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i

Abstract.

English:

This thesis explores common techniques and theory behind side channel attacks
and side channel analysis. First we look at some popular forms of attacks and
ways to calculate the success rate of these attacks. Specifically we establish a
mathematical model for what leakage is, and what the attack scenario is in side
channel attacks, namely the distinguisher function. Then two specific distin-
guisher functions are explored, one based on maximum likelihood, and one based
on correlation. This is first done in a first order setting, and then expanded to
higher orders, where in the leakage model there are several leakage points for each
input stemming from a masked implementation of the cryptographic algorithm.
Next a side channel attack attribute called the confusion coefficient is explored,
which enables the study of how vulnerable a specific cryptographic algorithm is
to side channel attacks. Lastly, two ways to estimate the success-rates of differ-
ent types of attacks are explored, one based on the statistical distribution of the
attack, and one based on Monte Carlo simulation.

Norsk:

Denne masteroppgaven utforsker teori og teknikker innenfor side-kanals-angrep
og side-kanals-analyse. Først definerer vi den matematiske modellen for lekkasje,
og hva angrep-scenarioet er i side-kanals-angrep i form av skille-funksjonen. Deretter
blir to typer skille-funksjoner definert, en basert p̊a maksimal sannsynlighet og
en basert p̊a korrelasjon. Dette blir først gjort i en endimensjonal scenario og
deretter ekspandert til en flerdimensjonal scenario hvor man antar at lekkas-
jen kommer fra en maskert kryptografisk implementasjon. Deretter defineres
kollisjons-koeffisienten, som gjør at man kan relatere kryptografiske algoritmer til
hvor s̊arbare de er til side-kanals-angep. Til slutt blir m̊ater å estimere suksess-
raten til forskjellige typer angrep beskrevet.
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CHAPTER 1

Introduction

In this thesis we are going to explore theory and techniques within theoretical side
channel analysis(SCA). Side channel analysis involves both cryptographic theory
and the study of physical hardware, who’s respective communities use different
terms, and have different intuition on what security terms and attack scenarios
are present. This means it will be useful to establish what setting we are in, and
what we mean by different terms to minimize confusion from different readers.
Hence the introduction into side channel analysis (3) will be somewhat long as to
give a proper explanation of the basics that go into side channel analysis. The goal
of this thesis is to give an overview of some of the theory in side channel analysis,
especially methods to estimate the success-rate of side channel attacks.

For clarity the notation is first described in Chapter (2). As there are a lot of
statistical distribution calculations in the thesis we also go through some statis-
tical results, specifically ways to help calculate the expectation and covariance of
random variables.

In cryptographic research, especially provable cryptography, the goal is to show
equivalences of cryptographic algorithms to known hard problems. In SCA we
have a different goal altogether in that we study how vulnerable a cryptographic
algorithm run on a computer chip is to key recovery [14]. Key recovery being the
task of finding the correct key used in a cryptographic algorithm out of all keys.
Hence one can think of side channel analysis as a measuring how vulnerable a
cryptosystem is to a more direct chip measuring attack.

The attributes that side channel attacks exploit to recover keys are that there are
dependencies between what a computer chip calculates to measurable attributes
of that chip. The mainly used ones being its power draw and electromagnetic
radiation [16]. The attributes of the computer chip that are useful for key recovery
are called side channels, and they generate leakage.

Side channel analysis attempts to study side channel attacks in a theoretical
setting [9]. As side channel attacks are practical attacks where one does real
life measurements one has to make assumption about how these measurements
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2 1. INTRODUCTION

behave. Hence we need a model of leakage that is able to predict what kind of
leakage one will probably see for given inputs. However by having a model we
have to make some assumption about how the real world behaves [4]. Hence we
are also making simplifications, this can create some doubt of how closely the
real world side channel vulnerability is captured.

In the general leakage model we assume that the chip the cryptographic algo-
rithm is run on calculates some intermediate value of the cryptographic algo-
rithm. This intermediate variable is dependent on the secret key used and the
plaintext. When measuring the chip we assume we receive a noisy function of
this intermediate variable [14]. What the noise, the leakage function, and model
function are depends on the cryptosystem and measuring method in the specific
case. When we have specified the functions the important aspect is that one can
make predictions of what the leakage will look like for given input. In other words
we can hopefully predict what the leakage will look like for given input.

This prediction ability is the essential part of defining a distinguisher. Namely
that we use statistical methods to give a score to each key-guess by estimating
the probability of measuring some leakage, given plaintext input. In this thesis
we go through two different types of distinguishers. One that uses the correlation
coefficient (4) to score keys, and one where we have a profile associated with the
leakage and then uses a maximum likelihood technique (5).

As side channel attacks exploit the fact that the secret key is handled on a
psychical chip, one effective countermeasure is to obfuscate that handling, in
other works never handle the intermediate value in the open on the chip. This is
done with masking [9]. Intuitively masking is to split up the intermediate value
in such a way that one can do calculation on those parts and get back the original
value with a calculation applied. This is explained further in Section (6.1), and
results in a different leakage model.

The distinguishers in the general leakage model do not take the cryptographic
algorithm into account, as we just calculate on the output of the intermediate
calculation. This means that we do not take the attributes of the intermediate
calculation into account. In Chapter (6), a new view of analysing side channel
attacks is introduced. Namely one that takes the cryptographic algorithm, in
other words the properties of the intermediate calculation, into account [5]. The
confusion coefficient is defined and shown how it relates to side channel attacks.
Then both the correlation and a maximum likelihood distinguishers are looked at
again, but now in a confusion coefficient perspective. In order to do the distribu-
tion calculation in terms of the confusion coefficient some addition calculations
have to be done.
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The reason for examining the distinguishers of side channel attacks in a theoretical
setting is in order to calculate their success-rate. Namely, is it possible to give a
good estimation of how probable a side channel attacker is to recover the correct
key, given a number of measurements and the accuracy, i.e the noise parameters
of those measurements. This thesis introduces two main ways on estimating this
success rate. One is by generating model measurements and doing the attack
and seeing wither the key is recovered or not (2). The other is by relating the
distinguisher’s distribution, that we will calculate in the distinguisher chapters,
to the probability of the correct key being the highest scoring key-guess(1).





CHAPTER 2

Preliminaries

1. Notation

In this section we go through the notation conventions that is used in the the-
sis.

By bold x, we mean a vector x = (xi)i = (x1, x2, . . . , xn) with length n and
index xi to denote the i-th element. Similarly by big bold letter X, we mean a
matrix

X =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
... · · ·

...
xm,1 xm,2 · · · xm,n

 ,
in this case we have a (m,n)-dimensional matrix, though in the thesis this is
specifies for each case. For element xi,j of the matrix we write Xi,j . Expanding
on this to get a row, or a column of a matrix we write a dash, for example to
denote the first row we write X1,−.

For a (n × n)- square matrix X, Tr(X) :=
∑n
i=1 Ai,i. It is called the Trace of

matrix A.

We will often work with function from sets to sets, for example f : S → S ′, which
denotes a function f from set S to set S ′. Sometimes we also work with vectors
with elements from a set, then the space will be denoted as Sn for n copies of
S.

2. Statistical results

The main results of this thesis involves probability distributions. Therefore defin-
ing some basic definitions and results is useful. These results can be found in
most basic statistics books, for example Larsen et al. [8].

Definition 2.1. By X ∼ N (µ, σ2) we mean a random variable X with the the
univariate Gaussian distribution with mean µ and variance σ2.

5



6 2. PRELIMINARIES

Definition 2.2. By X ∼ N (µ,Σ) we mean a random variable X with the
multivariate Gaussian distribution with mean vector µ and covariance matrix Σ.

In this paper there will be many distribution calculations, hence it will be useful
to have some distributions results to make the calculation simpler. For samples
x = (x1, x2, . . . , xn) from a distribution X we write the estimated mean as x =
1
n

∑n
i=1 xi.

Lemma 2.3. For random variables X1, X2, . . . , Xn, we have that if they are in-
dependent then

E[X1X2 . . . Xn] = E[X1]E[X2] . . .E[Xn]

Lemma 2.4. For a random variable X we have that Var[X] = E[X2]− E[X]2

Lemma 2.5. For two random variables X and Y we have that Cov[X,Y ] =
E[XY ]− E[X]E[Y ]

Lemma 2.6. Adding a constant c or k to the variance of a random variable X
or to the covariance of two random variables X and Y does not change it, more
formally:

Var[X + c] = Var[X]

Cov[X + c, Y + k] = Cov[X,Y ]

Lemma 2.7 (Bilinearity of covariance). For random variables X1, X2, X3 we have
that:

Cov[X1 +X2, X3] = Cov[X1, X3] + Cov[X2, X3]

Corollary 2.8. For random variables X1, X2, X3, X4 we can write:

Cov[X1 +X2, X3 +X4] = Cov[X1, X3]+Cov[X1, X4]+Cov[X2, X3]+Cov[X3, X4]

For some of the distribution calculation we need to calculate the expectation
of the multivariate Gaussian variables. The Isserlis theorem [6] simplifies these
calculations:

Theorem 2.9 (Isserlis theorem). For a multivariate Gaussian distribution
X1, X2, . . . , Xn with zero mean, i.e that E[X1, X2, . . . , Xn] = (0, 0, . . . , 0) the
expectation of the product is:

E[X1X2 . . . Xn] =
∑
p∈P 2

n

∏
{i,j}∈p

E[XiXj ]

Where p denotes all perfect pairings, which is what are summed over.
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Corollary 2.10 (Isserlis theorem for odd cases). For a multivariate Gauss-
ian distribution X1, X2, . . . , Xn with zero mean, i.e that E[X1, X2, . . . , Xn] =
(0, 0, . . . , 0), and n is a odd number, the expectation is:

E[X1X2 . . . Xn] = 0

Some of our results are based on the Monte Carlo simulation, hence it is useful
to know what it is in general to see how we use it.

Definition 2.11 (The Monte Carlo simulation). Also called Gaussian simulation,
Monte Carlo Simulation is a method for estimating probabilities by simulating
experiments. The idea behind it is that if one performs an experiment under the
same conditions many times, one can estimate the probabilities of the experiment.
This method works as an alternative to calculating the probability distribution
which might require a lot of work.

An example of Monte Carlo simulation is a model of a coin-toss. We have a
computer program that uniformly randomly picks either 0 or 1, simulating the 2
sides of the coin. Then one does the ”coin-toss” many times, and calculates the
average of getting a 1. With enough samples this should become 0.5 and hence we
have simulated the probability. This example is quite simple so it would be easier
to just calculate the probability.In this thesis however, some of the distribution
calculations will be quite complicated, so to calculate the distributions we will
make some simplification assumptions. Hence it is useful to use Monte Carlo
simulation results as a baseline.





CHAPTER 3

What is side channel analysis?

When we study cryptographic systems we usually think of the cryptographic al-
gorithm as a black box. This means that we only consider the plaintext, the
related ciphertext, and the knowledge about the algorithm run. In side channel
analysis(SCA) we use the fact that cryptographic algorithms are run on com-
puter chips. This enables us to look at additional attributes of the encryp-
tion/decryption process. Namely we exploit the fact that a computer chip has,
among other attributes, a varied power draw, and electromagnetic radiation de-
pending on what is calculated.

These are the main types of attributes of what we will call the side channels
of the cryptographic implementation. We will utilize the dependency between
the secret key of a cryptographic algorithm and these side channels in order to
recover that key. In this way we are not only in a different model than a usual
cryptographer, but we also have a different goal. Instead of showing indistin-
guishably attributes of the algorithm, we here attempt to recover the actual key
used in encryption/decryption.

In order to get an overview of what is involved in a side channel attack we will
take a closer look at the different aspect of such attacks. Namely we will describe
what the goal of an attack is, what physical properties we exploit in the attack,
and how we model these physical properties. With these three concepts described
we can then define a general attack method.

1. The goal of side channel attacks

A cryptographic algorithm encrypts and decrypts something using a secret. With-
out having this secret the encrypted information should be difficult to reveal. It
should also be difficult to find this secret by looking at the input, called the plain-
text, and the output, called the ciphertext. If somebody gets access to the secret
they can encrypt and decrypt as they want. So if the secret key is possible to find
the implementation is compromised and naturally no longer secure either.

9



10 3. WHAT IS SIDE CHANNEL ANALYSIS?

In side channel analysis secrets like these are what we are trying to recover. They
usually take the from of some kind of secret key, like a bit-string. When we analyse
cryptosystems we usually think of either an encryption or decryption algorithm
that inputs a plaintext or a ciphertext and outputs the other. In side channel
analysis we look at a general cryptographic algorithm, lets call this Ek, where
k ∈ KFK is the secret key. Here KFK is the entire keyspace of the cryptosystem.
The information we are given (either the plaintext or the ciphertext) is given as
x ∈ X , in its related(either plaintext or ciphertext space), y ∈ Y is defined the
same way. More visually this can be seen as:

Ek(x) (y)

Definition 3.1. Key recovery is the goal to retrieve the key used in some cryp-
tographic process. More specifically given some information related to Ek, the
goal is to return k, the key used, out of the set of keys K = {k1, k2, ...kNk

}, where
Nk is the number of different possible key candidates.

The reason we specified above that KFK is the full keyspace is that we will
usually work in a different smaller keyspace. What we want to end up with is a
method to score likely key-guesses in order to recover the correct one. A naive
attempt may be to try to score the full key, however one quickly realizes that
this is usually infeasible. If we want to make any algorithm that needs to do a
calculation on every key option in order to find a likely key candidate, then we
might as well check if those key-guesses decrypt/encrypt correctly. Hence we will
look at specific guessable parts of keys, where the search space is much smaller
and our search can be worthwhile. We will call these sub-keys the guessable part
of the key denoted k ∈ K. Where K is the keyspace of the guessable parts, and
a part of KFK .

By guessable part we mean the part of the key we are making an attempt to
recover using side channel techniques, for now we can think of it as a part of
the full key. By looking at guessable parts of the key, we can make a method to
recover the full key piece-wise, recovering the parts one by one. Checking that
the guessable keys are correctly recovered is problematic, but for the full key we
can usually check that we have the correct key with a couple of known plain-
text ciphertext pairs and then check if the recovered full key encrypts/decrypts
correctly.

Example 3.2. Throughout this thesis we will use AES-128 as the example cryp-
tosystem for side channel analysis. Hence it can be useful to define what a
key looks like in this setting. The full key is 128-bits, hence the name. If we
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were to attempt to score the full key we would have to score 2128 different key
candidates, which is infeasible. However during encryption and decryption the
algorithm splits the key up into 8-bit round keys for the S-box permutation. In
the case of AES-128 the guessable part of the key will thus be the 8-bit round
key, which only has 256 key candidates. These round keys can be thought of as
a number between 0 and 255. Hence the a successful guessable key recovery is
one where we can find the round key k used in one S-box permutation. The for
a successful recovery of the full key, one has to do this for all the different round
keys.

The goal of side channel attacks is hence to recover the key of a cryptographic
algorithm. Side channel attacks are not unique in this goal, though the method
it goes about recovering these keys is what gives this attack method the name
side channel.

2. Defining side channels

The essential part of side channel analysis is the study of the physical properties
of the chip that the cryptographic algorithms are run on. We will call the parts
of these physical properties that are useful for key recovery side channels. In full
generality these side channels could be based on the timing of occurrences [2] or
on the information that was on the chip before.

In this setting we are investigating the subset of side channels where it is directly
dependent on the input of the algorithm. These side channels give out information
about what is going on in the cryptographic algorithm, in other words they leak
information. Hence we define leakage in this setting as all unintended information
the physical device that calculates the cryptographic algorithm exposes. We can
go back to the cryptosystem diagram to make this clearer:

Ek(x) (y)

(l)

The setting is still the same with an cryptographic algorithm E with a guessable
secret key k that we want to recover. In addition we have a side channel, denoted
by the squiggly arrow, and this side channel generates some leakage l for each
input of the algorithm. We have not yet assigned any properties for how this
side channel arrow behaves, but we will see that the addition information can be
used to recover the secret key k used in the algorithm. The general idea is that
for different secret keys k the resulting leakage l will behave differently.
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The diagram is supposed to represent a side channel scenario in an abstract set-
ting, but a side channel attack is an attack based on collecting data of the chip
the algorithm in run on. Hence it can be useful to also look at an example of a
real side channel attack, and what attributes it uses. Side channels in many cases
takes the form of the power consumption, or the electromagnetic radiation coming
from the chip of a cryptographic device. Hence in these cases the leakage is the
measured current and the measured electromagnetic radiation respectively. All
electronic devices has a power consumption and radiate electromagnetic fields,
and this consumption and radiation also fluctuate depending on what is hap-
pening in the chip. How these things fluctuate indicates what calculations are
happening within the chip, and is what side channel attacks exploit [14].

The assumption that is made in side channel analysis is that that leakage is depen-
dent on the guessable secret key used in the cryptographic algorithm, and hence
it is possible to use statistical attacks to estimate likely keys candidates.

Example 3.3. Power consumption

Depending on what a computer chip does it uses different amounts of power. A
good intuitive understanding of how an attackers can exploit this can be gained
from looking at the power trace of RSA. In RSA encryption and decryption one
can use the square and multiply method to calculate a big exponent quickly. This
gives the implementation a weakness in the side channel setting, namely that for
a computer chip multiplying requires more energy than squaring[7]. Hence by
just looking at the power trace of an RSA decryption in Figure 1, one can read
out where the algorithm has squared and multiplied and in that way easily find
the secret key used.

Example 3.4. AES-128

Now that we have a concept of what leakage can take the form as, we can look
at it in the context of AES-128. As before we are in the setting of the S-box
permutation and the round key. From Ors et al. [11], we have that this S-box
permutation is an operation where one can reliably measure the power consump-
tion on the chip. In the terms of this thesis that means that it generates leakage.
Hence we can attempt to recover the different round keys, where there are only
256 key candidates.

3. Modelling leakage

Now that we have gotten an impression of what leakage is physically we need
a way to model it mathematically in order to use it for a side channel attack.
Specifically we need a leakage model that can predict how leakage would probably



3. MODELLING LEAKAGE 13

Figure 1. The Figure from Kocher et al. [7], shows the power
consumption over time from a RSA encryption round. Due to the
difference in power consumption for multiplication and squaring,
one can easily determine what the secret key is in binary form.
This is indicated by the binary number above the power trace.

look for a cryptographic algorithm, given some input and key. In order to do that
we need to make certain assumptions on how what is happening within a side
channel and how leakage is related to the input.

As described before we are in the setting of a general cryptographic algorithm
Ek where k is the secret key. Looking at Ek(x) −→ y from a leakage perspective,
what we receive as leakage information is a function of what happens during the
computation. In other words we can think of it as an intermediate calculation
that we assume is dependent on the input x and the guessable part of the secret
key k.

Definition 3.5. An intermediate value function is a function ϕ : X × K −→ S
that takes in a plaintext or ciphertext and a guessable key value and returns an
intermediate value s also called the signal.

What the specific intermediate value function is depends on what cryptographic
algorithm we are attacking. The set S is the space of the intermediate calcu-
lations, and is what we assume we would see if we had a perfect view of the
intermediate calculation on the chip where the algorithm is processed. The in-
termediate calculation is deterministic when we know the (x, k) pair of ϕ(x, k).
However when we look at the intermediate value in a leakage setting we do not
know the correct key k. This means that we will considered it as a random vari-
able over S when scoring the different keys, as we cannot determine what the
intermediate calculation value will be, only based on the input of (x) without
knowing k.
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In the real world we need to measure the intermediate value on a physical device.
As a result of the physical measuring we do not have a perfect view of the inter-
mediate calculation, it first has to be processed through the side channel, and the
way we measure it might be different from the intermediate calculation. Hence
the leakage stemming from the intermediate calculation will be some model of
that intermediate calculation.

Definition 3.6. A leakage model is a function f : S → L, from the set of
intermediate values to the leakage set.

What this leakage model function is defined as is dependent on what kind of
side channel we are exploiting. When measuring the power draw or electromag-
netic radiation of a chip one usually models it as the hamming weight of the
intermediate value. Although this does not necessarily reflect real life measure-
ments completely, it is common for the side channel literature, and useful for the
purpose of this thesis where we estimate success-rates.

Example 3.7 (Power consumption of load operations). A smart card is a credit
card sized integrated circuit often used for identification. It is usually a simple
circuit which also leads the power consumption of it to be highly related to what
is happening on the data bus. Depending on the data that is loaded different
amounts of voltage is used. Hence the more bits that change for the when loading
something into memory a higher voltage is used, and this enables us to relate the
hamming weight of what is loaded to the power consumption.

In order to show this Messerges et al. [10] measured the power consumption used
by an 8-bit smart-card, when loading different data from the memory onto the
bus. One can see this difference in Figure 2. This fact leads to the reason that the
Hamming weight is often used as the leakage model in Side Channel literature.
Although according to Costes and Stam [4], it was only the load operation where
the hamming weight model was proper to use.

In addition to the side channel transforming the intermediate calculation, the
actual measurement is not perfect either, there will be some noise i.e errors in-
volved in the leakage we record. In this sense we will look at leakage l ∈ L plus
some noise, instead of only the leakage itself. To express this l we assume that we
measure the leakage model function of the intermediate value with some normally
distributed noise. This is called the Gaussian assumption of side channel analysis.
Hence l is the addition of two random variables, namely l(x, k) = f(ϕ(x, k)) +n.
In this assumption n is a sample of a random variable and denotes the noise of
the side channel. This noise is assumed to be independent from the model values
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Figure 2. In the Figure taken from Messerges et al. [10]
one can see the difference in power consumption between the number of

bit-transition the 8-bit smartcard. This enables us to relate load operation to
the hamming weight, the transition distance is about 6.5 mV.

and has distribution N (0,Σ). The function ϕ as mentioned is the specific inter-
mediate calculation that takes in an input x and a key k, and returns a signal
s ∈ S. We have now described more attributes of how the side channel setting
looks like, the differences can be seen in the figure below:

Ek(x) (y)

(l)

s = ϕ(x, k)(x)

(l) = f(s) + n

Ek (y)

The essential part of modelling leakage is that we have a way of estimating how
the leakage of the same input x will look under different secret keys k. By having
such a model this enables us to have an estimation of what leakage should look
like with a given key and input x.

4. Defining a distinguisher

The basis of the success of side channel attacks is the assumption that the leakage
is dependent on the secret key used in the calculation. So how do we use this
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dependence in order to get at the key. There are only a limited number of
guessable keys, and with the dependence between the leakage and the input we
can create a function called a distinguisher.

Definition 3.8. A distinguisher is an algorithm D : Xn × Ln → R|K|.

The algorithm D inputs the known values x = (xi)i with the corresponding leak-
age (li)i and outputs distinguishing scores (d1, d2, ..., dNk

). In an actual attack
the leakage vector l = (li)i is coming from an implementation of some crypto-
graphic algorithm Ek. The index di indicates the key-guess i among the number
of all guessable keys Nk = |K|. In other words a score for each possible key based
on the input and resulting leakage. For k ∈ K we can write a single key score
as dk. Hence a distinguisher takes in the input vector x, and the corresponding
leakage vector l, and returns a vector of real numbers each corresponding to the
score of that key. We will see that the intermediate value function is essential
to create distinguishers as they enable us to predict what leakage we would get
based on the input and key-guess. Then we can compare the output of the model
to the actual leakage we have measured, and attempt to give find what key was
probably used in the actual measurements.

Definition 3.9. For a distinguisher D with input x and leakage l generated with
key k∗ one can express a successful attack as when

k∗ = arg max
k∈K

dk.

This means that the highest scoring key given the input (xi)i and the leakage
(li)i is the correct one. We also want to express the probability of success, this
can be written as the probability of the correct key being the biggest one for
distinguisher D given input and leakage. More formally we write this as

SuccDx,k∗ = P

[
(li ← L(ϕ(k∗, xi)))i;d← D(x, l) : k∗ = arg max

k∈K
dk

]
.

This might not be completely sufficient to describe the success probabilities of
an side channel attack though. We could image a case where the correct key is
not the biggest dk but in the top hundred. For an attacker it is still quite simple
to check a big number of high scoring keys to see if the correct one is there.
To remedy this we introduce the concept of o-th order success, in other words
the chance of the correct key guess being the o-th highest distinguisher score
or higher. We will therefore denote arg max-ok∈K dk as the set of the o biggest
key-scores. Hence we can write the probability of an o-th order success as

Succ-oDx,k∗ = P

[
k∗ ∈ arg max-o

k∈K
dk

∣∣∣∣(li ← L(ϕ(k∗, xi)))i;d← D(x, l)

]
.
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A distinguisher gives a score to each key-guess, however it is not strictly the
size of these scores that are essential. What we care about is the order of those
scores, hence if two distinguishers have different scores but keeps the same order,
in the view of side channel analysis they are equivalent, this gives rise to the
definition:

Definition 3.10. Two distinguishers d and ḋ are considered equivalent if the
order of the key-guess scores are the same for the same input, and we denote it
as d ≡ ḋ.

If two distinguishers are equivalent and one is simpler or faster to calculate than
the other, we will naturally prefer the faster one. Simpler equivalent distinguish-
ers will also be useful when calculating success rates.

As we have seen, a distinguisher takes in the plaintext x and its corresponding
trace l in order to score the keys, it would however be useful to have a distin-
guisher that can score on a trace by trace basis and then just add the scores
together. This is the specification of an additive distinguisher:

Definition 3.11. A distinguisher d is called additive if given plaintext (x1, x2, ...xN )

we can express the key scoring dk = 1
N

∑N
i=1 gxi,k(li) for each trace li and for

family of functions gxi,k : L → R; (x, k) ∈ X ×K

In this definition of an additive distinguisher we are given the full plaintext vector,
however to get a scoring where we only use each plaintext leakage pair by itself
we need a slightly different definition:

Definition 3.12. A distinguisher d is called properly additive if we can express

the key scoring dk = 1
N

∑N
i=1 gk(xi, li) for each plaintext, trace pair xi, li and for

family of functions gk : L → R; k ∈ K

5. Relating the distribution of leakage to distinguishers

In Section 3 the statistical model for leakage was introduced. Here the leak-
age is assumed to be a function of a intermediate variable with Gaussian noise.
Hence there is a distribution associated to the leakage. Due to the fact that
distinguishers has this leakage as input, it is also possible to calculate a related
distribution to a distinguisher. This is particularly useful as it is possible to re-
late the score of the correct key to a probability. This probability will be one
of the way to calculate the success rates of distinguishers. But in order to do
this the distribution of the distinguisher is needed. For additive and properly
additive distinguisher it will therefore be useful to relate the distribution of the
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distinguisher to the distribution of the family of function gxi,k(li) that adds up
to the distinguisher.

Proposition 3.13. The distribution of an additive distinguisher

(dk)k∈K =
(

1
N

∑N
i=1 gxi,k(li)

)
k∈K

satisfies

E[dk] =
1

N

N∑
i=1

E[gxi,k(xi)],(1)

Cov[dk1 , dk2 ] =
1

N2

N∑
i=1

Cov[gxi,k1(xi), gxi,k1(xi)].(2)

for every k, k1, k2 ∈ K.

Proof. The expectation is easy to see as E[X1+X2+. . .+Xm] = E[X1]+E[X2]+
. . .+ E[Xm], hence the expectation of the distinguishers is just the average of the
expectation gxi,k(xi) for each trace as described.

In order to calculate the covariance we have to use the assumptions that all the
samples are mutually independent. Hence

Cov[dk1 , dk2 ] = Cov[
1

N

N∑
i=1

gxi,k1(li),
1

N

N∑
i=1

gxi,k1(li)]

=
1

N2
Cov[

N∑
i=1

gxi,k1(li),

N∑
i=1

gxi,k1(li)]

Since we assumed all the samples are independent the covariance is only non-zero

when it is the same sample, hence we can write it as 1
N2

∑N
i=1 Cov[gxi,k1(li), gxi,k1(li)],

which is what we wanted. �

6. Countermeasures against side channel attacks

Since side channel attacks are an efficient form of attack, there has been many
proposals for how to protect implementations from such attacks. Most of the early
countermeasures were more ad-hoc, and therefore also not difficult to circumvent
[3]. However one countermeasure that has remained a good method to prevent
side channel attacks, is the use of masking. In a masked implementation of a
cryptographic algorithm the intermediate value s = ϕ(x, k) is never handled in
the open but split into several shares. We can write the relationship between
these shares and the actual value as s0 ⊕ s2 ⊕ ...⊕ sd = s for some operation ⊕.
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We will often consider the case of Boolean masking so it could be useful with an
example of how this looks like:

Example 3.14. Boolean Masking

In Boolean masking ⊕ is defined to be the XOR operation, we pick d−1 random
shares in the correct size as the value we want to mask. In the case of the AES-
128 leakage model this is a byte. Hence we pick d−1 random bytes s0, s1, ..., sd−1

then calculate:

s⊕ s0 ⊕ s1, ...⊕ sd−1 = sd

As indicated the result of this calculation will be the final share. One can see that
this satisfies the purpose of a masking technique, namely that we can recover the
original s by XOR-ing all the shares:

s0 ⊕ s1 ⊕ ...⊕ sd−1 ⊕ sd = s

In this context we can see that masking is basically a different word for of secret
sharing [15], but in this setting the goal is not to distribute a secret between
several parties, but to obfuscate the handling of the cryptographic algorithm on
the chip.

The hope for masking is that it will require more measurements to reach the same
success rate in a masked implementation as opposed to a standard implementa-
tion. In [3] and [12], they discuss the general security of a masked implemen-
tation compared to a standard one. They show that a masked implementation
of a cryptographic algorithm requires exponentially many more leakage measure-
ments, where the exponent is the number of masks, to reach the same success
rate. Using masking has several consequences for how we model leakage. So
we will not only need to change the model, but also how the distinguishers is
defined.

6.1. Modelling leakage in a masked implementation. Masking makes
key-recovery more difficult as the behaviour of the leakage is more complex,
and the intermediate value s = ϕ(x, k) is never handled in the open. In this
section we will use the leakage model of Lomné et al. [9] adapted into this
paper’s notation. The leakage setting is similar as before as we also have a
leakage vector l with traces, but these traces are no longer just a single value
but vectors in their own right. This can be written as l = (l1, l2, ..., lN ), where
li = (li,1, li,2, ..., li,d), and d is the masking order, i.e the number of masks or
shares that’s in the implementation. This means that for each plaintext xi we
have an associated leakage vector li and not just a value. Due to this fact we will
call a masked cryptographic implementation, a higher order model, and a non
masked implementation a first-order model.
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Higher order leakage models are, similarly to first-order leakage models, also
assumed to be related to some intermediate calculation ϕ, however since we are
in a higher order setting the intermediate value is now a vector of length d,
hence ϕ(x, k) = s = (s0, s1, ..., sd) ∈ Sd+1, where S is the space of intermediate
calculation for each share. The intermediate calculation function could also be
described on each single share, but for the sake of simplicity it can be described
as outputting the intermediate calculation of each share.

Similarly as in the unmasked case, it is assumed that what is measured as leakage
is a noisy function of this intermediate calculation. This noise is assumed to be
Gaussian for each mask/share measurement, and is as before called the Gaussian
assumption. A visual representation of the masked leakage model can be seen in
the figure below:

(s0, s1, ..., sd) = ϕ(x, k)(x)

(l0) = f0(s0) + n0,

Ek (y)

..., (li) = fi(si) + ni, ... , (ld) = fd(sd) + nd

There is also the need to make an assumption about the relationship between
the different leakage measurements of the shares. For the masking technique we
constructed them in a way such that all the masks are mutually independent.
This is also assumed for the leakage measurements, namely that one mask as
a random variable li is mutually independent from the other shares lj . This is
called the independent noise assumptions from Lomné et al. [9].

A distinguisher can still be defined in the same way as before, but the actual
distinguisher method needs to be changed in order to account for li being a vector
and not just a value. We will go further into detail on how these higher order
distinguishers work in chapter 4 and 5. Now that there is two different leakage
scenarios there will also be two different success-rate estimations. Namely one
for the unmasked first order setting, and one for the masked higher order setting.
Here one can also estimate how a masked implementation changes the success
rate and hopefully requires more traces to reach the same success-rate.



CHAPTER 4

A correlation based distinguisher

We introduced the notion of distinguishers in the last chapter, and now we will
go further by defining specific ones, namely a correlation based distinguisher.
As in the theoretic introduction of distinguishers these will take in all plaintext
and leakage/trace pairs and give a score to each key-guess, if the highest scoring
key-guess is the correct one we consider it an successful attack.

Correlation, also called differential, based distinguishers exploit the assumption
that the leakage is correlated to some function of the plaintext. We will do
a key dependent transformation of the plaintext, then calculate a correlation
coefficient between this transformed plaintext vector and the trace vector. The
most common correlation coefficient that is used is the Pearson coefficient, and
is also claimed to be the most efficient [1]. The basic technique for the different
coefficient types are however not very different. The general formula for Pearson
coefficient for vectors (v,w) can we written as:

ρ(v,w) :=
Cov[v,w]

σvσw

Where σw and σv are the standard deviation of w and v respectively.

1. Constructing an unmasked first order correlation distinguisher

In this scenario we assume we are given plaintext vector x = (x0, x1, ..., xN ) and
accompanying leakage vector l = (l0, l1, ..., lN ). When constructing the distin-
guisher and calculating the distribution we follow the theory from Rivain in [14].
We cannot directly calculate the correlation between these two vectors, so we
need a key dependent model function m : X ×K → R with m(x, k) being linearly
related to the theoretical leakage L(ϕ(x, k)). In order to calculate the correla-
tion we calculate m(x, k) = (m(x0, k),m(x1, k), ...,m(xN , k)) for key-guess k then
calculate the correlation ρ(m(x, k), l). In other words, for each key-guess we use
that key’s model function, then look at the correlation coefficient. After having
calculated all these, we find the key-guess with the maximum correlation and use

21
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this as our guess for the correct key. More rigorously for plaintext and traces
(x, l), a key-guess will look like

ρk(x, l) =

1
N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)(
li − 1

N

N∑
j=1

lj

)
√√√√ 1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2
√√√√ 1

N

N∑
i=1

(
li − 1

N

N∑
j=1

lj

)2
.

In addition to making a model specific correlation calculation there is also the
need to estimate the standard deviation of the modelled leakage and the actual
leakage. So instead of the theoretical σm(x,k) and σl, it is estimated by the usual
standard deviation estimation. Now we can properly define the CPA distinguisher
vector d by calculating the correlation coefficient for each key-guess, i.e dcorr =
(ρ0(x, l), ρ1(x, l), ..., ρNk

(x, l)). Here Nk denotes the total number of guessable
keys.

From the calculation of the correlation we can see that we need all traces l for each
trace score, hence it is neither additive or properly additive. Note however that
in the formula for ρ, the standard deviation leakage vector is not an essential part
of the different key-guesses k, as it is constant for all the different key-guesses.
This enables us to define a different distinguisher that does not involve the need
for all traces when calculating the score for one plaintext trace pair. Hence we
disregard the standard deviation of the leakage vector which results in a new
distinguisher,

ρ̇k(x, l) =
1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
li√√√√ 1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2
=

1

N

N∑
i=1

g(xi,k)(li).

We can see that ρ̇ is additive, as we can define it as the average of all the trace
scores g(xi,k)(li). It is still not properly additive as we have to calculate the

average mk = 1
N

∑N
j=1 m(xj , k), for scoring each plaintext, leakage pair (xi, li),

and here we need the full plaintext vector. We will now show that ρ ≡ ρ̇, i.e that
the two distinguishers are rank equivalent. To clean up the calculation somewhat
we will denote the average of the model vector and leakage vector as mk and l
respectively. If they were not rank equivalent it would not be interesting to look
at ρ̇ by itself. One way to show that two distinguishers are rank equivalent it to
show that ρ̇

ρ = c, where c is a constant.

Lemma 4.1. ρ ≡ ρ̇
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Proof.

ρ̇k(x, l)

ρk(x, l)
=

1
N

N∑
i=1

(
m(xi, k)−mk

)
li√

1
N

N∑
i=1

(m(xi, k)−mk)
2

√
1
N

N∑
i=1

(m(xi, k)−mk)
2

√
1
N

N∑
i=1

(
li − l

)2
1
N

N∑
i=1

(m(xi, k)−mk)
(
li − l

)

=

1
N

N∑
i=1

((
m(xi, k)−mk

)
li

)√
1
N

N∑
i=1

(
li − l

)2
1
N

N∑
i=1

(m(xi, k)−mk) (li − l)

=

√√√√ 1

N

N∑
i=1

(
li − l

)2 N∑
i=1

(
m(xi, k)−mk

)
li

N∑
i=1

((m(xi, k)−mk) li)−
N∑
i=1

(m(xi, k)−mk) l)

=

√√√√ 1

N

N∑
i=1

(
li − l

)2
= σl

The jump to the last line is due to the fact that

N∑
i=1

(
(m(xi, k)−mk) l

)
= l

N∑
i=1

(m(xi, k)−mk) =

l

(
N∑
i=1

(m(xi, k))−Nmk

)
= l

(
N∑
i=1

(m(xi, k))−
N∑
i=1

(m(xi, k))

)
= 0.

�

Hence we have that ρ̇
ρ = σl, the standard deviation the traces, which is constant

for all key-guesses. This means that the order of the key-scores will be the same
in ρ and ρ̇, so ρ ≡ ρ̇. Now we have defined a simplified first order distinguisher,
which enables to perform side channel attacks. However this distinguisher cannot
handle a masked cryptographic algorithm, hence we will need to go back to the
construction in order to define a masked distinguisher.

2. Constructing a masked higher order correlation distinguisher

In section 6, chapter 3 we introduced the concept of a masked cryptographic
algorithm. The result of this is that for each plaintext xi we have a trace vector
li, and not a single point. The construction and distribution calculation of this
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higher order distinguisher takes its theory from Lomné et al. in [9]. To still use
the Pearson coefficient we need a way to change this leakage vector to something
manageable. This is solved by using a combining function, C : L → R. This
is basically a function that takes the leakage vector to a real number in such a
way that the leakage and the modified plaintext is still linearly related. With
this combining function we can calculate the Pearson coefficient as usual, with
the traces transformed using the combining function and the plaintext with the
model function, more rigorously this looks like:

ρk(x, l) = ρ(m(x, k),C(l)) =

1
N

N∑
i=1

(m(xi, k)−mk)
(

C(li)− C(l)
)

√
1
N

N∑
i=1

(m(xi, k)−mk)
2

√
1
N

N∑
i=1

(
C(li)− C(l)

)2

There are several choices of combining functions and the function is related to
the distribution for success rate calculation. Now we will look at a equivalent
distinguisher that has the added property of being additive. This distinguisher
is identical as ρ̇ except with the combining function of the leakage vector instead
of just the trace:

dcor = (ρ̇k(x, l))k∈K =


1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
C(li)√√√√ 1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2


k∈K

We have preciously shown that ρ̇k ≡ ρk, and this also applies to when we use
it in conjunction with the combining function. To calculate the success-rate
distribution of a higher-order correlation distinguisher a combining function needs
to be picked. Here one example of such a function is presented, but others are
also possible.

Definition 4.2. The centering product is a function C : Rd → R defined as

C(li) = C(l0, l1, . . . , ld) =
∏j=d
j=0 (lj − µj) where µj = E[Lj ], i.e the expected

value of the leakage of the ”j-th” mask.

In an real-life attack the mean E[Lj ] will need to be estimated with the traces.
This complicates the calculation of the success-rate somewhat, as we need to take
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the precision of the mean estimation into account when calculating it. However in
[13], they argue that the number of traces needed to have a successful attack is big
enough to get a precise estimation of E[Lj ]. This still leads to some uncertainty
about the success-rate of low trace number scenarios. With the centering product
the calculation of the distinguishing score for key guess k will look like

ρ̇k(m(x,C(l)) =
1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
) (∏j=d

j=0(li,j − µj)
)

√√√√ 1
N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2

Now that the distinguisher is fully described we have all the tools needed to
calculate the distribution of the scores.

3. First order correlation distribution calculation

In order to find the success rate of different attacks we need to calculate the dis-
tribution of the key-scores of different key-guesses. Here we need to find the ex-
pected value of a general key-guess, and the covariance between two key-guesses,
i.e: E[dk],Cov[dk1 , dk2 ].

Since ρ ≡ ρ̇ we can calculate the distribution of the simpler ρ̇ and still have the
same success-rate. This is first done in the unmasked setting, then in the masked
higher order setting. How these distribution are used in order to reach theoretical
success rates is explained in chapter 7.

3.1. First order distribution.

Proposition 4.3. For distinguisher d = (ρ̇k)k has expectation and covariance
satisfying:

E[ρ̇k] =
1

Nσk

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
mxi,k∗(3)

Cov[ρ̇k1 , ρ̇k2 ] =
1

N2σk1σk2

N∑
i=1

(
m(xi, k1)− 1

N

N∑
j=1

m(xj , k1)
)

(4)

(
m(xi, k2)− 1

N

N∑
j=1

m(xj , k2)
)
σ2
xi,k∗

Proof. The expectation calculation of the variables that do not have a distribu-
tion associated with them except is just the variable itself. This is true for all the
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variables except for li which has distribution ∼ N(mxi,k∗ , σxi,k∗). Here k∗ is the
key that generated the trace, i.e the correct key-guess key. Hence the expectation
of ρ̇k is the same expression but with the expectation of E[li] = mxi,k∗ replacing
the trace. This can be expressed as:

E [ρ̇k(x, l)] = E


1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
li√√√√ 1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2



=
1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
E[li]√√√√ 1

N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2

=
1

Nσk

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)
)
mxi,k∗ .

Where σk =

√√√√ 1
N

N∑
i=1

(
m(xi, k)− 1

N

N∑
j=1

m(xj , k)

)2

. Now that we have the ex-

pression for the expectation of a key-guess we can more easily calculate the co-
variance between two keys. Namely we use that for the covariance calculation we
have the identity Cov[ρ̇k1 , ρ̇k2 ] = E[ρ̇k1 ρ̇k2 ]−E[ρ̇k1 ]E[ρ̇k2 ]. In our leakage model
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this becomes:

Cov[ρ̇k1 , ρ̇k2 ] =

E

 1

Nσk1

N∑
i=1

(
m(xi, k1)− 1

N

N∑
j=1

m(xj , k1)
)
li ·

1

Nσk2

N∑
i=1

(
m(xi, k2)− 1

N

N∑
j=1

m(xj , k2)
)
li


−

 1

Nσk1

N∑
i=1

(
m(xi, k1)− 1

N

N∑
j=1

m(xj , k1)
)
E[li]


 1

Nσk2

N∑
i=1

(
m(xi, k2)− 1

N

N∑
j=1

m(xj , k2)
)
E[li]


=

1

N2σk1σk1

N∑
i=1

(
m(xi, k1)− 1

N

N∑
j=1

m(xj , k1)
)

(
m(xi, k2)− 1

N

N∑
j=1

m(xj , k2)
)
(E[l2i ]− E[li]E[li])

Now we can use the identity from 2.4 to get

=
1

N2σk1σk1

N∑
i=1

(
m(xi, k1)− 1

N

N∑
j=1

m(xj , k1)
)(

m(xi, k2)− 1

N

N∑
j=1

m(xj , k2)
)
Var(li).

We know the variance of li, namely that Var[li] = σ2
xi,k∗

. Hence we are done with
the calculation, and we get what we wanted. �

4. Higher order correlation distribution calculation

In the same manner we have calculated the distribution for a first order correlation
distinguisher, we want to do it for a higher order distinguisher. One can see in the
formulas that the formula for the leakage in quite similar except for the centered
product combining function C : L = Rd+1 → R. Therefore in order to calculate
the distribution of the distinguisher it will be useful to know the distribution of
C.

Lemma 4.4. The distribution of the centered product C(Lx,k∗) where
Lx,k∗ = (f0(s0) + n0, f1(s1) + n1), . . . , fd(sd) + nd), i.e the leakage generated by
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input x and key k∗, has distribution satisfying:

E[C (Lx,k∗)] =
1

|S|d
∑
s0∈S0

∑
s1∈S1

. . .
∑
sd∈Sd

d∏
j=0

(
mj,sj − µj

)
(5)

Var[C(Lx,k∗)] =

d∏
j=0

(
E[(fj(sj)− µj)2] + E

[
n2
j

])
(6)

−
d∏
j=0

E[(fj(sj)− µj)2] + E

 d∏
j=0

(fj(sj)− µj)2

− E [C (Lx,k∗)]2

Proof. In order to calculate the expected value of the centering product over
the random variable (Lx,k∗) we take the average of the leakage functions of all
the signals (s0, s1, . . . , sd) = ϕ(x, k∗):

E[C (f0(s0) + n0, f1(s1) + n1), . . . , fd(sd) + nd)] = E

 d∏
j=0

(fj(sj) + nj − µj)


Since all the noise variables are independent we can take the average of all signals:

=
1

|S|d
∑
s0∈S0

∑
s1∈S1

. . .
∑
sd∈Sd

 d∏
j=0

E [fj(sj) + nj − µj ]


we have that fj(sj) = mj,sj and E[nj ] = 0⇒

E[C (Lx,k∗)] =
1

|S|d
∑
s0∈S0

∑
s1∈S1

. . .
∑
sd∈Sd

 d∏
j=0

(
mj,sj − µj

)

In order to calculate the variance we use the identity Var [C (Lx,k∗)] = E
[
C (Lx,k∗)2

]
−

E [C (Lx,k∗)]2, as we already have the formula for E [C (Lx,k∗)], we show the cal-

culation of E
[
C (Lx,k∗)2

]
:
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E[C (f0(s0) + n0, f1(s1) + n1), . . . , fd(sd) + nd)
2
] = E

 d∏
j=0

(fj(sj) + nj − µj)2


= E

 d∏
j=0

(
fj(sj)

2 − 2fj(sj)µj + µ2
j + 2fj(sj)nj − 2µjnj + n2

j

) ,
E[nj ] = 0 and E[ninj ] = E[nj ]E[ni]⇒

= E

 d∏
j=0

(
fj(sj)

2 − 2fj(sj)µj + µ2
j + n2

j

) = E

 d∏
j=0

(
(fj(sj)− µj)2 + n2

j

)

We want to get the expectation on the inside of the product instead of on the
outside. For independent variables we have that the expectation of the prod-
uct of variables, is equal to the product of the expectation. More formally
E[X1X2 . . . Xn] = E[X1]E[X2] . . .E[Xn] when all the variables are mutually in-
dependent. In the leakage model we assumed all the noise variables nj , repre-
senting the noise of the masks, were independent from each other. In addition
they are also mutually independent to the leakage model fj(sj). When introduc-
ing masking in 6, we also made the assumption that all the masks are mutually
independent from each other.

This however has an important exception, the masks are all mutually independent
except when they are all together. This fact creates and issue when we want to
get the expectation inside the product, if we calculate the product alone one of
the factors of the product will have all of the masks in the expression. We can
show this as

d∏
j=0

(
(fj(sj)− µj)2 + n2

j

)
=

 d∏
j=0

(fj(sj)− µj)2 + . . .+

d∏
j=0

n2
j

 .

This is the only term that involves all the masks so it is also the only term
where the variables are not mutually independent. Hence in order to simplify the

expression we will add the expression
d∏
j=0

E[(fj(sj)−µj)2] inside the full product,

then subtract it on the outside of the product. In doing this we all together add
0, we are however still left with the expectation of the product of all the masks,



30 4. A CORRELATION BASED DISTINGUISHER

which will need to be added as well. To make this clearer we can write is as:

E

 d∏
j=0

(
(fj(sj)− µj)2 + n2

j

) = E

 d∏
j=0

(fj(sj)− µj)2 + . . .+

d∏
j=0

n2
j


=

E

 d∏
j=0

(fj(sj)− µj)2

+ . . .+

d∏
j=0

E
[
n2
j

]
+

d∏
j=0

E[(fj(sj)− µj)2]−
d∏
j=0

E[(fj(sj)− µj)2]

Now we can switch the expectation expressions

=

 d∏
j=0

E[(fj(sj)− µj)2] + . . .+

d∏
j=0

E
[
n2
j

]
−

d∏
j=0

E[(fj(sj)− µj)2] + E

 d∏
j=0

(fj(sj)− µj)2


=

d∏
j=0

(
E[(fj(sj)− µj)2] + E

[
n2
j

])
−

d∏
j=0

E[(fj(sj)− µj)2] + E

 d∏
j=0

(fj(sj)− µj)2


�

We now have an expression for the distribution of the additive function of the
higher order correlation distribution. This enables us to use proposition 3.13 in
order to get the distribution of the full distinguisher.

Corollary 4.5. The distribution of the higher order correlation coefficient (ρ̇k(x, l)),
where σk and mk denotes the standard deviation and mean of m(x, k) respectively,
satisfies:

E[ρ̇k(x, l)] =
1

σkN

N∑
i=0

(m(xi, k)−mk) E[C(li)](7)

Cov[ρ̇k1(x, l), ρ̇k2(x, l)](8)

=
1

σk1σk2N
2

N∑
i=0

((m(xi, k1)−mk1) (m(xi, k2)−mk2) Var[C(Lxi,k∗)])
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Proof. According to proposition 3.13, we can relate the distribution of the
distinguisher to the full distribution. Hence we can use that:

E[ρ̇k(x, l)] = E

[
1

N

N∑
i=1

(
m(xi, k)−mk

)
C(li)

σk

]
=

1

Nσk

N∑
i=1

(
m(xi, k)−mk

)
E[C(li)]

The covariance calculation is a little more involved, but again using the fact from

proposition 3.13, that for distinguisher dk, Cov[dk1 , dk2 ] = 1
N2

∑N
i=0 Cov[gxi,k1 , gxi,k2 ].

For the correlation coefficient, this becomes:

Cov[ρ̇k1(x, l), ρ̇k2(x, l)]

=
1

N2

N∑
i=0

(
Cov[

(
m(xi, k1)−mk1

)
C(li),

(
m(xi, k2)−mk2

)
C(li)]

)
=

1

N2

N∑
i=0

((m(xi, k1)−mk1)(m(xi, k2)−mk2)Var[C(li)])

We already calculated the expectation and variance of the combining function,
so we are done with the distribution calculation. �

Now that we have calculated the distribution of both an masked an unmasked
implementation of the correlation attack we will be able to estimate the success-
rate given the number of traces. How this is done is described in chapter 7.





CHAPTER 5

A maximum likelihood distinguisher

A profiling attack, sometimes called a template attack, uses a maximum likelihood
technique to score keys. Here we assume we have some probability distribution
of the leakage according to each possible intermediate calculation value. For
a plaintext leakage pair (x, l) and a key-guess k we can write the probability
as P [L = l|S = ϕ(x, k)]. For plaintext-leakage vector pair x = (x0, x1, ..., xN )
,l = (l0, l1, ..., lN ) we just find the product of the probability evaluations of the
leakage points. Formally we can write this as

P [K = k|(x, l)] = α

N∏
i=1

P [L = li|S = ϕ(xi, k)]

An important distinction between the profiling distinguishers and the correlation
distinguishers in the last chapter is, as the name implies, that in profiling attack
we have a profile of how the distribution of the leakage will look like for each
plaintext and key-guess. This profile is here assumed to be given, as we are in
a theoretical setting. In reality it would require a profiling of the device, or a
device similar to, that one tries to attack. This profiling involves estimating the
distribution of each plaintext and key-guess, in order to have an associated pdf
which again is used to calculate the above expression. Hence for the distribution
calculation, the profile distributions will also be involved, as we will see in the
next section.

1. Constructing an unmasked first order profiling distinguisher

In order to define the profile distinguisher we need a way to calculate the proba-
bility of seeing a leakage trace according to a key-guess. The specific evaluation
of the pdf for a first order Gaussian distribution ∼ N (m,Σ) can be written
as:

φΣ,m(l) =
e−

1
2 (l−m)T Σ−1(x−m)√

(2π)|Σ|
33
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Usually we take the logarithm of this for computational reasons, this does not
change the order of the size of the key-scores so it results in an equivalent distin-
guisher. Taking the logarithm also means that the product becomes a sum and
the pdf evaluation that can be expressed as:

Lk =
1

N
log(P [K = k|(x, l)]/α)

=
1

2N

N∑
i=1

(
− log((2π)|Σ̂xi,k|)− (li − m̂xi,k)T Σ̂−1

xi,k
(li − m̂xi,k)

)
Now that we have the expression for the score of a key-guess we can define a
distinguisher by taking this score over all keys. Thus the profile distinguisher
dprof = (L1,L2, ...,LNk

). This distinguisher is not only additive but properly ad-
ditive, as we can evaluate each single trace, plaintext pair separately and calculate
the average. This can be written as:

Lk =
1

N

N∑
i=1

gk(xi, li)

where gk(xi, li) = − log((2π)|Σ̂xi,k|)− (li − m̂xi,k)T Σ̂−1
xi,k

(li − m̂xi,k)

2. Constructing a masked higher order profiling distinguisher

Masking, as seen before is a countermeasure to side channel attacks, but the pro-
filing distinguisher can also be modified in order to handle higher order leakage.
As before the traces, i.e the leakage l = (li)i, no longer consists of real number
but vectors of real numbers li = (l0, l1, . . . , ld) for each li. Similarly to the first
order distinguisher we also need a model of expected leakage given the input x, k,
i.e a pdf evaluation. With the Gaussian assumption of leakage the pdf evaluation
of one higher order trace can be expressed as

ps =
1

|S|d
∑
s0∈S0

∑
s1∈S1

. . .
∑
sd∈Sd

 d∏
j=0

φmj,sj
,Σj (lj)

 .

Where sj = ϕ(x, k) is the signal from the j-th coming from the intermediate
calculation, mj,sj the model-function for mask j with input sj , and covariance
matrix Σj for mask j. One can see here that the profiling step of getting the
expectation and covariance for all inputs and masks is more extensive than the
first order attack.

As in the previous section the distinguisher is defined as the log of the likelihood
of getting the leakage vector with given input, the only difference is that instead
of the standard pdf we use this new one for masked leakage vector. Since we only
use the the single input and corresponding leakage this distinguisher is properly



3. FIRST ORDER PROFILE DISTRIBUTION CALCULATION 35

additive as the first order version is. The distinguisher score for key guess k can
be expressed as

Lk =
1

N

N∑
i=1

log(pϕ(xi,k)).

3. First order profile distribution calculation

Before calculating the expectation and covariance of the log-likelihood vector Lk,
we need to establish two norms:

‖·‖ is the euclidean norm, i.e for a d-size vector X, ‖X‖ =
√∑d

i=1(Xi)2

‖·‖hs is the Hilbert-Schmidt matrix norm, i.e for a d× d matrix A,

‖A‖hs =
√∑d

i=1

∑d
j=1(Ai,j)2

Lemma 5.1. X is a d-sized random vector with 0-mean, and d × d covari-
ance matrix Σ. A1, A2 are both d × d matrices, and m1,m2 are two d-size
vectors. The expectation and covariance matrix of the quadratic form Qj =
(X +mj)

TATj Aj(X +mj) satisfies:

E[Qj ] = ‖Ajmj‖2 + Tr(AjΣA
T
j )(9)

Cov[Q1, Q2] = 2
∥∥A1ΣAT2

∥∥2

hs
+mT

1 A
T
1 A1Σ(10)

We will first calculate the expectation then calculate the covariance.

Proof. We start with E[Qj ], to calculate this we need to write (X+mj)
TATj Aj((X+

mj) on a different form:

(X+mj)
TATj Aj(X+mj) = (Aj(X+mj))

T (Aj(X+mj)) =

d∑
i=1

((Aj(X+mj))i)
2

Now we can use the formula Var(X) = E[X2] − E[X]2 =⇒ E[X2] = Var(X) +
E[X]2. Hence we get:

E[Qj ] =

d∑
i=1

E[(Aj(X+mj))i)
2] =

d∑
i=1

(
E[(Aj(X +mj))i]

2 + Var((Aj(X +mj))i)
)
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From this we can calculate the expected value, since X is a random vector with
distribution X ∼ N (0,Σ) we get that Aj(X + mj) ∼ N (Ajmj , AjΣA

T
j ). The

variance of (Aj(X + mj))i is just the i − th diagonal of AjΣA
T
j . So we end up

with:

d∑
i=1

(
E[Aj(X +mj)]

2 + Var((Aj(X +mj))i)
)

=

d∑
i=1

(
((Ajmj)i)

2 + (AjΣA
T
j )i,i

)
= ‖Ajmj‖2 + Tr(AjΣA

T
j )

Hence we have that the expectation E[Qj ] = ‖Ajmj‖2 + Tr(AjΣA
T
j ), and the

first part of the lemma is finished.

Now we want to calculate the covariance matrix Cov[Q1, Q2], in order to do this
we again need to express Qj on a different form:

(Aj(X +mj))
T (Aj(X +mj)) = (AjX +Ajmj)

T (AjX +Ajmj)

=

d∑
i=1

(Aj∗,iX +Aj∗,imj)
T (Aj∗,iX +Aj∗,imj)

=

d∑
i=1

(XTATj∗,i +mT
j A

T
j∗,i)(Aj∗,iX +Aj∗,imj)

=

d∑
i=1

(
XTATj∗,iAj∗,iX +XTATj∗,iAj∗,imj +mT

j A
T
j∗,iAj∗,iX +mT

j A
T
j∗,iAj∗,imj

)
We can see that XTATj∗,iAj∗,imj = mT

j A
T
j∗,i
Aj∗,iX, as the different coordinates

of Xi and mji coincide in the sum. We can hence write Qj on the form:

Qj =

d∑
i=1

(XTATj∗,iAj∗,iX +mT
j A

T
j∗,iAj∗,imj + 2mT

j A
T
j∗,iAj∗,iX)

=(AjX)T (AjX) + (Ajmj)
T (Ajmj) + 2(mT

j A
T
j AjX)

So to calculate the covariance now we need to find:
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Cov[Q1, Q2] = Cov[(A1X)T (A1X) + (A1m1)T (A1m1) + 2(mT
1 A

T
1 A1X),

(A2X)T (A2X) + (A2m2)T (A2m2) + 2(mT
2 A

T
2 A2X)]

Adding a constant to the covariance does not change the result so we can disregard
(A1m1)T (A1m1) in the calculation, from the biliniarity of covarience we get:

Cov[(A1X)T (A1X) + 2(mT
1 A

T
1 A1X), (A2X)T (A2X) + 2(mT

2 A
T
2 A2X)] =

Cov[(A1X)T (A1X), (A2X)T (A2X)] + Cov[(A1X)T (A1X), 2(mT
2 A

T
2 A2X)]+

Cov[2(mT
1 A

T
1 A1X), (A2X)T (A2X)] + Cov[2(mT

1 A
T
1 A1X), 2(mT

2 A
T
2 A2X)]

Factoring out constants the expression simplifies to:

Cov[Q1, Q2] =

Cov[(A1X)T (A1X), (A2X)T (A2X)] + 2Cov[(A1X)T (A1X), (mT
2 A

T
2 A2X)]

+2Cov[(mT
1 A

T
1 A1X), (A2X)T (A2X)] + 4Cov[(mT

1 A
T
1 A1X), (mT

2 A
T
2 A2X)]

We have now simplified the expression and what is left to do is showing that the
four covariance expressions satisfy:

Cov[(A1X)T (A1X), (A2X)T (A2X)] = 2
∥∥A1ΣAT2

∥∥2

hs
(11)

Cov[(A1X)T (A1X), (mT
2 A

T
2 A2X)] = 0(12)

Cov[(mT
1 A

T
1 A1X), (A2X)T (A2X)] = 0(13)

Cov[(mT
1 A

T
1 A1X), (mT

2 A
T
2 A2X)] = mT

1 A
T
1 A1ΣAT2 A2m2(14)

Equation (14) follows from standard covariance rules. We begin with equation
(11). From before we have that (AjX)T (AjX) can be written as ((AjX)i)

2

summed over i, then by bilinearity we can express the covariance as:

Cov[(A1X)T (A1X), (A2X)T (A2X)] =

d∑
i=1

d∑
j=1

Cov[((A1X)i)
2, ((A2X)j)

2]
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With the standard formula for covariance Cov[Y,Z] = E[Y ZT ]− E[Y ]E[Z], and
the fact that (A2X)T (A2X) is symmetric, we can write this as:

d∑
i=1

d∑
j=1

(
E[((A1X)i)

2((A2X)j)
2]− E[((A1X)i)

2]E[((A2X)j)
2]
)

To calculate the first part of the sum we can use Isserlis theorem 2.9, to get that:

E[((A1X)i)
2((A2X)j)

2] = E[((A1X)i)
2]E[((A2X)j)

2]

+ E[(A1X)i(A2X)j ]
2 + E[(A2X)j(A1X)i]

2

= E[((A1X)i)
2]E[((A2X)j)

2 + 2E[(A1X)i(A2X)j ]
2

= E[((A1X)i)
2]E[((A2X)j)

2 + 2
(
Cov[(A1X)i, (A2X)j ] + E[(A1X)i]E[(A2X)j ]

)2
= E[((A1X)i)

2]E[((A2X)j)
2 + 2Cov[(A1X)i, (A2X)j ]

2

Looking at back the sum we can see that the first term cancels with the last one
in the original sum, hence:

Cov[(A1X)T (A1X), (A2X)T (A2X)] =

d,d∑
i=1,j=1

2Cov[(A1X)i, (A2X)j ]
2 = 2

∥∥A1ΣAT2
∥∥2

hs

Calculating equation (12) and (13) is easier as:

Cov[(A1X)T (A1X), (mT
2 A

T
2 A2X)] =

d∑
i=1

Cov[((A1X)i)
2, (mT

2 A
T
2 A2X)]

By using the formula for covariance:

Cov[((A1X)i)
2, (mT

2 A
T
2 A2X)] = E[((A1X)i)

2(mT
2 A

T
2 A2X)]− E[((A1X)i)

2]E[(mT
2 A

T
2 A2X)]

As E(X) = 0, and Isserlis theorem for odd cases 2.10 says that the expectation
is 0, we have that this sum is 0. Similarly the covariance equation (13) is also 0.

�

Now that we have an expression for expectation and covariance of quadratic forms
from lemma 5.1 we want to use this to find the expectation and covariance of the
log-likelihood calculation.
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Proposition 5.2. The expectation of the log-likelihood calculation

Lk = 1
2N

∑N
i=1

(
− log((2π)d|Σ̂xi,k|)− (li − m̂xi,k)T Σ̂−1

xi,k
(li − m̂xi,k)

)
satisfies:

E[Lk] =
1

2

∑
x∈X

τx

(
− log((2π)d|Σ̂xi,k|)(15)

−
∥∥∥(Σ̂−1L

xi,k
)(mi,k∗ − m̂xi,k)

∥∥∥2

− Tr((Σ̂−1L

xi,k
)Σ(Σ̂−1L

xi,k
)T )
)

And for two keys Lk1 ,Lk2 , the covariance satisfies:

Cov[Lk1 ,Lk2 ] =
1

N

N∑
i=1

τx

(1

2

∥∥∥(Σ̂−1L

xi,k1
)Σ(Σ̂−1L

xi,k2
)T
∥∥∥
hs

(16)

+(mi,k∗ − m̂xi,k1)T (Σ̂−1
xi,k1

)Σ(Σ̂−1
xi,k2

)(mi,k∗ − m̂xi,k2)
)

The expectation is calculated first, then the covariance.

Proof. From 5.1, we have that a quadratic form Qj = (X + mj)
TATj Aj(X +

mj) has covariance, Cov[Q1, Q2] = 2
∥∥A1ΣAT2

∥∥2

hs
+ 4mT

1 A
T
1 A1ΣAT2 A2m2, and

expectation E(Qj) = ‖Ajmj‖2 + Tr(AjΣA
T
j ).

We use this to calculate the expectation E[Lk]:

E[Lk] =E[
1

2N

N∑
i=1

(
− log((2π)d|Σ̂xi,k|)− (li − m̂x,k)T Σ̂−1

xi,k
(li − m̂xi,k)

)
]

=
1

2N

N∑
i=1

E[− log((2π)d|Σ̂xi,k|]− E[(li − m̂x,k)T Σ̂−1
xi,k

(li − m̂xi,k)]

The first part of the sum has no random variables so the expectation is just
itself. The second sum is almost as the setup we have in lemma 5.1, except that
li has expectation mi,k∗ , we can solve this by looking at the leakage differently,
specifically li = xi+mi,k∗ , where xi is a random vector with expectation 0. Hence
the vector (li− m̂x,k) is translated to (xi +mi,k∗ − m̂xi,k). In addition to this we

need to have Σ̂−1
xi,k

on the form of the product of two matrices as in lemma 5.1, this

is the Cholesky decomposition and will be denoted as Σ̂−1
xi,k

= (Σ̂−1L

xi,k
)(Σ̂−1L

xi,k
)T

E[Lk] =
1

2N

N∑
i=1

(
− log((2π)T |Σ̂xi,k|)−

∥∥∥(Σ̂−1L

xi,k
)(mi,k∗ − m̂xi,k)

∥∥∥2

− Tr((Σ̂−1L

xi,k
)Σ(Σ̂−1L

xi,k
)T )

)
Now we switch index from over observation i to ratio of inputs x with τx, doing
this over the sum we get an extra factor N :
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E[Lk] = 1
2

∑
x∈X τx

(
− log((2π)T |Σ̂xi,k|)−

∥∥∥(Σ̂−1L

xi,k
)(mi,k∗ − m̂xi,k)

∥∥∥2

− Tr((Σ̂−1L

xi,k
)Σ(Σ̂−1L

xi,k
)T
)

When calculating the covariance we can use the same argument as the expecta-
tion, the first part of the sum does not have any random variables in it, and can
hence be disregarded in the covariance calculation. With the same arguments
about the expectation of li, and the Cholesky decomposition we get covariance
on the form:

Cov[Lk1 ,Lk2 ] =

Cov[
1

2N

N∑
i=1

(
−(li − m̂x,k1)T Σ̂−1

xi,k1
(li − m̂xi,k1)

)
,

1

2N

N∑
i=1

(
−(li − m̂x,k2)T Σ̂−1

xi,k2
(li − m̂xi,k2)

)
]

=
1

4N2

N∑
i=1

(
2
∥∥∥(Σ̂−1L

xi,k1
)Σ(Σ̂−1L

xi,k2
)T
∥∥∥
hs

+ 4(mi,k∗ − m̂xi,k1)T (Σ̂−1L

xi,k1
)T (Σ̂−1L

xi,k1
)Σ(Σ̂−1L

xi,k2
)T (Σ̂−1L

xi,k2
)(mi,k∗ − m̂xi,k2)

)
Switching to the ratio of x and taking out a factor 4 from the sum, we finally get
the result:

Cov[Lk1 ,Lk2 ] =

1

N

N∑
i=1

τx

(1

2

∥∥∥(Σ̂−1L

xi,k1
)Σ(Σ̂−1L

xi,k2
)T
∥∥∥
hs

+ (mi,k∗ − m̂xi,k1)T (Σ̂−1
xi,k1

)Σ(Σ̂−1
xi,k2

)(mi,k∗ − m̂xi,k2)
)

�

4. Higher order profile distribution calculation

The technique to find the success-rate of the higher order profiling distinguisher
is the same as in the first order one. However there is one fact that complicates
the calculation. In the first order setting taking the log of the pdf of the model
simplifies the expression somewhat. That is not the case in the higher order
setting where the φmj,sj

,Σj
is preceded by a sum over all the masks, hence not

making the log expression simpler. This leads to the calculation of the expectation
and the covariance somewhat more complicated. In order to make the calculation
easier it is useful to find the expectation of the additive part of the function, in
this higher order case that is log(ps).
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To help with the expectation and covariance calculation we introduce the two
functions, namely

λ(s1, s2) :=

∫
l∈L

log(ps1(l))ps2(l) dl,(17)

ψ(s1, s2, s3) :=

∫
l∈L

log(ps1(l)) log(ps2(l))ps3(l) dl.(18)

We can relate this function to the expectation of gs(l) for l generated by s =
ϕ(x, k∗):

Lemma 5.3. For trace l generated by signal s = ϕ(x, k∗) we can describe the
expectation of the keyscores as:

E[gx,k(l)] = λ(ϕ(x, k), ϕ(x, k∗))

E[gx,k1(l)gx,k2(l)] = ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗))

Proof. The result is by definition as the expected value E[X] of some random
variable X is integral of all the values X takes multiplied with the chance it
occurs. We already have an expression for the pdf of leakage generated by the
correct key k∗ namely pϕ(x,k∗) for given input x. The expected value we want to
calculate is of one key-score gx,k(l), and two key-scores multiplied, gx,k1(l)gx,k2(l),
for given keys k, k1, k2. Hence the expected value of these two expressions are
just the value of the function, i.e gx,k(l) and gx,k1(l)gx,k2(l), multiplied with the
probability of that leakage happening, which is pϕ(x,k∗). Then we integrate over
all signals l and we get the expected value of said expressions. �

Now that the expectation is described for gxi,k(l) the expectation and covariance
of Lk is more straightforward.

Corollary 5.4. Let key k∗ ∈ K, input x = (x0, x1, . . . , xN ), and leakage li ←$

Lxi,k∗ for each xi. Then the key-guess L has distribution satisfying:

E[Lk] =
1

N

N∑
i=0

λ (ϕ(xi, k), ϕ(xi, k
∗))

Cov[Lk1 ,Lk2 ] =

1

N2

N∑
i=0

ψ(ϕ(x, k1), ϕ(x, k2), ϕ(x, k∗))− λ (ϕ(xi, k1), ϕ(xi, k
∗))λ (ϕ(xi, k2), ϕ(xi, k

∗))

Proof. The expectation calculation is straightforward as E[Lk] = 1
N

∑N
i=0 E[gxi,k] =

1
N

∑N
i=0 λ (ϕ(xi, k), ϕ(xi, k

∗)). The last equality is from lemma 5.3.
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For the covariance calculation we use proposition 3.13 to relate the additive func-
tion to the distinguisher, then we can use the same identity that we have used
before, namely that Cov[X,Y ] = E[XY ]− E[X]E[Y ], hence we get:

Cov[Lk1 ,Lk2 ] =
1

N2

N∑
i=0

(Cov[gx,k1(l), gx,k2(l)])

=
1

N2

N∑
i=0

(E[gxi,k1(li)gxi,k2(li)]− (E[gx,k1(l)]E[gx,k2(l)]))

=
1

N2

N∑
i=0

ψ(ϕ(x,k1), ϕ(x, k2), ϕ(x, k∗))− λ (ϕ(xi, k1), ϕ(xi, k
∗))λ (ϕ(xi, k2), ϕ(xi, k

∗))

�

As in chapter 4 the calculation of the distribution of the masked and unmasked
distinguisher are done. This enables us to calculate the success-rate, which we
will see in chapter 7.



CHAPTER 6

Confusion analysis

In the previous chapters we have explored ways to build and describe the dis-
tribution of general side channel attack techniques. In these chapters we build
a distinguisher which takes in an intermediate value in the cryptographic algo-
rithm, and depending on the noise parameters of some function of this inter-
mediate value, and how many number of such traces one has, a distribution is
assigned. However what this method does not show, is the vulnerability of the
specific cryptographic implementation. In other words, are there cryptosystems
that are particularly vulnerable to side channel attacks compared to others? We
will explore this by expanding the study of intermediate value function, namely
how different the intermediate value looks for different key guesses.

1. The Confusion coefficient

The intermediate value function is a function ϕ : X × K → S, dependent on
the cryptosystem. When leakage was modelled we say assume we receive a noise
function of this variable. Namely that for leakage point li = f(ϕ(xi, k)) if we
disregard the noise. With this definition of how leakage looks like theoretically,
the confusion coefficient between two keys is defined as:

Definition 6.1. For keys ki, kj ∈ K, for intermediate value function ϕ, and
leakage model f the confusion coefficient κ is defined as:

κ(ki, kj) =
1

Nx

Nx∑
x=0

(f(ϕ(x, ki)− f(ϕ(x, kj)))
2

Nx is the size of the plaintext space, i.e Nx = |X |. More descriptively, the
confusion coefficient measures how different the output of the model leakage is
for the same plaintext for two different keys. If the model leakage is a bit the
confusion coefficient becomes Pr[f(ϕ(x, k1)) 6= f(ϕ(x, k2)] for a random input x,
as the output is either 1 or 0. As mentioned an intuitive understanding of the
the confusion coefficient is that is measures how different the theoretical leakage

43
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looks when its generated by different keys. This enables us to get a sense of how
easy side channel analysis is with regards to the cryptographic algorithm.

In order to calculate the distribution of an attack involving the confusion coeffi-
cient we also need a three way confusion coefficient defined as:

Definition 6.2. For keys kh, ki, kj ∈ K, for intermediate value function ϕ, and
leakage model f the confusion coefficient κ̃ is defined as:

κ̃(kh, ki, kj) =
1

Nx

Nx∑
x=0

(f(ϕ(x, kh)− f(ϕ(x, ki))(f(ϕ(x, kh)− f(ϕ(x, kj))

We also need

κ̃∗(kh, ki, kj) =
1

Nx

Nx∑
x=0

(
f(ϕ(x, kh)− f(ϕ(x, ki))

2(f(ϕ(x, kh)− f(ϕ(x, kj)
)2

Lastly we need

κ̂(kh, ki, kj) =
1

Nx

Nx∑
x=0

(f(ϕ(x, kh))− E[f(ϕ(x, kh))])
(
f(ϕ(x, kh))− f(ϕ(x, ki)))

(f(ϕ(x, kh))− f(ϕ(x, kj))
)

We write

κkc = (κ(kc, k1), κ(kc, k2), . . . , κ(kc, kc−1), κ(kc, kc+1), . . . , κ(kc, kNk
))

Definition 6.3. Similarly we define the (Nk − 1×Nk − 1)-matrix for key c as

Kkc [i, j] =

{
κ̃(kc, ki, kj) if i 6= j
κ(kc, ki) if i = j

Definition 6.4. Again similarly we define the (Nk − 1×Nk − 1)-matrix for key
c as

K∗kc [i, j] =

{
κ̃∗(kc, ki, kj) if i 6= j
κ(kc, ki) if i = j

2. Confusion analysis or model functions

If we take the confusion coefficient over all possible key-pairs then Fei et al. [5]
claims that we can relate the distribution to how vulnerable that leakage model
is to side channel attacks. One can think of this distribution as how different
leakage will look like for different keys. This again describes how easy it is to
distinguish keys, namely if the confusion coefficient usually has big values, then
leakage generated by one key will probably look quite different than leakage
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Figure 1. A graph showing the byte wise confusion analysis of
AES-128. This distribution is reached by calculating the average
of all squared differences of the hamming weight of the S-box
output for the same plaintext but different keys.

generated by a different key. This would imply that a good cryptosystem for
countering side channel attacks should have confusion coefficients as close to zero
as possible. Unfortunately it is not that simple, if (f(ϕ(x, k1) − f(ϕ(x, k2)))2 =
0 ⇒ (f(ϕ(x, k1) = f(ϕ(x, k2)). Although this does not directly mean that the
two ciphertext outputted are the same, it does have a much bigger probability of
being so. Hence if all the confusion coefficient are 0, we loose a lot of the diffusion
of the algorithm. Namely that different keys give unrelated plaintext ciphertext
pairs. So we have a trade-off between having sufficient diffusion and keys not
being easily differentiated in a side channel setting.

Remark 6.5. The optimal confusion coefficient is when the two variables (f(ϕ(x, k1))
and f(ϕ(x, k2)) look uncorrelated. In the case of AES-128 this will be 4 in the
byte model, as this is where the confusion coefficient looks like the difference of
two uncorrelated byte hamming weights.

2.1. Analysing bit-wise or byte-wise. When doing confusion analysis we
can either be in a lekage model where we attempt to model bit-wise or byte-wise.
In terms of the confusion coefficient the bit-wise formulas end up being somewhat
simpler, as it is just measuring whether the intermediate value is different or the
same. In this paper we will follow the leakage model where the intermediate value
is a byte. An interesting example from the bit-analysis though, is the confusion
analysis of AES-128.

Example 6.6. When looking at the confusion coefficient bit-wise one have to
choose which one of the 8 bits of the intermediate value output of AES-128 to
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Figure 2. A graph showing the bit wise confusion analysis of
AES-128, in this case we have to choose what bit to calculate.
In this case it is the first bit, but an interesting fact is that it
has the same distribution for all 8 bits.

calculate the confusion coefficient for. An interesting attribute of AES-128 is that
it does not matter, the distribution of the confusion coefficients are identical for
all the bits in AES-128, and has the distribution of figure 2.

3. Leakage model for confusion analysis

When studying leakage of a general cipher we have used the leakage model li =
f(ϕ(xi, k)) + ni. This is however not the only setting one can view leakage. In
the paper we take the confusion analysis theory from[5], they originally use a
seemingly more complicated leakage model. This model involves an ε factor of
the intermediate calculation, and a constant factor c, hence a leakage trace is
modeled as li = εf(ϕ(xi, k)) + c + ni. This model can be seen as close to what
one would actually measure on a chip. We can however use the simpler model
without ε and c without loosing generality of the success-rate estimation. This is
due to fact that the constant c does nothing to the success-rate estimation and
the ε can be related to the standard deviation of the noise. Intuitively this can
be done by having a bigger standard deviation in the simplified model if the ε is
small, and the opposite in the other case. Hence in this thesis we will continue
to use the simpler leakage model.

4. Using the confusion coefficient in the distribution calculation

As in the standard attacks we will also define a maximum likelihood and a cor-
relation based distinguisher. Similarly we will calculate the distribution of these
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distinguishers. The difference is that in order to incorporate the confusion coef-
ficient we have to get the distinguisher on a form where we have the difference of
two keys. This also changes how the distribution is calculated.

4.1. A maximum likelihood distinguisher with confusion analysis.
As in the profiling section we will now look at the distinguisher where we have a
probability associated with each input x and leakage point l. In other words we
have a probability distribution P [L = li|S = f(ϕ(xi, k))]. As before we also take
the logarithm of this distribution, with results in the probability evaluation of
multiple traces becoming the sum of the logarithm of the pdf evaluation of those
traces.

As in the correlation confusion distribution we need to take the difference of the
distinguisher score to relate it to the confusion coefficient. Hence we get a 255-
dimensional Gaussian distribution, where one takes the difference of the correct
key-guess score dc, and all other scores dk. Here we do the distribution calculation
of one key-score difference for the correct key c and a general key-guess k, and the
full distribution is the multi dimensional Gaussian distribution for all non-correct
key-guessed k.

Theorem 6.7. The (Nk − 1)-score vector (dk∗ − dkg )kg∈K for correct key k∗ and
key-guesses kg satisfy the following distribution:

µk∗ =
1

2σ2
κk∗(19)

Σk∗ =
1

N

(
1

σ2
Kk∗ +

1

4σ4
(Kk∗ − κk∗κTk∗)

)
(20)

Proof. The value dk∗−dkg is the difference of the logarithm of the pdf evaluation
in our model. For a key-guess kg and trace l with related plaintext x, the log-pdf
evaluation can be expressed in our model as:

log(P [L = l|S = f(ϕ(x, kg))]) = log(
1√
2πσ

)− (l − f(ϕ(x, kg)))
2

2σ2
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The score for several traces are just the sum of the single scores, hence for the
difference of scores between dk∗ − dg for correct key-guess k∗ becomes

log

(
N∏
i=1

(P [L = li|S = f(ϕ(xi, k
∗))])

)
− log

(
N∏
i=1

(P [L = li|S = f(ϕ(xi, kg))])

)

= log(
1√
2πσ

)− log(
1√
2πσ

)−
N∑
i=1

(li − f(ϕ(xi, kg)))
2

2σ2
+

N∑
i=1

(li − f(ϕ(xi, k
∗)))2

2σ2

=
1

2σ2

N∑
i=1

(li − f(ϕ(xi, kg)))
2 − (li − f(ϕ(xi, k

∗)))
2

We have that li = f(ϕ(xi, k
∗)) + ni where k∗ is the key that generated the leakage

=
1

2σ2

N∑
i=1

(f(ϕ(xi, k
∗)) + ni − f(ϕ(xi, kg)))

2 − (f(ϕ(xi, k
∗)) + ni − f(ϕ(xi, k

∗)))
2

=
1

2σ2

N∑
i=1

(f(ϕ(xi, k
∗)) + ni − f(ϕ(xi, kg)))

2 − n2
i

=
1

2σ2

N∑
i=1

(
(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2 + 2(f(ϕ(xi, k

∗)))− f(ϕ(xi, kg))ni
)

This expression is what we are finding the distribution for as it is simpler calcu-
lation wise. Finding the expectation is quite straight forward.

E[dk∗ − dkg ]

= E

[
1

2Nσ2

N∑
i=1

(
(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2 + 2(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))ni
)]

=
1

2Nσ2

N∑
i=1

(
E
[
(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2
]

+ E [2(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))ni]

)
As E[ni] = 0 we get

=
1

2Nσ2

N∑
i=1

(
E
[
(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2
])

The expected value of the difference squared of the model leakage under different
keys is exactly the confusion coefficient of those keys, hence we end up with

E[dk∗ − dkg ] =
1

2Nσ2

N∑
i=1

κ(k∗, kg) =
κ(k∗, kg)

2σ2
.
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For the covariance calculation we will begin will use the much used fact from 2.5.
Hence we have that that for correct key k∗, and key-guesses kg, k

′
g

Cov[dk∗ − dkg , dk∗ − dk′g ] = E[(dk∗ − dkg )(dk∗ − dk′g )]− E[dk∗ − dkg ]E[dk∗ − dk′g ].

We already have the results of the last two expectations from before so we will
focus on the first one.

E[(dk∗ − dkg )(dk∗ − dk′g )]

= (
1

2Nσ2
)2

N∑
i=1

N∑
j=1

E[
(
(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2 + 2(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))ni
)(

(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))

2 + 2(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))nj

)
]

= (
1

2Nσ2
)2

N∑
i=1

N∑
j=1

E[(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))

2(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))

2

+ 2(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))

2(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))nj

+ 2(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))ni(f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g)))

2

+ 4(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))ni(f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g)))nj ]

From the model assumptions we have that E[ni] = 0 and E[ninj ] = 0 when i 6= j,
hence we get that all the terms that have one ni factor are 0, and that ninj is
only nonzero for i = j. Hence we can rewrite the above expression as:

E[(dk∗ − dkg )(dk∗ − dk′g )] = (
1

2Nσ2
)2

( N∑
i=1

N∑
j=1

E[(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))

2(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))

2]

+ 4

N∑
i=1

E[(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))(f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g)))]E[n2

j ]
)

Again we use an independence assumption of the model, namely that the different
traces are independent from each other. Hence we have than when we go over
different plaintexts in the double sum, i.e when i 6= j, then E[XY ] = E[X]E[Y ].
Therefore we get two sums. We also have that E[n2

j ] = σ2 from equation 2.5 and
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the model. We can now write the above expression as:

E[(dk∗ − dkg )(dk∗ − dk′g )] = (
1

2Nσ2
)2

( N∑
i=1

(
E[(f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
2(f(ϕ(xi, k

∗))− f(ϕ(xi, k
′
g)))

2]

+

N∑
j 6=i

E[(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))

2]E[(f(ϕ(xj , k
∗))− f(ϕ(xj , k

′
g)))

2]
)

+ (2σ)2
N∑
i=1

E[(f(ϕ(xi, k
∗))− f(ϕ(xi, kg)))(f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g)))]

)
Now we have all the expectations on a form where we can express them as confu-
sion coefficients. Hence we use that E[(f(ϕ(xi, k

∗))−f(ϕ(xi, kg)))
2(f(ϕ(xi, k

∗))−
f(ϕ(xi, k

′
g)))

2] = κ̃∗(k∗, kg, k
′
g), E[(f(ϕ(xi, k

∗)) − f(ϕ(xi, kg)))(f(ϕ(xj , k
∗)) −

f(ϕ(xj , k
′
g)))] = κ̃(k∗, kg, k

′
g), and E[(f(ϕ(xi, k

∗)) − f(ϕ(xi, kg)))
2] = κ(k∗, kg).

Then the equation is on the form

E[(dk∗ − dkg )(dk∗ − dk′g )] = (
1

2Nσ2
)2

( N∑
i=1

(
κ̃∗(k∗, kg, k

′
g) +

N∑
j 6=i

κ(k∗, kg)κ(k∗, k′g)
)

+ (2σ)2
N∑
i=1

κ̃(k∗, kg, k
′
g)
)

= (
1

2Nσ2
)2
(
Nκ̃∗(k∗, kg, k

′
g) +N(N − 1)κ(k∗, kg)κ(k∗, k′g) + (2σ)2Nκ̃(k∗, kg, k

′
g)
)
.

If we now look at the full covariance, it is possible to simplify the expression
further,

Cov[dk∗ − dkg , dk∗ − dk′g ] = E[(dk∗ − dkg )(dk∗ − dk′g )]− E[dk∗ − dkg ]E[dk∗ − dk′g ]

= (
1

2Nσ2
)2
(
Nκ̃∗(k∗, kg, k

′
g) +N(N − 1)κ(k∗, kg)κ(k∗, k′g) + (2σ)2Nκ̃(k∗, kg, k

′
g)
)

− κ(k∗, kg)

2σ2

κ(k∗, k′g)

2σ2

=
1

4Nσ4
κ̃∗(k∗, kg, k

′
g) +

N − 1−N
4Nσ4

κ(k∗, kg)κ(k∗, k′g) +
1

Nσ2
κ̃(k∗, kg, k

′
g)

=
1

N

(
1

σ2
κ̃(k∗, kg, k

′
g) +

1

4σ4

(
κ̃∗(k∗, kg, k

′
g) + κ(k∗, kg)κ(k∗, k′g)

))

This is for each key-guess pair kg, k
′
g, hence the covariance matrix over all (N−1)

wrong key-guesses becomes the expression stated. �
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4.2. A correlation distinguisher with confusion analysis. In order to
get the distributions of a correlation attack we will calculate the expectations
and covariance of all the key-guesses individually, this becomes:

Theorem 6.8. For leakage generated by key k∗, the expectation E[ρ̇k∗ − ρ̇g] and
covariance Cov[ρ̇k∗ − ρ̇kg , ρ̇k∗ − ρ̇k′g ], where kg and k′g are key-guesses, satisfies:

E[ρ̇k∗ − ρ̇kg ] =
κ(k∗, kg)

2σf(ϕ(−,k∗))
(21)

Cov[ρ̇k∗ − ρ̇kg , ρ̇k∗ − ρ̇k′g ] =(22)

σ2

Nσ2
f(ϕ(−,k∗))

(
κ(k∗, kg, k

′
g) + (

1

σ2
)

(
κ(k∗, kg, k

′
g)−

1

4
κ(k∗, kg)κ(k∗, k′g)

))

In order to prove the distribution of the differences we will need a small results
relating to the confusion coefficient using the assumptions in this model.

Remark 6.9 (Constant expectation assumption). According to Fei et al. [5] we
have that for cryptosystems with identical model distribution for all keys, we also
have identical expectation for all keys. We can write this as:

E[f(ϕ(x, k1)] = E[f(ϕ(x, k2)] for all keys k1, k2 ∈ K

Lemma 6.10. For keys k∗ and kg we have that:

E[f(ϕ(x, k∗)) (f(ϕ(x, k∗)− f(ϕ(x, kg))] =
κ(k∗, kg)

2

Proof. By definition we have that κ(k∗, kg) = E[(f(ϕ(x, k∗)− f(ϕ(x, kg))
2
], we

can write this out further to get.

κ(k∗, kg) = E[f(ϕ(x, k∗)2]− 2E[f(ϕ(x, k∗)f(ϕ(x, kg)] + E[f(ϕ(x, kg)
2].

From assumption 6.9, we have that E[f(ϕ(x, k∗)2] = E[f(ϕ(x, kg)
2], hence we

can write the expression on the from:

κ(kc, kg) = 2E[f(ϕ(x, k∗)2]− 2E[f(ϕ(x, k∗)f(ϕ(x, kg)]

= 2E[f(ϕ(x, k∗)2 − f(ϕ(x, k∗)f(ϕ(x, kg)]

= 2E[(f(ϕ(x, k∗))(f(ϕ(x, k∗)− f(ϕ(x, kg)]⇒
κ(k∗, kg)

2
= E[(f(ϕ(x, k∗))(f(ϕ(x, k∗)− f(ϕ(x, kg)]

�
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With this result we can find the success-rate distribution for the CPA distin-
guisher in terms of the confusion coefficient.

Proof theorem 6.8.

bg =
1

Nσf(ϕ(−,k∗))

N∑
i=1

(f(ϕ(xi, k
∗) + ni)f(ϕ(xi, kg)))

From Fei et al. [5] we have that finding the probability that ρ̇c > ρ̇g, is equivalent
to showing bk∗ > bg. Hence we will calculate the distribution similarly as in
theorem 6.7, therefore when the steps are similar we will refer to that proof.

We can write bk∗ − bg in a different for to simplify the calculations.

bk∗ − bg =

1

Nσf(ϕ(−,k∗))

N∑
i=1

(f(ϕ(xi, k
∗) + ni)f(ϕ(xi, k

∗))− (f(ϕ(xi, k
∗) + ni)f(ϕ(xi, kg)))

1

Nσf(ϕ(−,k∗))

N∑
i=1

(
f(ϕ(xi, k

∗)(f(ϕ(xi, k
∗))− f(ϕ(xi, kg))

)
+ ni

(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg)))
)

We can now quite easily calculate the expectation as E[ni] = 0, so we can disre-
gard the second term. From lemma 6.10, we have that E[f(ϕ(xi, k

∗)(f(ϕ(xi, k
∗))−

f(ϕ(xi, kg)) =
κ(k∗,kg)

2 , so we can write the expectation as

E[bk∗ − bg] =
1

Nσf(ϕ(−,k∗))

N∑
i=1

κ(k∗, kg)

2
=

κ(k∗, kg)

2σf(ϕ(−,k∗))
,

which is what we wanted. As mentioned the covariance calculation is similar
to the covariance calculation in theorem 6.7, except with a slightly different ex-
pression, hence the independence and 0 expectation explanations will not be as
detailed. We know that

Cov[bk∗ − bkg , bk∗ − bk′g ] = E[(bk∗ − bkg )(bk∗ − bk′g )]− E[bk∗ − bkg ]E[bk∗ − bk′g ],

and as before we will focus on the first term as we have the formula for the second
one.

E[(bk∗ − bkg )(bk∗ − bk′g ) = E
[ 1

N2σ2
f(ϕ(−,k∗))

N∑
i=1

N∑
j=1(

(f(ϕ(xi, k
∗)) + ni

)(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)

(
(f(ϕ(xj , k

∗)) + nj
)(
f(ϕ(xj , k

∗))− f(ϕ(xj , kk′g ))
)]
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This big sum is quite similar to the one in the previous proof. Hence we can use
that the expectation of the noise is 0, mutually independent and independent
from the intermediate calculation. We then get the expectation on the form

E[(bk∗ − bkg )(bk∗ − bk′g )] =
1

N2σ2
f(ϕ(−,k∗))

( N∑
i=1

E
[(

(f(ϕ(xi, k
∗)) + ni

)2(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)(
f(ϕ(xi, k

∗))− f(ϕ(xi, k
′
g))
)]

+
∑
j 6=i

E
[(

(f(ϕ(xi, k
∗)) + ni

)(
(f(ϕ(xj , k

∗)) + nj
)

(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)(
f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g))
)])

Now we use the independence and 0 expectation results as in 6.7

1

N2σ2
f(ϕ(−,k∗))

( N∑
i=1

E[(f(ϕ(xi, k
∗))2

(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)(
f(ϕ(xi, k

∗))− f(ϕ(xi, k
′
g))]

+ E[n2
i ]E[

(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)(
f(ϕ(xi, k

∗))− f(ϕ(xi, k
′
g))
)
]

+
∑
j 6=i

E[
(
(f(ϕ(xi, k

∗))(f(ϕ(xj , k
∗))

(
f(ϕ(xi, k

∗))− f(ϕ(xi, kg))
)(
f(ϕ(xj , k

∗))− f(ϕ(xj , k
′
g))
)
]

By lemma 6.10,the independence of f(ϕ(xi, k) and f(ϕ(xj , k), and assumption
6.9 that E[f(ϕ(x, k)) = 0 we have all the different expressions on a form that we
can define with confusion coefficients, namely

E[(bk∗ − bkg )(bk∗ − bk′g )] =
1

N2σ2
f(ϕ(−,k∗))

(
N
(
κ̂(k∗, kg, k

′
g) + σ2κ̃(k∗, kg, k

′
g)
)

+N(N − 1)
κ(k∗, kg)κ(k∗, k′g)

4

)
.

All together we have that the covariance becomes:

Cov[(bk∗ − bkg ), (bk∗ − bk′g )]

=
1

N2σ2
f(ϕ(−,k∗))

(
N
(
κ̂(k∗, kg, k

′
g) + σ2κ̃(k∗, kg, k

′
g)
)

+N(N − 1)
κ(k∗, kg)κ(k∗, k′g)

4

)
−
κ(k∗, kg)κ(k∗, k′g)

4σ2
f(ϕ(−,k∗))

=
1

Nσ2
f(ϕ(−,k∗))

(
κ̂(k∗, kg, k

′
g) + σ2κ̃(k∗, kg, k

′
g)−

κ(k∗, kg)κ(k∗, k′g)

4

)
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�

Now that we have the expression for all the coordinates of the covariance matrix
and expectation vector we have all we need to estimate the success rate, now
expressed with confusion coefficients.



CHAPTER 7

Estimating the success-rate of an attack

One of the main purposes of calculating the probability distributions of different
side channel attacks is to estimate the success rate given different noise parame-
ters. The reason for wanting to estimate it rather than actually doing the attacks
and seeing the success, is that this is in some cases not possible or prohibitively
costly to do. Especially since we can be in the scenario where a success rate esti-
mation is too costly to estimate, but the actual attack is possible for a motivated
attacker. Hence in this chapter we will look at how we can estimate the success
rate of a side channel attack. One of the methods will be using the distinguisher
distributions we calculated in the last chapter. A way to simulate attacks to
estimate the success rate will also be introduced.

1. Estimating success-rates from cumulative distribution

With the probability distribution of the different distinguishers we can say what
probability the distinguishing vector has of being a certain value. This enables us
to calculate a theoretical success-rate by relating the distinguisher vector values
that is a successful attack to the distribution. Namely the case that the biggest
distinguishing score is the correct key-guess dk∗ . We will relate this case to the
distributions we have calculated by defining a new distribution where a successful
attack is the case where all the coordinates in the vector are positive.

In order to describe the distribution of success we need a way to compare the
correct key-score to the other ones. A simple way to this is to take the difference.
For correct key k∗ with distinguishing score dk∗ is scored higher than a different
key-guess score dk if dk∗ − dk > 0.

Definition 7.1. A comparison vector c is a (Nk − 1)-sized vector defined from
(Nk)-sized distinguishing vector d, where ci = dk∗ − di, for all i except for k∗.
k∗ is the correct key-guess.

55
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We can describe the comparison vector in terms of a linear transformation c = Pd
with (Nk)× (Nk − 1) matrix

P =


−1 0 0 · · · 0 1 0 · · · 0
0 −1 0 · · · 0 1 0 · · · 0
0 0 −1 · · · 0 1 0 · · · 0
...

...
...

. . .
...

...
...

...
...

0 0 0 · · · 0 1 0 · · · −1

 .

In P the 1-column is at the k∗ coordinate, and the -1 is at the same index
as the row, except for the k∗ row where the index skips one index . The es-
sential attribute of c is the fact that d successfully recovers correct key k∗

if and only if all entries of c are positive. Since d has an associated distri-
bution d ∼ N (md,

∑
d), we get that the comparison vector has distribution

c ∼ N (Pmd, P
∑

d P
T ).

A convenient fact of the confusion analysis in 6, is that for the distribution
calculation the expression is already on the form above. Namely where the key-
guesses are subtracted to the correct key. Hence for the distribution success rate
of the confusion coefficient distributions the transformation is not necessary and
one can go straight to the cumulative distribution calculation.

Due to the fact that the comparison vector c is positive for a successful key-guess,
and that is has distribution c ∼ N (Pmd, P

∑
d P

T ) it is now possible to describe
a successful key recovery attack:

Succ-oDx,k∗ = P [c > 0] = Φ(Pmd,P
∑

d P
T )(0,∞)

By c > 0 we mean that each entry in the comparison vector is bigger than 0. By 0
and ∞ we mean the Nk−1-sized vector containing that value. With this descrip-
tion of success-rate it is now possible to calculate the distribution of success for
specific distinguishers. One point however is that this is a Nk−1 dimensional cdf.
As the dimensions get bigger this gets more and more demanding to calculate.
For AES-128 the cdf to calculate the success rate is 255 dimensional. Therefore
it is useful to also have a different way to estimate the success rate.

2. Estimating success-rates from Monte Carlo simulation

In the Monte Carlo simulation method we perform side channel attacks on traces
generated in the model with specific noise parameters. Then one can calculate if
the distinguisher recovered the correct key and count it as an success if it does.
This is done many times, and the ratio of successes vs non-success becomes the
success-rate.
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Figure 1. The graph shows the success rates on the y-axis and
the number of traces on the x-axis. The orange line indicates a
simulated correlation attack success rate and the blue line indi-
cates a simulated profiling attack. The standard deviation σ is
2 for the generated traces.

A downside of this method is that it is both computationally heavy as one has to
perform the thousands of attacks in order to get a good estimate of the success-
rate. One also has to specify the leakage parameters before estimating the success
rate. This results in that the variance of the leakage has to be specified for every
estimation, as opposed to having a general distribution with a variance parameter,
which is then easier to change later.

In the side channel distinguisher case we can do Monte Carlo simulation by gen-
erating leakage according to the model with specified noise. Hence one generates
random plaintext inputs xi and create a leakage point with it by sampling from
f(m(xi)) + n where n ∼ N (0, σ), where we have chosen sigma. One can do
this repeatedly with randomly chosen xi each time. Then one simply used the
distinguisher and perform the side channel attack and look at the resulting distin-
guishing vector. If the correct key is the highest scoring one then the experiment
is counted as a success. One can do this iterative where traces are added and
the score recalculated. Then one can perform this experiment for an appropriate
number of times, which depends on the plaintext and key space. In this exper-
iment keys we have (28)2 = 65536 in other words the plaintext- and key-space
squared.

In Figure 1, we can see how the success-rate changes for the two different first
order distinguishers described in Chapter 4 and 5.
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Figure 2. The figure shows the comparison of the success-rate
vs number of traces with different estimation methods. Namely
the Rivain [14] in green, Fei et al. [5] estimation in orange, and
the simulated success-rate from Section 2 in blue. This is for
a standard deviation of the noise of 1, and for the correlation
distinguisher described in 1.

3. Comparing success-rate estimates

In this thesis three techniques of success rates estimation have been introduced.
Namely the Rivain [14] distribution estimation described in Chapter 4 and 5. The
confusion coefficient distribution estimation based on Fei et al. [5], and described
in Chapter 6. Lastly we have the simulated success-rates from the Monte Carlo
technique. We can compare these techniques by comparing the success-rates for
a specific standard deviation.

In Figure 2, we can see the three estimations compared. The Rivain success-rate
estimates a higher probability of success-than the simulated method, this follows
the results in [14] as one can see for the profile distinguisher success-rate in Figure
3.

The reasons for the difference in the estimates of the success-rates is an area
that is interesting to explore, but is out of scope of this thesis. An important
factor for the differences could be the simplification assumptions that are made
in the leakage model, and for the distinguishers. This thesis have also focused on
the theoretical success-rates which is based on the model of leakage. How these
estimations relate to real life attacks is also an interesting area to explore, however
here one need to do measurements on a computer chip running the cryptographic
algorithm which is also out of scope of this thesis.
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Figure 3. The figure shows the comparison of the success-rate
vs number of traces with the Rivain estimation [14] in grey, and
the simulated success-rate in black. The figure is taken from the
same paper.

Hence we have established two techniques for estimating the success-rate of a
side channel attack, given the noise parameters of the leakage model. This con-
cludes the exploration into side channel analysis as we now have explored the
main fundamental aspects of what goes into estimating the efficiency of a side
channel attack in a theoretical setting. Namely establishing a model for how side
channels behave and what leakage looks like. Defining the goals for side channel
attacks, and defining distinguishers that exploit the leakage model in order to
reach this goal. Then the distribution of the leakage model is associated with
the distinguisher scores, which is then again associated to the probability of suc-
cess. Hopefully the reader now has a sense of what attributes of a cryptographic
implementation side channel attacks exploits in order to recover the secret key.
As well as a sense of how we describe these attributes in a theoretical setting in
order to estimate how efficient these types of attacks are.
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