Lattice Sieving With G6K

Katrine Moksheim

Supervisors: Havard Raddum and Morten @Qygarden

Master’s Thesis in Informatics
Secure and Reliable Communication
Department of Informatics
University of Bergen

June 1, 2023

Acknowledgements

First I would like to thank my two supervisors, Havard Raddum and Morten (Jygarden
for their support, guidance, and encouragement in experimenting with G6K and writing
of the thesis.

I would also like to give a huge thanks to Mads and Wendy for giving me feedback
on my thesis and taking time out of their day to help me out.

Atlast, I want to thank my family and friends for keeping me motivated and inspired
during my studies. Especially thanks to my friends at the study hall for making the year
great and having some good crossword sessions.

Katrine Moksheim
June 1, 2023

Acknowledgements

Abstract

Recent advances in quantum computing threaten the cryptography we use today. This
has led to a need for new cryptographic algorithms that are safe against quantum
computers. The American standardization organization NIST has now chosen four
quantum-safe algorithms in their process of finding new cryptographic standards. Three
out of the four algorithms are based on the hardness of finding a shortest vector in a lat-
tice. The biggest threat to such schemes is lattice reduction. One of the best tools used
for lattice reduction is the G6K framework. In this thesis, we study sieving algorithms
and lattice reduction strategies implemented in G6K.

After an introduction to cryptography, we go over the necessary preliminary lattice
theory, important concepts, and related problems. Further, we look at lattice reduction
where we study different approaches with a main focus on lattice sieving. We then
explore the G6K framework, before finally performing some experiments using G6K.

The results we get often depend on what type of lattice we are working on. Our
experiments show that it is still possible to improve G6K for solving the shortest vector
problem for some lattice types.

Abstract

Contents

Acknowledgements

Abstract

1

Introduction

1.1 Cryptography Through History

1.2 Modern Cryptography,

1.3 Post-Quantum Cryptography
1.3.1 Quantum Computers

1.4 Standardization of Quantum-Safe Algorithms

1.5 Task Description e

Background

2.1 Notation e e e e e e e

2.2 LatticeTheory
2.2.1 Gram-Schmidt Orthogonalization

2.3 Shortest Vector Problem
2.3.1 Other Lattice Problems

Lattice Reduction

3.1 Lattice Reduction Algorithms
3.1.1 The LLL Algorithm
3.1.2 The BKZ Algorithm

3.2 Lattice Sieving oL e

3.3 General Sieve Kernel,
3.3.1 Sieving Algorithms in G6K
3.3.2 Lattice TypesinG6K
3.3.3 Lattice Reduction Strategiesin G6K

3.4 Darmstadt’s SVP Challenges

Experiments and Results

4.1 Lattice Type vs Sieving Algorithm
4.2 Reversing PumpNJumpTour
4.3 Changing the Pump Algorithm for the PumpNJumpTour

13
13
13
16
18
18

Vi

CONTENTS

5 Discussion and Conclusion

5.1 Discussion.
52 FutureWork
5.3 Conclusion

Appendix

List of Figures

1.1
1.2
1.3
1.4

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

4.10

Caesar Cipher with three shifts
Improvement of Caesarcipher
Symmetric cryptography
Asymmetric cryptographyo

Projectionof xonto Sand S+

Results from the experiment on g-ary Lattice from Table 1
Results from the experiment on NTRULike Lattice from Table2
Results from the experiment on knapsack Lattice from Table 3
Results from the experiment on uniform Lattice from Table 4
Results from the experiments on g-ary lattice with blocksize 30
Results from the experiments on g-ary lattice with blocksize 40
Results from the experiments on g-ary lattice with blocksize 50
Results from experiments with PumpNJumpTour on knapsack lattice

using blocksize=30
Results from experiments with PumpNJumpTour on knapsack lattice

using blocksize=40
Results from experiments with PumpNJumpTour on knapsack lattice

using blocksize=b0 Lo

viii LIST OF FIGURES

Chapter 1

Introduction

1.1 Cryptography Through History

To be able to make messages secret, and not easily available to unwanted adversaries,
has been a necessity for a very long time. We use cryptography to accomplish this,
and methods used for it have evolved a lot over the years. We will now see how this
evolution has been throughout our history.

In ancient Greece, they used a method where they wrote a message on a board and
then added a wax layer on top of it. This made the message hidden and it can be seen
as an example of what we call steganography. One of its weaknesses is that if people
were aware of the method used to hide the message, the meaning of the message could
easily be revealed. Since the message is only made secret due to hiding it, it means that
anybody who finds it will be able to understand it. However, this method was not very
secure, and therefore new methods evolved.

Moving forward to the Romans in Julius Caesar’s time (100BC) a new strategy
started to be used. Instead of hiding the message physically, they hid the actual meaning
of the message. People who found the message would most likely not be able to read
the true meaning behind the message since it all looked like gibberish. This is what
cryptography is about.

Julius Caesar used a cipher, which we today call the Caesar cipher, on the messages
he wanted to send. His idea was to shift the letters in the alphabet a certain amount of
times to the right, and then write the messages with the new alphabet, see Figure 1.1.
This technique is what we call a substitution cipher.

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher alphabet: XYZABCDEFGHIJKLMNOPQRSTUVW
Message: Hello world

Ciphertext: Ebiil tloia

Figure 1.1: Caesar Cipher with three shifts

2 Introduction

The message written with the cipher alphabet is called ciphertext. When the receiver
deciphers the ciphertext, they need to know the number of shifts the sender has used to
encrypt the message. This is called the cipher key. Additionally, we must assume that
the receiver knows which cipher is used for them to easily decipher it. In other words,
the receiver must know that Caesar cipher has been used to encrypt the message.

If we assume that the message is encrypted with Caesar cipher, would a person
without any knowledge of the key be able to decipher the message? If we look at
the Caesar cipher we will actually see that there are only 25 possible shifts of the
alphabet, since there are only 26 letters (using the English alphabet as an example). As
25 different combinations is not a lot, one could brute force the ciphertext. This means
trying all shifts of the alphabet until we get a plaintext that makes sense. Since the
Caesar cipher is easily broken, it has not been considered safe.

Additionally, there was also an improvement made to the Caesar cipher, where one
did not just do a cyclic shift of the alphabet but used an arbitrary permutation. This
means taking a random order of the letters, and then pairing each letter with another
letter in the alphabet, see Figure 1.2. As a result, there was was no longer only 25
different permutations of the alphabet, but so many that brute force by trying every
combination of letters becomes very time-consuming and actually impossible to do in
practice. Since all letters can be placed at every place it gives us 26! different shifts of
the alphabet, hence it can take more than a lifetime to figure out the correct one by trial
and error.

However, this method also has flaws that became more apparent as time passed. It
turned out that this cipher could be broken by a new important discovery in cryptanal-
ysis years later.

Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXY?Z
Cipher alphabet: QWERTYUIOPASDFGHJKLZXCVBNM
Message: Hello world

Ciphertext: Itssg vgksr

Figure 1.2: Improvement of Caesar cipher

The breakthrough in cryptanalysis happened however in the Islamic golden age.
Cryptanalysis is about how we can break ciphers, or in other words how to find weak-
nesses in cryptography. Some theologians were doing work on analyzing the Quran
and the Hadiths to find out if the texts were correct. They used frequency analysis on
words and letters in the two texts to compare them. Al-Kindi, a mathematician and
philosopher, then realized that this type of analysis also could be used to break ciphers.
As each letter has a frequency of how often they usually appear, he found out that we
can use this to check the frequency of letters in a ciphertext, and then decipher it by us-
ing the frequency analysis. It also turned out that all cryptography in use at this point
was vulnerable to this type of analysis, so new methods needed to be found.

1.1 Cryptography Through History 3

A consequence of having a weak cipher can be observed during the reign of Queen
Mary and Queen Elizabeth 1 in the 1500s. Elizabeth was the reigning Queen of Eng-
land, and her cousin Mary was the queen of Scotland. At that time England was
considered a protestant country supported by Queen Elizabeth. However, there were
some groups of people that meant England should be catholic, and this was also Queen
Mary’s wish. Queen Mary, together with a rebel group started to plot her way to the
throne so that England could become catholic. All communications between Queen
Mary and the rebels were encrypted, to avoid the content of the messages would get
into the hands of their enemy. Sir Francis Walsingham, who was Queen Elizabeth’s
principal secretary, got his hands on the messages and was able, with the help of the
best codebreaker in the country, to decipher the message. They could therefore expose
Queen Mary and the plotters. As a consequence of the solid proof, they executed the
plotters and had Queen Mary up for a trial, which concluded in her death. This means
that Queen Mary lost her life due to a weak cipher [31, pp. 32-44].

In the late 1800s, a man named Auguste Kerckhoffs wrote down 6 principles on
what he meant should be rules for any cryptosystem. He published the principles in
two articles called La Cryptographie Militaire and was highly focused on how to make
telegraphic systems secure. Even though these principles were written many years ago,
some of them are still applicable to the cryptosystems we use today. The principles are

([25])

1. The system must be substantially, if not mathematically, undecipherable.

2. The system must not require secrecy and can be stolen by the enemy without
causing trouble

3. It must be easy to communicate and remember the keys without requiring writ-
ten notes, and it must also be easy to change or modify the keys with different
participants.

4. The system ought to be compatible with telegraph communication.
5. The system must be portable, and its use must not require more than one person.

6. Finally, regarding the circumstances in which such system is applied, it must be
easy to use and must neither require stress of mind nor the knowledge of a long
series of rules.

Today it 1s the second principle that is the most important. This principle is often re-
ferred to as Kerckhoffs principle. The principle describes that the ciphers in use should
not be held secret, but rather be in the public domain. Today this is the standard, and
the only thing that is kept a secret is the keys that are used by the ciphers. This prin-
ciple is also the earliest example of the term "key", and an understanding of the fact
that we could make ciphers with only a small part of the scheme being secret (the key).
Additionally, another important point from the mentioned principles is that a key could
easily be changed. Today this is also regarded as important for a cryptographic scheme.

During the first world war we can see examples of how cryptography was an im-
portant aspect during this time. The year is 1914 and the radio has been taken into
use. Now the military was not depending on the electric telegraph to send messages

4 Introduction

anymore. The benefit of the radio compared to the telegraph was that it was not de-
pendent on cables, making it harder to sabotage. However, since the messages in radio
travel through the air people could more easily intercept the signals, meaning that the
information was not protected. Therefore they had to make the message into codes or
ciphers to make it indecipherable. At this point, they still used substitution ciphers.
Some of these were the Playfair cipher and the ADFGX cipher.

There were many ciphers that got deciphered during the first war, and one of them
was the Zimmermann telegram in 1917. The Zimmermann telegram was a message
for the German embassy in Mexico where the Germans tried to convince Mexico to
attack the US and join forces with Germany. However, this message got decrypted and
published all over the world. The US was not part of the war yet, but after this message
got exposed they decided to join in as well [32]. Now Germany had more enemies at
a time when they were already struggling. This is an example of a time when crucial
and secret information often got decrypted by the other parties, and we can say that the
codebreakers made more progress than the code makers.

When World War 2 began there was also some new technology that was widely used
by the military when it came to cryptography. The new technology included machines
that were used for creating advanced ciphers. These were called Enigma machines.
Before the war began the Germans were already using an Enigma rotor to make a
complex substitution cipher. At this time they had the most secure communication at
this point in time. However, the Polish mathematician Marian Rejewski was able to
break this enigma before the war. This was a huge breakthrough for cryptanalysis.
Poland later decided to share this knowledge with France and Britain as the Germans
began developing an improved enigma.

The Germans would continue developing the Enigma throughout World War 2, and
the cryptanalysts were working hard on breaking it. Both the French and the British
had considered the Enigma to be unbreakable but were now proved wrong by the Polish
invention. They also started to see the benefits of having mathematicians as codebreak-
ers, which had usually only consisted of linguistics and classicists in Britain. Bletchley
Park was a top-secret place for the British codebreakers, and here the famous Alan Tur-
ing was a member. He continued the work of Rejewski and was able to come up with
an idea that would be able to crack the enigma. Turing and his team were able to break
the Enigma with the concept of a machine that turned out to be the first programmable
computer. Now the Allies had an advantage as they could decipher almost everything
the Germans were communicating. This is considered by many to have shortened the
war drastically, as the allies kept it secret that they could read many of their rival’s
plans. It was in fact not revealed before decades after the war that they had been able
to crack the enigma.

From the second world war and up to today there has been a massive evolution in
technology. The computer as well as the internet has become a part of our daily life.
We use it for almost everything, such as banking information, personal information, and
emails. Since we have so much important and private information online it is important
that this is protected. Up until World War 2 cryptography had been something that was
developed in secret and mainly used by the military and governments. However, today
it is a part of the public domain and is available to everyone. Hence we should have
standards and requirements for cryptography.

Claude Shannon, who by many is considered to be the father of information theory,

1.2 Modern Cryptography 5

published his ideas of perfect secrecy in 1949 [29]. This was an important idea that
the standardizations that were developed later took into strong consideration. These
modern standardizations are described in Section 1.2, and include how we started to use
mathematical problems that are hard to solve for a computer as a part of the encryption
standards.

Today good encryption is regarded as important for our privacy and safety in our
everyday use. We have standardizations that work well for today, but will these be sus-
tainable for the future? The answer is most likely no. As demonstrated in Section 1.3,
there are potential threats against today’s standards if quantum computers get evolved
on a big scale. So today we have already started to develop new and quantum-safe
standardizations. However, these will be more described in Section 1.4.

1.2 Modern Cryptography

As mentioned before, cryptography is about how we are able to protect information
using cryptographic primitives. A reason we want to protect information might be to
prevent others to be able to read private messages. One of the methods used to do this
1s by using ciphers, which provide confidentiality. Ciphers consist of three different
operations: key generation, encryption, and decryption. We can define ciphers, or
encryption schemes, as follows [13, pp. 26-27].

Definition 1 Ciphers consist of three operations and three spaces. Key generation is
an algorithm based on probability, which will output a key based on a distribution.
All possible keys the key generation algorithm can output are called the key-space and
are denoted K. A message m is part of the space M, which contains all possible
messages. The encryption algorithm takes a k € K,m € M as input, and outputs a
ciphertext. We denote the encryption as ¢ = Enci(m). All of the possible outputs of the
encryption algorithm make up the ciphertext space C. The decryption algorithm takes
as input ¢ € C,k' € K, where k' is determined by k, and outputs m € M. The notation
of decryption is m = decy (c). We also require that decy (enci(m)) = m for all m € M
and k € K.

Encryption and decryption behave a little differently. This is because, in the en-
cryption algorithm, we base the output on probability. So encrypting the same message
multiple times can generate different ciphertexts. The decryption on the other hand
should always return the same plaintext as the original message, hence providing per-
fect correctness.

We can also see from the definition that both encryption and decryption use a key
from the key-space. If they both use the same key we call it symmetric cryptography
(see Figure 1.3). With this type of cryptography, we obtain confidentiality.

However, using only symmetric cryptography has its limits. Integrity, which we
consider to be a basic need for good cryptography, is not given. By integrity, we mean
that we should be certain that the message we receive has not been tampered with after
it was sent. A solution to this is using message authentication codes (MAC). The goal
of MAC is to prevent a third party from altering the messages without them going
undetected. Today we have begun to use MAC and symmetric cryptography together

6 Introduction

Shared secret key

Plain text b Cipher text h Plain text

Encryption Decryption

Figure 1.3: Symmetric cryptography

in one algorithm. This is called authenticated encryption and provides confidentiality
and integrity in one cryptographic primitive.

Another difficulty for symmetric cryptography is signing. For signing to work one
would need both sender and receiver to share a secret key. This can lead to problems,
so therefore we want to use a method where we can verify the sender without having to
do a key exchange first. We want anybody to be able to encrypt messages for a specific
receiver, and one should also be able to do verification of the sender.

Hence we started using asymmetric cryptography, or public-key cryptography as it
is also called (see Figure 1.4). This is based on the fact that we have a public key for
encryption and a private key for decryption. So here we use two different keys from
the key-space. By using public-key cryptography we also obtain the possibility to sign
messages, and then again get authenticity.

o

Different keys
Public key Private key
v v
Plain text h Cipher text h Plain text
Encryption Decryption

Figure 1.4: Asymmetric cryptography

Hard problems in cryptography

In this thesis, we will only focus on asymmetric cryptography. The concept of public-
key cryptography was introduced in 1976 in a paper by Diffie and Hellman [4]. They
presented a new protocol now called the Diffie-Hellman (DH) key exchange protocol.
DH allows two parties to share a secret key over a channel that is not secure and does
this without sharing any secret information in advance. The protocol consists of three

1.2 Modern Cryptography 7

main steps. First, the parties agree upon the public values g and p. The g is a generator
of the group Zj,, where p is a prime. Then each of the parties adds their secret value x
to the public ones to create their public key as A = g mod p and B=g” mod p. The
next step 1s transmitting the public values A and B to each other and then creating a
shared secret by raising the received value to the power of their private value.

AY=B"=g"Y modp

Now both parties will share a secret value without any knowledge of the other person’s
secret value.

For a third party to be able to find the secret key they must solve the equation g*’
mod p given the values g* and g”, and this is known as the Discrete Logarithm Problem
(DLP). This problem turns out to be quite difficult to solve when p is large. So Diffie-
Hellman is dependent on that for the group that is chosen (Z))), there exists no efficient
algorithm to solve DLP.

One important thing to mention with the first version of the DH-protocol is that
it was vulnerable to a man-in-the-middle-attack. As it does not provide any authen-
tication an eavesdropper could just stand in the middle of the conversation and send
messages back and forth without the communicating parties being able to notice. The
eavesdropper will pretend to be Bob with Alice, and pretend to be Alice with Bob. The
attacker does this by creating its own x and y which they share with the other parties
(Alice and Bob) to make the shared secret key. Now the eavesdropper can read all their
messages, so this is really not secure. If we add some sort of signature to the scheme,
it should not be vulnerable to this attack as we now also have authentication.

One of the earliest public-key cryptosystems is called RSA. The cryptosystem was
developed by R.L Rivest, A. Shamir, and L. Adleman and presented in a paper in 1978
[27], it is still used a lot today. The motivation behind the paper was the introduction
of email and there was a need for an electronic form of mail with similar qualities as
the paper mail. These qualities were privacy and signatures. Therefore in RSA, we
introduce encryption and decryption for privacy and signing and verification as digital
signatures. We define these methods with RSA as follows

Definition 2 Let p and q be two different large primes, and N = pq be an RSA modulus.
Then we let e be a positive integer such that gcd(e,@(N)) = 1, and let d be a positive
integer satisfying e-d =1 mod ¢(N). The public key is N,e, and the private key is
p,q.d. Then encryption is done as ¢ =m® mod N and decryption as m = ¢ mod N.
For signatures, we can make a signature as s = H (m)d mod N, where H is a cryp-
tographic hash function. To verify the signature one check if s = H(m) mod N.

As we can see from the definition both the encryption/decryption and signing/ver-
ification are dependent on public and private keys. In RSA the public key is e, N, and
the private key is d. The public value N is a composite number that is constructed by
the primes p and g by multiplying these together. Both p and g are secret. The d and
e needs to follow the property d-e =1 mod ¢(N), where §(N) = (p—1)(¢—1). So
if we are able to obtain p and g, we will also be able to construct the private key d as d
will be the only unknown part of the equation. If we can obtain d, we say that one has
broken the system.

8 Introduction

To acquire p and g one must factorize the RSA modulus N, but this is rather difficult
when p and g are large primes. This is a well-known problem called the Integer Fac-
torization Problem (IFP). Today there exists no efficient algorithm that can solve this
problem for large numbers, but there do exist algorithms such as Pollard’s tho method
for factorizing [13, pp. 344-345] and quadratic sieve [13, pp. 345-346] that are able
to factorize numbers up to some bit length. However, the primes RSA uses are too big
for any of these to be able to solve on today’s computers, and we can say that RSA is
dependent on IFP being a hard problem for it to be considered secure.

However, as described in Section 1.3 it has been shown that it is possible to solve
both IFP and DLP with quantum computers. Today RSA is one of the schemes stan-
dardized by NIST to use for digital signatures. As this depends on IFP being a hard
problem to solve we are going to look closer at the consequences this quantum algo-
rithm has for RSA and other standards in use today in the next section.

1.3 Post-Quantum Cryptography

As we now have an understanding of what cryptography is about, we are going to
look at post-quantum cryptography. Today most of the cryptographic schemes used in
public-key cryptography depend on the hardness of problems such as prime factoriza-
tion and discrete logarithms. These are problems that we believe a normal computer
cannot solve in a reasonable time with the standards today. However, in 1994 a math-
ematician named Peter Shor described an algorithm for finding the prime factorization
of an integer [30]. The algorithm is called "Shor’s algorithm" and it is a quantum com-
puter algorithm. This means that this algorithm only works for quantum computers,
which we will look closer at in Section 1.3.1. However, a consequence that follows
from this is that the public-key cryptography schemes in use today will be vulnerable
and broken by Shor’s algorithm if we are able to produce such quantum computers on
a big scale.

Also, today’s symmetric cryptography standards will be threatened by big-scale
quantum computers. In 1996 Grover described a search algorithm for quantum com-
puters, which will be able to break symmetric schemes if the key-space is too small
[8]. Also, hash-functions will be vulnerable to Grover’s algorithm. However, the solu-
tion to this threat is actually much simpler than for public-key cryptography, as we just
need to double the key size to restore the security level.

We have now seen that the cryptography schemes in use today are not safe against
large-scale quantum machines, hence they are not post-quantum secure. Post-quantum
cryptography is schemes that have no known methods of solving its hard problem in
polynomial time on a large-scale quantum computer.

Today the development of quantum computers has begun and big companies such
as IBM and Google are actively working on it. They spend a lot of resources on devel-
oping them, but why do they do this when we have just looked at how dangerous this
can be for today’s cryptographic standards? Quantum computers can be used for so
many things that are good for our society as well, hence there is a lot going on in this
field at the moment. As of now, we do not have any big-scale quantum computers, and
there is still a long way to go until they actually pose a threat to the cryptographic stan-
dards in use today. However, the standards today should be changed as soon as possible

1.3 Post-Quantum Cryptography 9

due to many reasons and NIST has come a long way in its standardization process for
post-quantum cryptography. We will look closer at this process in Section 1.4.

One of the reasons we have to start a process of finding post-quantum secure stan-
dards for cryptographic schemes is because of time. It takes a lot of time to change
from one standard to another. Protocols need to be changed, and old protocols need to
be replaced. This has shown itself to take a lot of time in the past, hence it is likely
to be a slow process now as well. Another reason would be that the process of actu-
ally finding good replacements that are post-quantum safe also takes a lot of time. The
time for both designing algorithms and analyzing them using cryptanalysis should be
long. It is important that these are carefully tested if they are to become new standards.
The last reason is the long-term threat of adversaries. Even though it is likely that it
will take decades until we have large-scale quantum computers an adversary could save
the encrypted sensitive data now. They could then decrypt it later if they get access to
a large-scale quantum computer. Hence sensitive information that should stay secret
for maybe 20-30 years from now should ideally be encrypted with post-quantum safe
encryption now.

We have seen why we need to start with the standardizations today, but what are the
options for replacing DLP and IFP? There are several different approaches we could
take. These could be

* Multivariate problems: the difficulty of solving systems of multivariate polyno-
mial equations over finite fields.

* Isogeny-based problems: the difficulty of finding an isogeny between two elliptic
curves.

* Code-based problems: the difficulty of decoding large general linear codes.

* Hash-based problems: the difficulty of finding collisions or pre-images in hash
functions.

« Lattice-based problems: the difficulty of finding the shortest vector in a lattice.

The lattice-based problems are what we are going to focus on in this thesis, and here
we are going to study the shortest vector problem (SVP), which we are going to look
closer at in Chapter 2. Since there are different approaches we need to figure out which
direction is the best one to choose. As mentioned NIST is running a process with new
standardizations and the government, industries, and academia are involved in the work
of it all.

1.3.1 Quantum Computers

A quantum computer is a computer that uses elements from quantum physics. As op-
posed to normal computers which use binary bits to encode information, the quantum
computer uses what we call a quantum bit (qubit). What is special about qubits contra
binary bits, is that binary bits are either 1 or O or in other words, can only represent one
value at a time depending on how many bits are available. Qubits can be everything

10 Introduction

those bits can represent at the same time, meaning that they can be both 1 and 0 simul-
taneously. Since they can be multiple values at the same time, this also gives room for
massive parallelization.

It is known that it is possible to solve IFP for a quantum computer due to its paral-
lelization. However, this is easier said than done, as the qubits themselves are not easy
to work with. In physical implementations, qubits are sensitive and can easily fail due
to for instance noise.

Today’s most advanced quantum computers are developed by IBM. Their quantum
computers have 433 qubits to use [12], but how much is this? To give a point of view,
Shor’s algorithm was implemented on a quantum computer around 20 years ago by
some researchers at IBM [11]. They implemented it specifically to factorize 15. The
quantum machine needed 7 qubits to be able to solve this. However, this implemen-
tation will only be able to solve the factorization of that number and not any other.
Having a scalable implementation turns out to be very hard, and something that will
be needing a lot of work to be able to operate correctly. Shor’s algorithm for larger
numbers is still not solved, and it seems like it will be difficult to achieve.

We still have a long way to go and probably will need quantum computers with over
a million qubits until we are able to factorize big enough numbers to threaten RSA
parameters used today. In 2021 Gidney and Ekera presented a theoretical quantum
algorithm to solve 2048-bit RSA using 20 million noisy qubits [7]. It is also worth to
note us that the number of qubits for solving these problems can change over time as
we learn more about quantum computing.

In recent years and now quantum computer development has been an emerging field
so there is a lot of money used to evolve them further. Nobody knows how fast we will
be able to get these machines on a big scale yet.

1.4 Standardization of Quantum-Safe Algorithms

NIST stands for National Institute of Standards and Technology, and they work with,
among other things, cyber security standards for the U.S. [19]. They standardize cryp-
tographic protocols and algorithms that U.S. companies have to follow. Even though
it is a governmental organization for the U.S., it is also useful to the rest of the world,
as they spend a lot of time on research and figuring out the most secure way to go.
NIST has for instance made standards such as DES and AES, and currently, they are at
the end of a process of making standards for post-quantum cryptography as well. As
large-scale quantum computers can be a potential threat against the standard crypto-
graphic methods in use today, NIST has decided that they need to make new standards
that are post-quantum safe. These standards are for encryption/decryption and digital
signatures, and they are planning on releasing the standards in 2024. NIST wants to
be precautionary for this type of threat, as they do not expect large-scale quantum ma-
chines to be available for several years/decades, but it is better to be prepared in case it
does happen. As mentioned an argument as to why we need post-quantum cryptogra-
phy now is that some data that is encrypted today needs to be secret for at least 20-30
years. If big-scale quantum machines should be just 20 years away, we need to change
our encryption algorithms today. NIST has decided to spend a lot of time selecting the
new standards, and they chose to use a competition for finding the new standards [21].

1.5 Task Description 11

The competition started in 2016 with round one where anybody could submit a
suggestion with an algorithm they had made. One would submit the code, a description
of the algorithm, and who had been a part of the project. On the 30th of January
2019, 26 candidates were chosen to join the next round of the competition, where 17
of them were candidates for encryption/key-encapsulation mechanism algorithms, and
9 of them for digital signatures. For the second round, the participants were given a
few months to update their implementation and specifications if they wanted, and then
NIST would begin the evaluation of the algorithms. The evaluation part was expected
to last for a year to a year and a half.

In 2020 on the 22nd of July, NIST announced the candidates for the third round [22].
There were 7 finalists chosen and 8 alternates. For the public-key encryption and key-
establishment algorithms, the following algorithms were chosen as finalists: Classic
McEliece, CRYSTALS-KYBER, NTRU, and SABER. The alternate candidates were
BIKE, FrodoKEM, HQC, NTRU Prime, and SIKE. There were also chosen finalists for
the digital signature algorithms, and these were: CRYSTALS-DILITHIUM, FALCON,
and Rainbow. The alternate candidates chosen for the signatures were GeMSS, Picnic,
and SPHINCS+. Again the candidates had some time to update comments and make
some tweaks to the algorithms before NIST decided on who should advance to the next
round.

On the 5th of July 2022, NIST presented the selected algorithms for the public-key
encryption and key-establishment algorithms and digital signature algorithms [20]. For
Encryption/key-establishment NIST chose to go for CRYSTALS-KYBER, which is a
lattice-based algorithm. NIST also decided on finding some other options that are not
lattice-based, so the candidates for round four are some extra algorithms. The reasoning
for this is in case an effective quantum algorithm to solve the lattice-based problem is
found. We would then need some other options that do not depend on the same problem
to use instead. The algorithms that are in round 4 are BIKE, Classic McEliece, HQC,
and SIKE [23]. For Digital signatures there were selected three algorithms, which
were CRYSTALS-DILITHIUM, FALCON, and SPHINCS+. They have also made a
proposal for other digital signature algorithms, and these have a submission deadline
of June 1st, 2023 [24].

1.5 Task Description

In this master thesis we are going to look closer at the shortest vector problem for
lattices, and at which methods used today work best for solving it. In general, it is the
sieving method that is considered best for bigger lattices, and a Python library called
G6K stands out as the current best tool for doing sieving.

We begin by introducing the concept of lattices, and the relevant basic properties a
lattice can have. The lattice theory also consists of important theorems, notations, and
definitions that will be used to describe problems such as the shortest vector problem.
As the shortest vector problem is the main problem we will be looking at in this thesis
we are going to explore the problem and approaches people take to solve it today.

Lattice reduction is introduced as a technique for trying to solve the shortest vector
problem. Both the LLL algorithm and BKZ algorithm will be demonstrated as these are
important lattice reduction algorithms. Sieving and enumeration are different methods

12 Introduction

of lattice reduction, and we will mainly focus on the sieving method. We are going to
look at how sieving works and what the main idea behind sieving algorithms is.

After sieving is introduced we are going to look at G6K. For the G6K library, we
will be going through how it is built up before we explain briefly which sieving algo-
rithms they have implemented, and some of the lattice types they offer. Then some of
the strategies that are presented in the G6K paper are gone through. We will also see
some examples of how G6K is used today in the SVP challenge.

After presenting enough background knowledge we will do some experiments using
GO6K. The experiments are on how to use sieving in practice, and we will utilize the
G6K library in the experiments. The experiments will try to improve a sieving strategy
proposed in G6K and look at how sieving algorithms behave based on lattice type and
dimension.

Chapter 2

Background

2.1 Notation

Before we begin with the actual theory, we will go through the notation we use in this
thesis. For vectors, we denote them in bold text like this: v. The vectors can also have
coefficients in front of them, which we denoted with lowercase letters, an example is
av. Matrices we denote with capitalized letters, so a matrix can look like this: M.
Matrix M consists of n vectors that have length m, where the vectors are the rows of M.
We can further also denote a matrix with its size M,,« .

A lattice will also be denoted in a capital letter, but this will always be a capital L,
and we denote its generator vectors as (by,...,b,). Also for these lattice vectors, we
denote their coefficients in lowercase letters.

For the volume of a lattice and a matrix, we denote it using the abbreviation vol,
and we write it as vol(M). For the determinant of a matrix or a lattice we also use the
abbreviation det, and denote it as det (M).

2.2 Lattice Theory

A lattice is a discrete additive subgroup of R™. It is generated by a set of n linearly
independent vectors that are in R”. As we have n independent vectors in R, we need
n < m. We define a lattice as follows

Definition 3 A lattice L is given as L = {ajb; + a;by + ... + ayby|a; € Z},where
bi,...,b, are n linearly independent vectors in R™. A set of vectors that generate
the lattice is called a basis.

A basis of a lattice is not unique, hence we can have different sets of linearly indepen-
dent vectors that generate the same lattice.

We can map between different bases by using a change of basis matrix, which we
