputs 1 given x0 is ε0 and given x1 is ε1. It
thus follows that |ε0 − ε1| ≤ εS .

Lemma 6.6.5. Assuming that KR,p is injective, |ε1 − ε2| ≤ 1− εowf .

Proof. The only difference between Game 1 and Game 2 is that one uses td′ for simulation
and the other uses td. If A is successful in breaking one-wayness, then td = td′ (since
KR,p is injective) and output distributions of both games are the same. That happens
with probability εowf . Outputs distributions of games can differ only when A fails in
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breaking one-wayness, which happens at most with the probability 1− εowf . We conclude
that |ε1 − ε2| ≤ 1− εowf .

The final game transition is based on the zero-knowledge property.

Lemma 6.6.6. Let εzk denote the maximum advantage that any PPT adversary wins in
the zero-knowledge game. Then, |ε2 − ε3| ≤ εzk.

Proof. Consider the verifier V as the adversary in the zero-knowledge game. From
this perspective Game 2 is the zero-knowledge game with the simulator and Game
3 is the zero-knowledge game with the honest prover given that we ignore the line
td′ ← A(R, p, crs, aux). It follows that |ε2 − ε3| ≤ εzk.

Using the triangle inequality, we now get that |ε0−ε3| ≤ εS+(1−εowf )+εzk. Since the
argument system is perfectly complete, ε3 = 1 and therefore |ε0 − ε3| = |ε0 − 1| = 1− ε0.
Putting equations together, we get 1− ε0 ≤ εS + (1− εowf ) + εzk, which can be simplified
to εowf ≤ ε0 + εS + εzk, which is negligible.

Sub-ZK =⇒ verifiable-extractability. This part of the proof is essentially
tautological. Let A be an adversary in the verifiable extractability game and let aux =
(R, p, r) where (R, p) ← RGen(1λ) and r←$ {0, 1}poly(λ). Suppose that A is Sub-ZK
subverter that outputs crs such that CV(R, p, crs) = 1. Then according to the trapdoor
extractability property, there exists a PPT extractor ExtA that on input aux, outputs with
an overwhelming td such that KR,p(td) = crs. Thus, verifiable extractability holds.
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6.A Universal Delegation for Deterministic
Computations

The following definition is taken from [Bit+16].
Let LU be the universal language consisting of all tuples (M,x, t), such that machineM

accepts x within time t. Let LU (T ) be the set of all pairs (M,x), such that (M,x, T ) ∈ LU .
Let T (λ) ∈ (2ω(log λ), 2poly(λ)) be a computable superpolynomial function. A universal

delegation system for DTIME(T ) consists of three algorithms (K,P,V), where

• The probabilistic generator K, given 1λ, outputs a CRS crsDS and corresponding
verification state τ . K is independent of any statement, proven later.

• The honest prover P(crsDS;M,x) produces a certificate π that (M,x) ∈ LU(T ).

• The verifier V(crsDS, τ ;M,x; π) verifies the validity of (M,x) ∈ LU(T ).

A universal delegation system (K,P,V) for DTIME(T ) is secure if it satisfies the
following conditions:

Perfect completeness: for any λ, (M,x) ∈ Lu(T (λ)), (crsDS, τ) ← K(1λ), π ←
P(crsDS;M,x), it holds that V(crsDS, τ ;M,x; π) = 1.

Adaptive soundness for a bounded number of statements: there is a polynomial
b, such that for any poly-size P∗, and any set of at most 2b(λ) false statements
S ⊆ {0, 1}poly(λ) \ LU(T (λ)),

Pr
(crsDS, τ)← K(1λ), (M,x, π)← P∗(crsDS) s.t. (M,x) ∈ S :
V(crsDS, τ ;M,x; π) = 1

 ≤ negl(λ) .

Efficiency: there exists a polynomial p, such that for every λ, t ≤ T (λ), and (M,x) ∈
LU(t),

• K runs in time p(λ),

• V runs in time p(λ+ |M |+ |x|),

• P runs in time p(λ+ |M |+ |x|+ t).

The scheme is publicly verifiable if soundness is maintained when the malicious prover
is also given the verification state τ . In this case, we will assume that τ appears in the
clear in the reference string crsDS.

For example, [KPY19] is a delegation scheme based on falsifiable assumptions.
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comλ(b) // b ∈ {0, 1}

r←$ {0, 1}2`;
return (g′λ(r), B(r)⊕ b)

ComVλ(c)

parse c = (ŷ, b̂);
return ŷ ∈ im(g′λ) ∧ b̂ ∈ {0, 1}

Figure 6.10: Keyless extractable bit commitment.

6.B Keyless Non-Black-Box Extractable
Commitments

Inspired by Canetti and Dakdouk [CD09], we show how to construct a non-interactive
keyless extractable commitment from an injective (verifiably-)extractable keyless OWF gλ.
Clearly, black-box extraction is impossible since there is no secret key for the extractor
to use. Thus, we consider a non-black-box extractability definition where the extractor
can depend on the adversary.

Let us observe that an EOWF is essentially a trapdoor function where the trapdoor is
the adversary’s code and the auxiliary input is aux. There are well-known constructions
for obtaining public key encryption from any trapdoor function and a hard-core predicate.
We are going to use a similar approach to obtain a keyless extractable commitment from
a (verifiably-)extractable OWF and a hard-core predicate. In particular, if the EOWF is
verifiable, then the commitment will have an efficient verification algorithm ComVλ. We
recall the definition of a hard-core predicate of a one-way function.

Definition 6.B.1. We say that an OWF g : X → Y has a hard-core predicate B : X →
{0, 1}, if for any PPT adversary A, ε0 ≈λ ε1, where

εb := Pr[r←$X, u0 = B(r), u1←$ {0, 1} : A(g(r), ub) = 1] .

Let gλ : {0, 1}` → {0, 1}`′ be a verifiably-extractable injective OWF. (See Section 6.4
for examples of such functions.) Using the Goldreich–Levin construction [GL89], we can
obtain a verifiably-extractable OWF g′λ with a hard-core predicate B. The Goldreich–
Levin construction defines g′λ(x, y) := (gλ(x), y) where |x| = |y| = ` and B(x, y) =∑`
i=1 xi · yi mod 2. Note that g′λ is still a verifiably-extractable OWF since x can be

extracted from gλ(x) and y is public. We use g′λ and B to construct a simple non-black-box
extractable bit commitment scheme that is shown in Figure 6.10.

Theorem 6.B.2. The bit commitment scheme in Figure 6.10 has the following properties:
1. If g′λ is injective, then it is perfectly binding.
2. If g′λ is an OWF and B is its hard-core predicate, then g′λ is computationally hiding.
3. If g′λ is verifiably-extractable with respect to an auxiliary distribution D and injective,

then it is non-black-box extractable with respect to the same distribution.
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Proof. Perfect Binding: Suppose an adversary outputs two valid openings (r1, b1) and
(r2, b2) to the same commitment, i.e., (g′λ(r1);B(r1)⊕ b1) = (g′λ(r2);B(r2)⊕ b2). Since g′λ
is injective, then g′λ(r1) = g′λ(r2) implies r1 = r2. Then B(r1) = B(r2) so b1 = b2.

Computational hiding: LetA be a PPT adversary that tries to break computational
hiding. Suppose A outputs messages m0,m1 ∈ {0, 1}. Let εi denote the probability that
A wins in Game i.
Game 0: This is the original computational hiding game where c = com(m0; r) =

(g′λ(r);m0 ⊕ B(r)) for r←$ {0, 1}2`.
Game 1: Now instead of using B(r), we sample a random bit u←$ {0, 1} and compute
the commitment as c = (g′λ(r);m0 ⊕ u). Clearly, |ε0 − ε1| ≤ εhc where εhc denotes the
advantage a PPT adversary has in distinguishing B(r) from a uniform bit.
Game 2: We change the previous game and commit to m1 instead, that is, c =

(g′λ(r);m1 ⊕ u). Since u is uniformly random, we have that ε1 = ε2.
Game 3: We change c back to a real commitment, i.e., c = (g′λ(r);m1 ⊕ B(r)). Clearly
again, |ε2 − ε3| ≤ εhc.

Using the triangle inequality, we get that the advantage A has in breaking computa-
tional hiding is bounded by 2εhc ≈λ 0.

Non-black-box extractability: Let A(1λ, aux) be a PPT adversary that outputs
a commitment c = (ŷ, b̂) such that ComVλ(c) = 1. Then ŷ ∈ im(g′λ) and b̂ ∈ {0, 1}.
According to the definition of verifiable-extractability, there exists an extractor Extg′λ

A

that given A’s auxiliary input aux, outputs r such that ŷ = g′λ(r) with overwhelming
probability. Thus we can construct an extractor ExtA(1λ, aux) that runs Extg′λ

A (1λ, aux)
to recover a unique r, then returns b̂ ⊕ B(r). Extractor ExtA succeeds with the same
probability as Extg′λ

A .

Remark. Note that if we have the usual notion of extractability, then ComVλ might be
inefficient.

The bit commitment scheme above can be extended to arbitrary-length messages by
simply committing to each bit of the message. However, this would be very inefficient.
Instead of the hard-core predicate B one can use a hard-core function f , i.e., a function
which produces t hard-core bits and thus allows to commit to messages of length t.
Goldreich and Levin proposed the following construction. Let gλ : {0, 1}` → {0, 1}`′ be
a one-way function, then so is g∗λ(x, y) := (g(x), y) where |y| = ` + t(`) − 1 and t :=
t(`) := min{`, c · dlog2 `e} for any constant c > 0. In general, then t(`) = Olog2 `. They
define the hard-core function as f(x, y) := (b1, . . . , bt) where bi = B(x, (yi, . . . , yi+`−1)) =∑`
j=1 xjyi+j−1 mod 2. The construction of the multi-bit commitment scheme is given

in Figure 6.11. The security proof is similar to the bit commitment case.

Theorem 6.B.3. The commitment scheme in Figure 6.11 has the following properties:
1. If g∗λ is injective, then it is perfectly binding.
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com(m) // m ∈ {0, 1}tk

parse m = m1‖ . . . ‖mk // mi ∈ {0, 1}t;
for i = 1, . . . , k : ri←$ {0, 1}2`+t−1;
ci = (g∗λ(ri), f(ri)⊕mi);

return (c1, . . . , ck);

ComV(c)

parse c = (c1, . . . , ck)
for i ∈ [1, k]

parse ci = (ŷi, ŝi);
if ŷi 6∈ im(g∗λ) ∨ ŝi 6∈ {0, 1}t then

return 0 else return 1

Figure 6.11: Keyless extractable commitment for bit strings.

2. If g∗λ is a OWF and f is its hard-core function, then it is computationally hiding.
3. If g∗λ is verifiably-extractable respect to an auxiliary distribution D and injective,

then it is non-black-box extractable respect to the same distribution

6.C ABLZ EOWF

We recall that the ABLZ EOWF (based on [Abd+17]) is defined as gp(x) := ([x]1, [x]2),
where p is an asymmetric bilinear group (esp. we assume that ([1]1, [1]2) ∈ p), and we
recall the definitions of the SDL and BDH-KE assumptions.

The one-way property of the ABLZ EOWF relies on the Symmetric Discrete Logarithm
(SDL) [Bic+10] assumption which holds relative to Pgen, if for any PPT A,

Pr
[
p← Pgen(1λ); x←$Zp : A(p, [x]1, [x]2) = x

]
≤ negl(λ) .

The BDH-KE assumption [Abd+17] states that for any PPT adversary A, there
exists a PPT extractor ExtA, such that

Pr
p← Pgen(1λ); r ← RNDλ(A); ([a]1, [a′]2)← A(p; r);
a′′ ← ExtA(p; r) : [a]1 • [1]2 = [1]1 • [a′]2 ∧ a 6= a′′

 ≤ negl(λ) .

Lemma 6.C.1. Let G = {gp}p←Pgen(1λ),λ∈N be the ABLZ EOWF. The family G is a
VEOWF.

Proof. One-wayness: Assume that B is an adversary that given ([x]1, [x]2), for a random
x←$Zp, outputs x with non-negligible probability. Then B breaks the SDL assumption.

Verifiable-extractability with respect to aux of length b(λ): Let Ave be an
adversary that breaks verifiable-extractability with some probability upper-bounded by
εve. We use security of the BDH-KE assumption to show that εve is negligible. Let εbdh
be the upper-bound for any PPT adversary Abdh (that does not take any advice) to break
the BDH-KE assumption. That is, an extractor Extbdh(p) fails with probability at most
εbdh. Assume Abdh proceeds as follows.

First it samples the auxiliary input aux ← Dλ then runs Ave(p, aux) and gets ([x]1, [x]2)
which it outputs. Since with probability εve no extractor can reveal x we get that εbdh ≥ εve.
Since εve is non-negligible, εbdh is also non-negligible.
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Remark (Securing BDH-KE assumption against malicious aux). The limiting restriction
on the adversary’s auxiliary input can be lifted if we assume that it is set prior to
the choice of the groups generators. That is, first the adversary gets its advice, then
the generators are picked. Intuitively, in this setting no auxiliary input could given
an advantage in breaking the assumption, even if A gets ga ∈ G1,ha ∈ G2. Since the
parameters are fixed afterwards and group generators are picked randomly we have
[1]1 = gα, [1]2 = hβ, for some random α, β; furthermore ga = [a/α]1 and ha = [a/β]2.
Thus with overwhelming probability, [a/α]1 • [1]2 6= [1]1 • [a/β]2.

Note that the generic (bilinear) group model (G(B)GM) allows for such a setup. As
proposed by Maurer in [Mau05], in G(B)GM an adversary A is given access to an oracle
O that performs group operations on behalf of A, who does not see any information
about the structure nor binary representation of group elements at all. That is, the
only information A gets about the group elements is in which cells of memory of O the
group elements are stored. Unfortunately, in real life assuming that the adversary knows
nothing about (say) a group generator before the protocol starts may be unreasonable.

From ABLZ to a more general class of functions. In general, one can replace the
ABLZ function G with any similar function from integers to group elements, where one
can argue in the generic group model extractability, and where one can efficiently verify
whether some element belongs to the image of G or not. In the pairing-based setting,
similar functions have been studied in say [Ben+15] (in the context of generating SNARK
CRSs by using MPC; however, here extractability is not needed) and [Abd+17] (in the
context of Sub-ZK SNARKs).

One can have G = {ge}λ from the following class BDHClass of function families, where
xi are secret trapdoors and e = p. Here, we require that

ge(x) = ([%(x) : % ∈ R]1, [σ(x) : σ ∈ S]2, [τ(x) : τ ∈ T ]T )

for three sets of polynomials R, S, T from Zp[X], such that

(i) Xi ∈ R ∩ S for each i,

(ii) If f(X) ∈ R ∪ S ∪ T has degree d > 0, then there exist polynomials %, σ of degree
< d, such that f(X) = %(X)σ(X) and %(X) ∈ R, σ(X) ∈ S.

Here, Item i guarantees that one can use the BDH-KE assumption for extractability,
and Item ii guarantees verifiability. One can replace Item i with some other bootstrapping
requirement if one wishes to use a different knowledge assumption. Most generally, one
can omit Item i and rely on a tautological knowledge assumption (that then has to be
proven secure in the generic group model).
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