
Master Thesis

University of Bergen

Department of Informatics

Simulating Private Information Retrieval
on Amazon Web Services

Author:
Eirik Rygnestad Bergesen Supervisors:

Hsuan-Yin Lin
Eirik Rosnes

September 15, 2023

Preface
I want to express my gratitude toward my supervisors, Hsuan-Yin Lin and Eirik
Rosnes. This thesis could not exist without your guidance. Thank you for sharing
your knowledge with me, and thanks for many good discussions.

I would also like to give my thanks to my friends and fellow students at the
master’s study halls Glassburet, and Algo at the University of Bergen. We have
shared many laughs and good times and you have kept my spirit high.

i

Abstract
As our modern lives have gradually moved more and more online, companies and
state actors have taken it upon themselves to gather and analyze our behavior online,
and as these actors have gradually shown just how much they know about a private
user, or a group of users, a concern for privacy has grown accordingly. A virtual
private network service could help anonymize a user, but the providers of services
usually log what services they provide, which can provide identifying information.
Research in privacy measures have thus become a larger topic in recent time. Private
information retrieval allows a user to query a database without revealing to the
server any information about the information queried, and if effective enough, could
provide perfect privacy to everyone. In this thesis, we examine a state-of-the-art
efficient private information retrieval scheme and study every step in the protocol
in a simulation implemented on Amazon’s cloud computing services.

iii

List of Figures

2.1 Illustration of PIR . 8

3.1 Launch properties of EC2 . 15
3.2 Images used in experiments (Not to scale). 17
3.3 Illustration of CGKS’s scheme with two servers, querying for X5 . . . 19

4.1 CDF of: Time spent generating queries. Querying 1 random file of a
database of 1000 files. Files of 1MB. 1000 iterations. Labels according
to performance. 29

4.2 CDF of: Per server average time spent sending a query to a server.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000
iterations. Labels according to average performance. 31

4.3 CDF of: Server average time spent on computing reply. Querying 1
random file of a database of 1000 files. Files of 1MB. 1000 iterations.
Direct download omitted. 33

4.4 CDF of: Average time spent on downloading a reply from a server.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000
iterations. Labels according to average performance. 35

4.5 CDF of: Time spent reconstructing and decoding reply from servers.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000
iterations. 37

4.6 CDF of: Total time spent retrieving a file from server(s). Querying 1
random file of a database of 1000 files. Files of 1MB. 1000 iterations. 39

v

List of Tables

3.1 Retrieval of X, of an MDS(5,2,4) encoded database, where M = 3. . 22

4.1 Size of a query, by protocol. 30
4.2 Bytes sent by each protocol . 32
4.3 Workload of a single server in a protocol. 34
4.4 Bytes downloaded from servers divided by two 36
4.5 Total number of bytes downloaded from all servers in protocol divided

by two. 37

vi

Contents

Acknowledgements . i
List of Figures . v
List of Tables . v
Contents . vi

1 Introduction 2
1.1 Motivation . 2
1.2 Our Objective . 3
1.3 Thesis Organization . 3

2 Preliminaries 6
2.1 Finite Fields . 6
2.2 Linear Codes . 6
2.3 Private Information Retrieval (PIR) 7
2.4 Chor et al.’s Scheme . 8
2.5 Tajeddine, Gnilke, and El Rouayheb’s Scheme 10

2.5.1 Database Structure . 10
2.5.2 Queries . 11
2.5.3 Retrieval . 12

2.6 Related Work . 12
2.6.1 Classic Private Information Retrieval 12
2.6.2 Coded Private Information Retrieval 13
2.6.3 Symmetric Private Information Retrieval 13
2.6.4 Leaky/Weak Private Information Retrieval 13

3 Implementation Details 14
3.1 Programming Language and External Libraries 14
3.2 Amazon Web Services . 15
3.3 Communication . 16
3.4 Database Details . 16
3.5 Direct Download . 17
3.6 CGKS’s Scheme . 18
3.7 TGE’s Scheme, RS(5, 2) . 19

3.7.1 Encoding the Database . 19
3.7.2 Queries . 20
3.7.3 Decoding . 23

vii

4 Findings 27
4.1 Considerations . 27

4.1.1 Local Time Problem . 27
4.1.2 Averaged Statistics . 27

4.2 Results . 28
4.2.1 Generating Queries . 29
4.2.2 Upload . 31
4.2.3 Server Computation . 33
4.2.4 Download . 35
4.2.5 Client Computation . 37
4.2.6 Total Time Spent . 39

5 Conclusion 40
5.1 Future Work . 40

5.1.1 Reducing Time Spent Downloading 40
5.1.2 Compute Response of Servers in Parallel 41
5.1.3 Study of Weak PIR . 41

References 41

1

Chapter 1

Introduction

1.1 Motivation
The International Telecommunication Union estimates that there were 5.3 billion
active internet users in 2022 [1], and we can assume this number has steadily in-
creased. The internet has become a massive medium for sharing information, social
media, communication, collaboration, and commerce. As our daily online presence
increases, what one can learn about our footprint also increases. Many share a lot of
information about themselves online, with less concern for privacy, in exchange for
some convenience, like Facebook being able to recommend your next friend or Tik-
Tok recommending the entertainment you are statistically inclined to watch. There
are people who do not like to give up their information and preferences. Some people
feel like the amount of knowledge some companies have about them is frightening.
For example, how many were frightened by how the American retailer Target can
fairly accurately estimate whether a woman is pregnant and how far along they are
based on purchases [2], while still acknowledging how creepy and discomforting this
would be if known to the customer. A private information retrieval (PIR) scheme
allows a user to retrieve a file from a database without revealing any information
about the requested file. This was first introduced by Chor et al. in 1995 [3],
who proved that when accessing a single database, to guarantee perfect privacy,
the whole database had to be downloaded. In the same paper, Chor et al. proved
and gave examples of multi-server schemes of communication cost as low as O 3

√
n.

Since Chor et al. published their paper in 1995, there have been many studies on
reducing communication costs further using multi-server schemes. As modern com-
puters and cloud services have vastly improved over the last decade we aim to study
the practical performance of one of these new private information retrieval schemes,
and what challenges emerge when doing a practical implementation on Amazon’s
modern cloud infrastructure. We implement Tajeddine, Gnilke, and El Rouayheb’s
private information retrieval scheme for a distributed storage system for no collud-
ing servers [4] on Amazon’s cloud service Elastic Cloud Computing, to study its
performance. We compare it to a direct download scheme and Chor et al.’s scheme
implemented on the same architecture to provide some comparisons on performance.
We study and compare each individual step in these protocols and comment on their
performance.

2

1.2 Our Objective
Our objective is to study how a modern PIR scheme performs in a simulation imple-
mented on Amazon’s web services. We aim to provide details of our implementation
of Tajeddine, Gnilke, and El Rouayheb’s scheme for no colluding nodes, Chor et
al.’s scheme, and a direct download scheme. We aim to provide details of how our
servers have been implemented, and what challenges we have faced when managing
our servers in the Amazon cloud computing service, Elastic Cloud Computing. We
aim to compare the performance of our implementation of Tajeddine, Gnilke, and
El Rouayheb’s scheme using a Reed Solomon encoding for some selected different
parameters, to Chor et al.’s scheme implemented using 2 and 3 servers, and a no
privacy single server direct download scheme. We aim to explore the challenges of
our implementation of these private information retrieval schemes, provide insight
into practical performance, and illuminate potential points of congestion and other
factors for performance issues, in all steps of our simulation.

1.3 Thesis Organization
• Chapter 1: An introduction to our thesis.

• Chapter 2: Introduction of concepts and terminology used in this thesis and
an overview of relevant related work.

• Chapter 3: In-depth details of our implementation and simulation environ-
ment

• Chapter 4: Detailed examination of our results and findings

• Chapter 5: Suggestions for future work and some final remarks drawn from
our findings.

3

Notation and Nomenclature

We introduce some notation and nomenclature that will be used within the body of
this document further on.

Abbreviations

CGKS Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan

DSS Distributed storage system

MDS Maximum distance separable

PIR Private information retrieval

RS Reed Solomon

TGE Razane Tajeddine, Oliver W. Gnilke, and Salim El Rouayheb

Notation

Bold italic characters Reference a vector or a matrix

Italic characters Reference a symbol or integer

Nomenclature

α The number of stripes in a divided file, d− 1, n− k

β Quotient of n−k
k

A A transposed Vandermonde matrix, generator matrix for Reed Solomon codes

G Generator matrix for a linear code

W The RS encoded database

ω The number of bytes in one file

σ The sub-packetization factor of Chor et al.’s scheme

| · | The total number of one’s in a matrix or a vector

d The minimum distance of an MDS code, d = n− k + 1

k The message length of a linear code

M The number of files in the database

4

n The block length of a linear code, and the number of server nodes in the
schemes

q The field over which the linear code is defined, in our implementation, the
prime field GF(257)

r Remainder of n−k
k

5

Chapter 2

Preliminaries

In this chapter, we review some of the terminologies and concepts relevant to this
thesis.

2.1 Finite Fields
A finite field or Galois field is a set of elements that satisfy the rules of arithmetic,
called field axioms. This means that the elements are closed under addition, sub-
traction, multiplication, and division (except for division by zero). The order or size
of a field is the number of elements in the field and is always a prime number or a
power of a prime. Finite fields are denoted by GF(pr) or GF(q) where q = pr or by
Fpr , for some positive integer r. GF(p) is called the prime field of order p and is the
field of residue classes modulo p. The prime field GF(p) thus contains the elements
0, 1, 2, . . . , p− 1.

2.2 Linear Codes
A linear code over a finite field of q elements Fq is a linear subspace of the vector
space C ⊂ Fn

q . The vectors making up this subspace are called codewords. The code
gains an error-correcting feature when the distance between the codewords is large
enough. If a codeword is received with errors, the codeword can be recovered by
finding the nearest neighbor codeword. How many errors can be corrected depends
on the distance between the codewords. The sphere packing bound explains that a
code with a minimum distance d between two arbitrary codewords can detect d− 1
errors and can correct ⌊d−1

2
⌋ errors. In a linear code, all linear combinations of the

codewords are also codewords.
A linear block code is a linear code where blocks of information of length k are

encoded into n symbols. This can be achieved by multiplying the message block
of length k by a matrix of dimensions k × n. These matrices are called generator
matrices, and the resulting codeword x is given by

uG = x,

where u denotes the message and G is the code generator matrix.
When the rows of the generator matrix consist of linearly independent vectors

in Fn
q a code is created. As such, linear block codes are denoted by the block length

6

n, the message length k, the order of the field in which they are defined q, and the
minimum distance between codewords, d.

Maximum distance separable (MDS) codes are a subset of linear block codes
that achieve the Singleton bound, i.e., they have the maximum distance separating
property of any two codewords, hence the name. For codes achieving the Singleton
bound, the minimum distance between any two arbitrary codewords in the code is
d = n− k + 1.

Reed Solomon (RS) codes are MDS codes where all the codewords in the code
can be described as a sequence of function values of a polynomial of degree less than
k. RS codes are denoted by a block length n, message length k, and an alphabet
size q, where k < n ≤ q. The set of alphabet symbols is interpreted as the finite
field of order q, where q is a prime power. To obtain the codeword related to some
message of length k made up of the elements in Fq, the message symbols are treated
as coefficients of a polynomial p of degree less than k, of the finite field of q elements.
The polynomial pu of a given message vector u is evaluated at n ≤ q distinct points:
{a1, . . . , an}, and the corresponding codeword x is generated as

x(u) =
(
pu(a1), pu(a2), . . . , pu(an)

)
,

where pu is a polynomial over Fq of degree less than k. The codeword x(u) satisfies
x(u) = uTA, where A is a transposed Vandermonde matrix of dimensions n × k
with elements from Fq.

A =




1 . . . 1 . . . 1
a1 . . . ak . . . an
a21 . . . a2k . . . a2n
...

...
...

ak−1
1 . . . ak−1

k . . . ak−1
n




That is, as RS codes are linear codes, we can use a transposed Vandermonde matrix
as a generator matrix for an RS code.

2.3 Private Information Retrieval (PIR)
Private information retrieval was introduced in 1995 by Chor et al. [3]. Private
information retrieval means that any of the queried databases can not learn any
information on the identity of the item requested from the query it received. As
the only single server information-theoretical PIR (IT-PIR) scheme is to download
the whole database, IT-PIR research often approaches this problem by querying
a replicated database stored over several servers. By querying bits of information
from different servers where the actual query is hidden in interference, a user can
remove the interference and reconstruct the message from the replies. The use of
multi-server schemes also allows for reducing the storage overhead through the use
of coded distributed storage systems. The efficiency of private information retrieval
schemes is measured in the communication cost, where the communication cost
contains both the upload cost and the download cost. As the size of the downloaded
data often far outweighs the size of the queries, the efficiency is often measured in
only the download cost. The efficiency of the download cost is typically known as

7

query

response

privacy

Figure 2.1: Illustration of PIR

the PIR rate. The PIR rate is the ratio of the number of symbols in the file requested
and the number of symbols downloaded in the PIR scheme to retrieve a single file,
i.e.,

RPIR =
Number of symbols in file requested

Number of symbols downloaded to retrieve requested file
The PIR capacity is the maximum PIR rate. Sun and Jafar [5] characterized the
PIR capacity for the classical PIR model of replicated servers.

2.4 Chor et al.’s Scheme
In 1995, Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan (CGKS)
released the paper Private Information Retrieval [3] detailing a scheme where the
whole database is fully replicated across n servers. The scheme queries for a response
containing information on the database and can reconstruct the desired file from the
replies. In terms of communication cost, CGKS’s scheme requires sending queries of
size equal to the number of files in the database, M , to each of the databases. For
two servers the size of the download from each of the servers is equal to the size of
the largest file in the database. If the number of servers is more than two, we can
query for a block of the file from each of them, reducing the download cost from
each of the servers and reducing the total download cost. For a client to retrieve a
file from this multi-server structure, it must generate n queries, where each query
is of length equal to M , the number of files in the database. The servers compute
responses of the database onto the query and send the results back to the client.
The client must decode the file with a simple subtraction operation and a simple
modulus operation.

In CGKS’s scheme with n servers, the database is stored with full redundancy
at all servers, S1,S2, . . . ,Sn.

Sl =




X0

X1
...

XM−1


 , l ∈ [n].

8

Now consider each file X divided into β sub-packets.

Sl =




x0,1

x0,2
...

x0,β

x1,1

x1,2
...

x1,β
...

xM−1,1

xM−1,2
...

xM−1,β




, l ∈ [n].

If the scheme is implemented with only two servers, then β = 1, and the sub-packet
represents the whole file, but for n > 2, each file is divided into β = n−1 sub-packets.
To retrieve a file i, Xi, we need to retrieve all the sub-packets xi,1, xi,2, . . . , xi,β to
be able to reconstruct Xi. To make a retrieval of xi, we generate our queries
Q1,Q2, . . . ,Qn to send to the servers. We first generate a binary random vector
u = [u0, u1, . . . , uβM−1], whose elements are chosen uniformly random from F2, as in
either 0 or 1, with length equal to βM . We then generate β unit vectors e1, e2, . . . , eβ

of length βM , where the position correlating to the sub-packet we are trying to
retrieve from the server database is equal to 1. To ensure we retrieve all the sub-
packets Xi consists of, we need to retrieve the sub-packets xi,1, xi,2, . . . , xi,β.

S =




x0,1

x0,2
...

x0,β
...

xi,1

xi,2
...

xi,β
...

xM−1,1

xM−1,2
...

xM−1,β




, e1 =




0
0
...
0
...
1
0
...
0
...
0
0
. . .
0




, e2 =




0
0
...
0
...
0
1
...
0
...
0
0
...
0




, . . . , eβ =




0
0
...
0
...
0
0
...
1
...
0
0
...
0




.

Our queries Q1,Q2, . . . ,Qn, where n = β + 1, are composed of the according unit
vector ei and the random vector u added together modulo 2, as our vectors are
defined in F2, u+e1,u+e2, . . . ,u+eβ, while the last query remains as the random

9

vector u.

Q1 =




u0 + e1,0
u1 + e1,1

. . .
uβM−1 + e1,βM−1


 mod 2, Q2 =




u0 + e2,0
u1 + e2,1

. . .
uβM−1 + e2,βM−1


 mod 2, . . .

Qβ =




u0 + eβ,0
u1 + eβ,1

. . .
uβM−1 + eβ,βM−1


 mod 2, Qn =




u0

u1

. . .
uβM−1


 .

This means that any of queries Q1,Q2, . . . ,Qβ and Qn will always have magni-
tudes differing by 1. These queries are then sent to the servers Q1 −→ S1,Q2 −→
S2, . . . ,Qn −→ Sn. Note it does not matter what query is sent to what server as
long as one query is sent to each server. To uphold the restrictions on download
cost, the responses are computed in Fq, where Fq is of a larger order than any unit
of information in Xi. The responses sent from the servers are

r1 = (u0 + e1,0)x0,1 + (u1 + e1,1)x0,2 + · · ·+ (uβM−1 + e1,βM−1)xM−1,β mod q

r2 = (u0 + e2,0)x0,1 + (u1 + e2,1)x0,2 + · · ·+ (uβM−1 + e2,βM−1)xM−1,β mod q

...
rβ = (u0 + eβ,0)x0,1 + (u1 + eβ,1)x0,2 + · · ·+ (uβM−1 + eβ,βM−1)xM−1,β mod q

rn = (u0x0,1 + u1x0,2 + · · ·+ uβM−1xM−1,β) mod q

As the client receives these answers, we can remove the interference and retrieve
the sub-packets we requested. We compare each of the queries Q1,Q2, . . . ,Qβ to
the query Qn. If the magnitude of Qn is larger than the query compared to it, we
subtract the projection received from the query of the smallest magnitude from the
one with the projection received from the query of the larger magnitude, modulo q,
to retrieve the sub-packet. If |Q1| > |Qn| then, xi,1 = (r′

1 − r′
n) mod q, otherwise

|Q1| < |Qn| and, xi,1 = (r′
1 − r′

n) mod q. Thus, we can retrieve all the sub-packets
and restore the requested file, Xi.

2.5 Tajeddine, Gnilke, and El Rouayheb’s Scheme
In Private Information Retrieval from MDS Coded Data in Distributed Storage Sys-
tems [4], Razane Tajeddine, Oliver W. Gnilke, and Salim El Rouayheb introduce
a PIR scheme for no colluding servers with a download cost of 1

1−R
per unit of re-

quested data, that achieves the theoretic optimal limit for linear schemes, where
R = k

n
is the code rate, and n and k are the block length and the message length of

the MDS code by which the database is encoded. This scheme is referred to as the
TGE scheme in this thesis.

2.5.1 Database Structure

Consider a distributed storage system (DSS) that stores M files over n nodes. The
DSS uses an (n, k, d) MDS code over Fq to store the files with redundancy at the n

10

nodes. To encode the files, they are all divided into α stripes, where each stripe is
divided into k blocks. The files are thus divided into αk blocks. Let B be the ratio
of the number of bytes in a file to αk. Then, block x1,1 contains the first B bytes of
the file, block x1,2 contains the next B bytes of the file, and so on.

X =




x1,1

x1,2

. . .
x1,k

x2,1

x2,2

. . .
x2,k

. . .
xα,1

xα,2

. . .
xα,k




−→




x1,1 x1,2 . . . x1,k

x2,1 x2,2 . . . x2,k

.
xα,1 xα,2 . . . xα,k


 .

Each stripe is encoded separately by multiplying them with the generator matrix
G. This gives the encoded database W . Our encoded database will thus have an
(αM)× n structure. This encoded database W is then divided by columns, where
W = (w1,w2, . . . ,wn), and each column wl is stored on a respective server Sl. We
assume the structure of the database is known to any user.

2.5.2 Queries

To construct our queries, we will first generate the interference pattern, and then
we will generate the retrieval pattern. The interference pattern is a random matrix
U of dimension k × αM , where each element is a random integer of Fq. This will
ensure private retrieval and conceal the retrieval pattern.

U =




u1,1 u1,2 ... u1,αM

u2,1 u2,2 ... u2,αM

...
uk,1 uk,2 ... uk,αM


 .

While U is a random non-deterministic matrix meant to confuse and conceal,
our retrieval pattern E is a deterministic matrix, dependent on what file X we are
retrieving. The retrieval pattern Ef will ensure that we will retrieve parts of Xf

such that Xf can be restored from the responses to the query.
For querying the systematic nodes, we will first generate the pattern Ef,1:

Ef,1 =

[
0k×(f−1)α Ir×r 0k×βk 0k×(M−f)α

0(k−r)×r

]
.

Ef,2 is obtained by a single downward cycle shift of the row vectors of Ef,1, Ef,2 is
obtained by a single downward cycle shift of the row vectors of Ef,2, . . . , and Ef,k

is obtained by a single downward cycle shift of the row vectors of Ef,k−1.

11

For the parity check nodes, we divide the last n−k nodes into β number of groups
of k nodes each, where all nodes in group s, i.e., nodes l where sk+ 1 ≤ l ≤ sk+ k,
receive the same query matrix.

Ef,l =
[
0k×(f−1)α+r+(s−1)k Ik×k 0k×(β−s)k+(M−f)α

]
.

The remaining r parity nodes will not query for any specific stripe, and thus they
receive U as the query.

After generating these patterns, U and Ef , they are added together to form the
query.

Q =




U +Ef,1

U +Ef,2

. . .
U +Ef,n


 mod q.

2.5.3 Retrieval

As we have constructed Q, we can make the retrieval from the servers. Each Ql will
be sent to the respective server Sl, which stores wl. Server Sl will compute and re-
turn a response, the response computed of wl and the sub-queries Ql,1,Ql,2, . . . ,Ql,k.
Each server will return with a response system, rl = (rl,1, rl,2, . . . , rl,k) = Qlwl.

r1 = (r1,1, r1,2, ..., rl,k) = Q1w1

r2 = (r2,1, r2,2, ..., r2,k) = Q2w2

...
rn = (rn,1, rn,2, ..., rn,k) = Qnwn

Each of the responses contains information on W . This means that we can remove
the interference and decode the blocks from the responses. How to implement the
decoding is not specified in TGE’s paper [4].

2.6 Related Work

2.6.1 Classic Private Information Retrieval

The notion of PIR was introduced by Chor et al. in 1995 [3, 6]. Private informa-
tion retrieval allows a user to retrieve an arbitrary file from a database, where the
database could be stored on a single or over several servers, without revealing any
information about the identity of the file requested. The classical PIR model ex-
plores schemes for a database of length m and a user that wants to privately retrieve
the i-th bit of the database while considering the total communication cost. To re-
trieve something privately in an information-theoretic manner (perfect privacy), we
consider the possibility that the server node has unlimited computing power and
will still be unable to decode what we seek to retrieve. In the single server case,
this can only be achieved by downloading the whole database. However, Chor et al.
showed that perfect privacy is attainable with much less communication cost when
the database is distributed over n non-colluding servers. As in, if the servers can
under no circumstances communicate with each other, this perfect privacy is attain-
able. There has thus been extensive research and progress on the topic of further

12

reducing the communication cost of PIR. In [5], the maximum capacity of classical
PIR schemes is explored and achieved. Kushilevitz et al. showed that replication of
the database is not needed to achieve PIR and can be achieved using only a single
server, assuming the hardness of the quadratic residuosity problem [7].

2.6.2 Coded Private Information Retrieval

As the classical PIR schemes had full replication of the database at n nodes, there has
been done extensive research to reduce the storage overhead using coded databases
in distributed storage systems (DSS), where the database is encoded using a linear
code and then split up and stored on multiple servers [8–10]. This has been expanded
upon by using maximum distance separable codes, as explored in [4, 11–15]. PIR
schemes using arbitrary linear coded servers were explored in [16–19]. While a
lot of research has been directed at reducing download cost, there has also been
done research in the areas of optimal upload cost of PIR, to explore the minimum
amount of required information contained in the query [20]. How many symbols
needed to be accessed across all the servers (the access complexity) when privately
retrieving a file was explored in [21]. The optimal download cost of PIR for arbitrary
file size was explored in [22] and the trade-off between storage and download cost
was explored in [23]. While classic PIR assumes no collaborating, unresponsive,
or faulty server nodes, the notion that the servers might not be perfect in these
aspects has also been studied. Scenarios including colluding servers has been studied
in [4,16,18,24–27], where robust PIR schemes for Byzantine or unresponsive servers
are explored in [24,28,29].

2.6.3 Symmetric Private Information Retrieval

Symmetric PIR is that both the privacy of the user and the database is considered,
i.e., when the database does not learn anything of what message the user is trying
to retrieve and the user does not learn anything about the other messages in the
database other than its requested message. This means the trivial solution of down-
loading the whole database is no longer applicable. Essentially symmetric PIR is a
form of oblivious transfer, an important primitive block in cryptography. Symmetric
PIR was explored in [30,31].

2.6.4 Leaky/Weak Private Information Retrieval

Some researchers have also explored the idea of relaxing the perfect privacy as-
sumption. Where applicable, relaxing the privacy could be beneficial as long as the
amount of privacy is still within the user’s requirement. A user might for example
concede some information about whether they are actually watching a movie, rather
than reading the news, if it would provide better download speed or otherwise better
performance. This notion of relaxed PIR has been explored in [32–38]. The capacity
of weak PIR has been studied in [39,40] using a privacy metric related to differential
privacy. The trade-offs that can be achieved by relaxing privacy have been studied
in [37,41]. Asymmetric leaky PIR which leaks privacy in both directions was studied
in [35] and proposes an optimal upper bound on download cost for such schemes.

13

Chapter 3

Implementation Details

In this chapter, we will introduce our implementation of three schemes. We have
implemented the TGE’s scheme for no colluding servers, CGKS’s scheme, and a
direct download scheme with no privacy. We aim to provide information on our
implementations to the degree that our results are replicable.

3.1 Programming Language and External Libraries
For simulating the PIR schemes, we have chosen to implement them in the program-
ming language Python3 [42]. Python3 code is relatively easy to write and easy to
read. When choosing the programming language, the factors that made us choose
Python3 were our earlier experience with the language and how easy it was to read
the language. The easiness of reading Python3 code was a very important factor
to us as it allows for much more efficient collaboration. While other programming
languages, such as Julia and Java, were discussed, we settled on a language we all
had earlier experience with.

In our Python3 implementation, we make frequent use of some external libraries.
External libraries are sets of functions, objects, etc., written to eliminate the need
to write this code from scratch. All of these external libraries are easily imported
into our implementation. We introduce some of the most critical or frequently used
external libraries in our implementation and give insight into how they are exploited.
NumPy In our implementation, we frequently use the NumPy [43] library. The

NumPy library is a set of mathematical operations implemented as optimized,
pre-compiled C code and often performs vastly better than other mathematical
implementations in Python3. We make frequent use of its functionality for its
implementations of mathematical operations on matrices and vectors. This is
used for computing the servers’ responses and decoding the them.

SymPy SymPy [44] is a library containing functionality for symbolic mathematics
that aims to become a full-featured computer algebra system. We make use
of its functionality for inverting matrices.

Pillow Pillow [45] is a Python fork implementation of Python Imaging Library
(PIL). PIL adds image processing capabilities to our Python interpreter, pro-
viding expanded file format support and image processing capabilities. Pillow
allows us to easily import images (discussed in Section 3.4) and convert them
to matrices of integers to be handled by our program.

14

Figure 3.1: Launch properties of EC2

3.2 Amazon Web Services
Amazon Web Services (AWS) offers various web hosting services, including Elastic
Compute Cloud (EC2). EC2 allows users to host virtual computers in their cloud
infrastructure, called instances. AWS hosts web services in large server farms placed
all around the world. In our implementation, our databases and server-side software
are stored and run on EC2 instances hosted on AWS’s servers in Stockholm. We have
chosen the default Amazon Machine Images (AMI) for Ubuntu 22.04 LTS to launch
our instances. In particular, we have used the Ubuntu AMI: ubuntu/images/hvm-
ssd/ubuntu-jammy-22.04-amd64-server-20230516. Our instance type is t3.xlarge,
which holds 16GB of memory. For recreating our server setup, we would:

1. Create a user-account at aws.amazon.com.

2. Verify your email and log in to your user account.

3. Choose the region you would like your AWS services to be provided out of.

4. Navigate to the EC2 web page.

5. Launch new instance.

(a) Create a new Amazon key-pair (RSA key).

15

aws.amazon.com

(b) Select the same parameters when initiating instances as ours, as seen in
Figure 3.1.

6. Connect to instance (through browser or ssh).

Consider: - The default security group allows all traffic on all ports. Consider creating a
new security group with fewer permissions.

- AWS will automatically generate an internet gateway for your virtual private
cloud. This allows you to connect and communicate with your instances over
the internet. The internet gateway has an associated cost, which is poorly
explained when creating an account. When not using the service, consider
detaching and deleting the internet gateway to minimize unnecessary costs.

3.3 Communication
Our program is implemented as a server-client architecture. Our client, which makes
requests, is hosted by our personal computer, located at the University of Bergen,
connected to the internet by wireless internet, and the server-side program is hosted
on AWS’s servers. Thus there is a need for some communication between our servers
and our client. This is a crucial step in the implementation, as our measurement of
the practical communication cost is reliant on this implementation. We have chosen
the Python3 library Asyncio Streams [46]. Streams are high-level asynchronous
await-ready primitives to work with network connections that allow sending and
receiving data without using callbacks or low-level protocols and transports. We
considered this to be the best option for this Python3 implementation, as true multi-
threading is not available in Python3 because of the global interpreter lock [47],
which enforces thread safety. As our readers and writers are not implemented in
pure multi-threading, but asynchronously, we expect our findings in the section
examining the upload speed (Section 4.2.2) and the section examining the download
speed (Section 4.2.4) to be more skewed when more total data is being sent or
received by our program.

3.4 Database Details
As our implementation needs a database to query, we have chosen to fill our database
with images of various motives. We have a bundle of 10 images of about 1MB each,
seen in Figure 3.2. These images are of dimensions 579 × 576 pixels, where three
colors represent each pixel and where each color is represented by an 8-bit (1 byte)
unsigned integer. This means that these images are each of ≈ 1MB.

579× 576× 3 = 1000512 bytes ≈ 1MB

Our database contains this bundle of 10 images, copied 100 times for our simulations.
Thus, our unencoded database is 1000 images or ≈ 1GB. Our encoded database
is encoded over GF(257), so we need 2 bytes to represent each encoded byte. To
maintain the integrity of the data, we use the prime field GF(257) when computing
responses from the servers and for our encoding/decoding, as this alphabet is large
enough to cover all our color representations. This means that each byte encoded

16

Figure 3.2: Images used in experiments (Not to scale).

for transmission will need 2 bytes to be correctly represented. Each of our files is
divided into lists of k sub-packets and then multiplied by our generator matrix of
dimensions n× k. As such, the size of our encoded database is

1MB× 1000× 2× n

k
=

2000× n

k
bytes

For all of our schemes tested in this thesis, the images are encoded, computed into
responses, and then reconstructed without any loss of information at the requesting
user client. The whole database is loaded into memory before serving any requests.
This time spent is not accounted for in our simulations.

3.5 Direct Download
The first scheme we introduce is our direct download scheme. This is a program
that will download a picture from a single server. We can use this as a benchmark
for how the other schemes are performing. This scheme does not have any privacy
measures. The client sends a single integer, requesting the indexed file, to the server,
and waits for a response.

import numpy as np
from random import rand int
query = randint (0 , 999)
r ep ly = send_message_to_server_and_wait_for_reply (query)

The server receives the query and returns an image.

import numpy as np
query = wait_and_listen_for_a_query ()
fetched_image = database [query]
f lattened_image = np . asar ray (fetched_image ,

dtype=np . u int16) . f l a t t e n () . tobytes ()
send_message_to_client (f lattened_image)

The client gets the response it was waiting for and reconstructs the requested image.
We presume the client knows of the dimension of the image it is trying to retrieve.

import numpy as np
import p i l l ow as p i l

17

r ep ly = send_message_to_server_and_wait_for_reply (query)
f lattened_image = np . f rombuf f e r (rep ly , count =579∗576∗3 ,

dtype=np . in t16)
image_as_array = np . reshape (f lattened_image , (579 , 576 , 3))
rece ived_pic = p i l . Image . fromarray (

image_as_array . astype (np . u int8))

We have chosen the direct download scheme to encode the requested file as two bytes
per byte. This decision was made to be able to make a better visual representation
of a performance in the results Section 4.2.4 and put it more in line with the other
schemes, as discussed in the file detail Section 3.4.

3.6 CGKS’s Scheme
In this section, we detail our second scheme, CGKS’s scheme. We provide a more
specific example of the implementation over n = 2 servers and give further imple-
mentation details on each step in the protocol. The files are stored in a list of size
M = 1000, where each index refers to a specific file. We assume the database struc-
ture is known to the client. For this scheme, an un-encoded database of 1000 images
(as discussed in Section 3.4) are stored on n = 2 servers with full redundancy of all
the data, S1 and S2.

S1 =




X0

X1

. . .
XM−1


 ,S2 =




X0

X1

. . .
XM−1




To retrieve a file X5, we need to generate our queries Q1 and Q2. To do this we first
generate a binary random vector U = [u0, u1, . . . , u999], whose elements are chosen
uniformly random as 0 or 1, with dimension equal to 1000.

import numpy as np
U = np . random . rand int (0 , 2 , 1000)

We then copy U once so that we have a pair of equal vectors, U1 and U2. For
retrieving file X5, we generate a unit vector e5 of dimension 1000 where the fifth
entry is one. Our queries are then Q1 = (U2 + e5) mod 2 and the random vector
Q2 = U1. These queries are then sent to the servers Q1 −→ S1 and Q2 −→ S2. Both
of the servers will then compute and return responses made from the database and
the queries.

import numpy as np
query = wait_and_listen_for_query ()
image_dimensions = (576 , 579 , 3)
re sponse = np . z e r o s (image_dimensions , dtype = int)
for database_index , number in enumerate (query) :

i f number == 1 :
re sponse = np . add (response ,

database_of_images [database_index])
re sponse = (response % 257) . astype (np . u int16)
f l a t t ened_response = np . asar ray (response ,

dtype=np . u int16) . f l a t t e n () . tobytes ()

18

X5






=




X0

X1

...
XM−1









=




X0

X1

...
XM−1




U 1

U
2 +

e
5

r1

r2

Figure 3.3: Illustration of CGKS’s scheme with two servers, querying for X5

send_message_to_client (f l a t t ened_response)

When the client then receives these responses, it subtracts the response received
from the query of the smallest magnitude from the one with the projection received
from the query of the largest magnitude, modulo 257, to recover the file.

r1 = send_and_wait_for_reply_from_server (Q1)
r2 = send_and_wait_for_reply_from_server (Q2)
i f sum(Q1) > sum(Q2) :

requested_image = np . subt rac t (r1 , r2) % 257
else :

requested_image = np . subt rac t (r2 , r1) % 257

3.7 TGE’s Scheme, RS(5, 2)
We provide a detailed example of TGE’s scheme to provide insight into the imple-
mentation. We will have a look at the scheme when applied to querying a database
encoded in RS(5, 2) over the prime field GF(257). This means the encoded database
W is split over n = 5 servers. Furthermore, for this example, α = 3, and there are
M = 3 files in the database.

3.7.1 Encoding the Database

To ensure systematic encoding of our database, we choose our generator matrix G
as a Vandermonde matrix that is row reduced to row echelon form.

A =

[
1 1 1 1 1
0 1 2 3 4

]
, G =

[
1 0 256 255 254
0 1 2 3 4

]

These are produced in Python3 using NumPy and SymPy.

import numpy as np
import sympy as sp
A = np . vander ([l for l in range (n)] , k ,

19

i n c r e a s i n g=True) . t ranspose ()%257
G = np . asar ray (sp . Matrix (A) . r r e f () [0])%257

As per the parameters of our RS code, our files X are divided by k = 2 and α = 3.
Where block x1,1 contains the first ω

6
bytes of the file, where ω is the number of

bytes in the file, block x1,2 contains the next ω
6

bytes of the file, and so on.

X =



x1,1 x1,2

x2,1 x2,2

x3,1 x3,2




For this code consider α = ALPHA and ω = OMEGA.

import numpy as np
b locks = np . asar ray (f i l e) . reshape (ALPHA, k , OMEGA / (ALPHA ∗ k))

The files are then encoded by the α = 3 stripes, i.e. multiplied by the generator
matrix G creating the encoded database W . Our encoded database W will thus
have an n × αm = 5 × 9 structure, where each column wl would be stored at the
respective server Sl.

w1 =




x1,1

x2,1

x3,1

x1,1

x2,1

x3,1

x1,1

x2,1

x3,1




w2 =




x1,2

x2,2

x3,2

x1,2

x2,2

x3,2

x1,2

x2,2

x3,2




w3 =




256 x1,1 + 2 x1,2

256 x2,1 + 2 x2,2

256 x3,1 + 2 x3,2

256 x1,1 + 2 x1,2

256 x2,1 + 2 x2,2

256 x3,1 + 2 x3,2

256 x1,1 + 2 x1,2

256 x2,1 + 2 x2,2

256 x3,1 + 2 x3,2




,

w4 =




255 x1,1 + 3 x1,2

255 x2,1 + 3 x2,2

255 x3,1 + 3 x3,2

255 x1,1 + 3 x1,2

255 x2,1 + 3 x2,2

255 x3,1 + 3 x3,2

255 x1,1 + 3 x1,2

255 x2,1 + 3 x2,2

255 x3,1 + 3 x3,2




w5 =




254 x1,1 + 4 x1,2

254 x2,1 + 4 x2,2

254 x3,1 + 4 x3,2

254 x1,1 + 4 x1,2

254 x2,1 + 4 x2,2

254 x3,1 + 4 x3,2

254 x1,1 + 4 x1,2

254 x2,1 + 4 x2,2

254 x3,1 + 4 x3,2




.

3.7.2 Queries

We will generate a random matrix U when constructing our queries. U is a matrix
of dimensions k × αm, where each element u is a random integer of GF(257). The
random matrix U will be our interference pattern, ensuring that each server cannot
deduce what file we are querying.

U =

[
u1,1 u1,2 u1,3 u1,4 u1,5 u1,6 u1,7 u1,8 u1,9

u2,1 u2,2 u2,3 u2,4 u2,5 u2,6 u2,7 u2,8 u2,9

]
.

To make the retrieval of X1, we construct the retrieval pattern E1 for querying the
encoded database. The retrieval pattern E1 will ensure that we will retrieve parts

20

of X1 from W such that X1 can be restored from the responses to the query. For
our RS(5, 2)-code, β = 1, r = 1 and α = 3.

For querying the systematic nodes, we will first generate the pattern E1,1:

E1,1 =

[
0k×(1−1)α I1×1 02×β2 02×(3−1)α

0(2−1)×1

]
,

E1,1 =

[
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
.

E1,2 is obtained by a single downward cycle shift of the row vectors of E1,1.

E1,2 =

[
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

]
.

For the parity check nodes, we divide the last n−k = 5−2 = 3 nodes into β = 1
group of k nodes. Where all nodes in group s, i.e., nodes l where s2+1 ≤ l ≤ s2+2,
receive the same query matrix.

Ef,l =
[
02×(1−1)3+1+(s−1)2 I2×2 02×(1−s)2+(3−1)3

]
,

E1,3 =

[
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

]
,

E1,4 =

[
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

]

For the last node, it will not query for any specific stripe; hence, it will receive U
as the query.

E1,5 =

[
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

]
.

After generating these patterns, U and Ef , they are added together to form the
query.

Q =




U +Ef,1

U +Ef,2

. . .
U +Ef,n


 mod 257.

We add the retrieval pattern E to our random vector U and get our query Q.

Q1 =

[
u(1,1) + 1 u(1,2) u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)

u(2,1) u(2,2) u(2,3) u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)

]
mod 257

Q2 =

[
u(1,1) u(1,2) u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)

u(2,1) + 1 u(2,2) u(2,3) u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)

]
mod 257

Q3 =

[
u(1,1) u(1,2) + 1 u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)

u(2,1) u(2,2) u(2,3) + 1 u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)

]
mod 257

Q4 =

[
u(1,1) u(1,2) + 1 u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)

u(2,1) u(2,2) u(2,3) + 1 u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)

]
mod 257

Q5 =

[
u(1,1) u(1,2) u(1,3) u(1,4) u(1,5) u(1,6) u(1,7) u(1,8) u(1,9)

u(2,1) u(2,2) u(2,3) u(2,4) u(2,5) u(2,6) u(2,7) u(2,8) u(2,9)

]
mod 257

21

Retrieval

Table 1 illustrates what information is retrieved in the response of W and E1.

Blocks w1 w2 w3 w4 w5

x(1,1), x(1,2) E1,1 E1,2 0 0 0

x(2,1), x(2,2) 0 0 E1,3 E1,4 0

x(3,1), x(3,2) 0 0 E1,3 E1,4 0

x(1,1), x(1,2) 0 0 0 0 0

x(2,1), x(2,2) 0 0 0 0 0

x(3,1), x(3,2) 0 0 0 0 0

x(1,1), x(1,2) 0 0 0 0 0

x(2,1), x(2,2) 0 0 0 0 0

x(3,1), x(3,2) 0 0 0 0 0

Table 3.1: Retrieval of X, of an MDS(5,2,4) encoded database, where M = 3.

As we have constructed Q, we can make the retrieval from the servers. Each Ql

will be sent to the respective server Sl, which stores wl. Server Sl will compute and
return a response, the responses of wl and the sub-queries Ql,1 and Ql,2. For this
code detailing the server-side implementation, computing the responses, consider
α = ALPHA, ω = OMEGA and wl = wl.

import numpy as np
import sympy as sp

query = wait_and_listen_for_query ()
s t r i p e_s i z e = OMEGA / (ALPHA ∗ k)

def make_response (query) :
r e sponse_l i = np . z e r o s (s t r i p e_s i z e , dtype=int)
for j , q j in enumerate (query) :

s t r i p e = wl [j ∗ s t r i p e_s i z e :
(j + 1) ∗ s t r i p e_s i z e]

r e sponse_l i = np . add (response_l i ,
np . mul t ip ly (s t r i p e , q j))

return r e sponse_l i % 257

query = np . asar ray (query) . reshape (k , ALPHA ∗ M)
re sponse s = [make_response (query [i])

for i in range (k)]
f l a t t ened_re sponse s = np . asar ray (responses ,

dtype=np . u int16) . f l a t t e n () . tobytes ()

22

send_back_to_client (f l a t t ened_re sponse s)

Each server will return with a response system, rl = (rl1, rl2) = Qlwl.

r1 = (r1,1, r1,2) = Q1w1,

r2 = (r2,1, r2,2) = Q2w2,

r3 = (r3,1, r3,2) = Q3w3,

r4 = (r4,1, r4,2) = Q4w4,

r5 = (r5,1, r5,2) = Q5w5.

We can reorganize the responses by transposing them. Instead of 5 × 2 responses,
we can turn them into 2× 5 sub-responses.

rT
1 =




r1,1
r2,1
r3,1
r4,1
r5,1



=




q1,1w1

q2,1w2

q3,1w3

q4,1w4

q5,1w5



, rT

2 =




r1,2
r2,2
r3,2
r4,2
r5,2



=




q1,2w1

q2,2w2

q3,2w3

q4,2w4

q5,2w5



.

This means that rT
1 is a function of W and the first sub-queries, and rT

2 is a function
of W and the second sub-queries.

3.7.3 Decoding

As we know that each of the responses in the i-th sub-response system contains
each of the columns in the encoded database computed by the i-th sub-query, we
can make k inverse linear sub-response systems to solve for the blocks in each of
them. To solve for these blocks, we can make an inverse linear sub-response system,
which can be generated as follows. We will construct k n × n matrices containing
the encoding and retrieval patterns. For each of them, the leftmost k columns are
for solving for the interference. A transposed generator matrix will represent them.

G =

[
1 0 256 255 254
0 1 2 3 4

]
,GT =




1 0
0 1
256 2
255 3
254 4



.

The next n − k columns represent the retrieval pattern in the i-th sub-queries. As
we have k sub-response systems, each will contain α blocks. We generate a retrieval
pattern E1,1 of our MDS(n, k) code, retrieving the first file of a database containing
one item. We restructure this, by swapping the first and second axis, E(1,0,2)

1,1 .

import numpy as np
r e t r i e va l_pa t t e rn = np . t ranspose (r e t r i eva l_pat t e rn , (1 , 0 , 2))

E1,1 =




[[1, 0, 0], [0, 0, 0]]
[[0, 0, 0], [1, 0, 0]]
[[0, 1, 0], [0, 0, 1]]
[[0, 1, 0], [0, 0, 1]]
[[0, 0, 0], [0, 0, 0]]



,E

(1,0,2)
(1,1) =




[1, 0, 0]
[0, 0, 0]
[0, 1, 0]
[0, 1, 0]
[0, 0, 0]



,




[0, 0, 0]
[1, 0, 0]
[0, 0, 1]
[0, 0, 1]
[0, 0, 0]




23

For the next α columns, we will differentiate between the systematic nodes and the
parity check nodes, and we will explain them row by row instead. The first k rows
will be the first k rows in E

(1,0,2)
1,1 . The last α rows of the last α columns will be the

last non-zero columns of E(1,0,2)
1,1 multiplied by GT excluding the first k rows.

L =







1 0 1 0 0
0 1 0 0 0
256 2 0 256 2
255 3 0 255 3
254 4 0 0 0



,




1 0 0 0 0
0 1 1 0 0
256 2 0 256 2
255 3 0 255 3
254 4 0 0 0







The modular inverse of L will be key to retrieving our blocks.

import numpy as np
import sympy as sp
L_modular_inverse = [np . asar ray (sp . Matrix (Li) . inv_mod (257) ,

dtype=int) for Li in L]

L−1 mod 257 =







0 87 0 0 171
0 1 0 0 0
1 170 0 0 86
0 170 3 255 86
0 256 2 256 0



,




1 0 0 0 0
65 0 0 0 193
192 1 0 0 64
256 0 3 255 0
192 0 2 256 64







By multiplying L−1
i with the i-th sub-response linear system, rT

i , we successfully
solve for the blocks contained in the sub-response. Now consider the sub-responses
of the 5 nodes to the first sub-query. Where Il = uT

1wl, where l = 1, 2 and uT
1 is

the first sub-query (the first row of U), is the interference.

r11 = I1 + x11

r21 = I2

r31 = 256I1 + 2I2 + 256x21 + 2x22

r41 = 255I1 + 3I2 ++255x21 + 3x22

r51 = 254I1 + 4I2




0 87 0 0 171
0 1 0 0 0
1 170 0 0 86
0 170 3 255 86
0 256 2 256 0







I1 + x11

I2
256I1 + 2I2 + 256x21 + 2x22

255I1 + 3I2 ++255x21 + 3x22

254I1 + 4I2



=




I1
I2
x11

x21

x22




Now let us consider the sub-responses of the 5 nodes to the second sub-query. Where
Il = uT

2wl, where l = 1, 2 and uT
2 is the second sub-query (the second row of U), is

the interference.

r12 = I1

r22 = I2 + x12

r32 = 256I1 + 2I2 + 256x31 + 2x32

24

r42 = 255I1 + 3I2 ++255x31 + 3x32

r52 = 254I1 + 4I2




1 0 0 0 0
65 0 0 0 193
192 1 0 0 64
256 0 3 255 0
192 0 2 256 64







I1
I2 + x12

256I1 + 2I2 + 256x31 + 2x32

255I1 + 3I2 ++255x31 + 3x32

254I1 + 4I2



=




I1
I2
x12

x31

x32




This leaves us with: 


I1
I2
x11

x21

x22







I1
I2
x12

x31

x32




Of this new vector, we can simply disregard the first k elements, as they are inter-
ference. We are now left with k vectors of α blocks.

B =



x11

x21

x22


 ,



x12

x31

x32




But we have to sort them correctly to recreate the file. We begin by generating a
new retrieval pattern E1,1 of our MDS(n, k) code, retrieving one file of a database
containing one item. We restructure this by swapping the first and second axis, and
then swapping the second and third axis, E(1,2,0)

1,1 .

import numpy as np
r e t r i e va l_pa t t e rn = np . t ranspose (r e t r i eva l_pat t e rn , (1 , 2 , 0))

E
(1,2,0)
1,1 =



1, 0, 0, 0, 0
0, 0, 1, 1, 0
0, 0, 0, 0, 0





1, 0, 0, 0, 0
0, 0, 0, 0, 0
0, 0, 1, 1, 0




We sort the blocks B by applying the sorting Algorithm 1. B is now in the correct
order and correctly represents the file we queried for.

X =




x11

x12

x21

x22

x31

x32




25

Algorithm 1 An algorithm to sort blocks
X ← [] ▷ This is an empty list
Xcounter ← [0] ∗ k
for row in range α do

for col in range n do

for i in range k do

if E
(1,2,0)
1,1 [i][row][col] == 1 then

X.append(B[i][Xcounter[i]])
Xcounter[i]+ = 1

end if
end for

end for
end for

26

Chapter 4

Findings

4.1 Considerations
During our experiments, we observed various unexpected behavior in our findings.
We hope to bring some more light onto why these various strange behaviors exist
and how they impact our findings.

4.1.1 Local Time Problem

During our experimentation, our servers and our client were quite far apart. We have
observed some strange behavior when trying to measure the time spent when sending
information between them. In some instances, we could observe in our findings that,
somehow, the data was received before it was sent. This is, of course, impossible.
We hypothesized that this was because the local clock on the server differed from
the local clock of the client by amounts larger than the time spent sending the data.
In search of a solution to remedy this problem, we found the Chrony. Chrony [48]
is an NTP (Network Time Protocol) time-synchronizing daemon. This is used by
Facebook to synchronize the time of their servers. [49] [50] Implementing Chrony
into our simulation, we could no longer observe this strange behavior in our findings,
but as the synchronizing of time between servers still remains a problem, we still
consider this behavior when interpreting the findings in Section 4.2.2 and Section
4.2.4.

4.1.2 Averaged Statistics

Some of our plotted data are CDFs of average time spent per server. For each
single iteration, the data collected is summed and divided by the number of servers.
This makes for way better readability of the plots and makes comparisons easier.
This does come at the cost of accuracy, however. If any single one of the servers
is subject to any performance issues and performs worse than expected, they will
skew the plot, creating an illusion of a worse-performing protocol.

27

4.2 Results
In this section, we present our findings gathered from our simulation, implemented as
presented in Chapter 3. The findings in this section are gathered from simulations,
simulating PIR on a database as discussed in Section 3.4. For parameters for our
schemes, we have chosen to analyze the CGKS scheme with 2 and 3 servers. For
the TGE scheme, we have chosen the parameters (5, 2), (5, 3), and (5, 4) to examine
schemes with different rates. We also chose the parameters (4, 2), (6, 3), and (8, 4),
to examine half-rate codes with different amounts of servers. This gives us a wide
selection of rates to examine, while also allowing us to examine TGE’s scheme with
a fixed rate over different numbers of servers. We simulate CGKS’s scheme using the
parameters n = 2 and n = 3. This will allow us to compare the two PIR schemes.
We compare the simulations of CGKS’s scheme and TGE’s scheme to our simulation
of direct download.

28

0 1 2 3 4 5 6 7 8

·10−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Direct download

CGKS with 2 servers

CGKS with 3 servers

TGE(4, 2)

TGE(5, 4)

TGE(5, 3)

TGE(5, 2)

TGE(6, 3)

TGE(8, 4)

Figure 4.1: CDF of: Time spent generating queries. Querying 1 random file of a
database of 1000 files. Files of 1MB. 1000 iterations. Labels according to perfor-
mance.

4.2.1 Generating Queries

We expect the time spent creating the query to be related to how large the query
is. The direct download scheme queries for a random entry in the database, and
thus only generates a single random integer and might be hard to see in Figure
4.1. The CGKS scheme with 2 servers generates a vector of length M , and the
CGKS scheme with 3 servers generates a vector of length 2M . The TGE scheme
generates a randomized matrix of size k × αM . Then it constructs the retrieval
pattern of dimensions n × k × αM and adds the randomized matrix on top of the
retrieval pattern. By comparing Table 4.1 and Figure 4.1 we argue our findings
seem to support our expectation, of how the time spent creating the queries, is
related to their size. The time spent generating the queries seems quite negligible.
Even the worst performing, TGE(8, 4), is on average computing a query in about
0.045 seconds, as observed in Figure 4.1. We argue this will not be noticeable to an
average user.

29

Protocol Size of interference Size of retrieval pattern

Direct download 0 One random integer
CGKS with 2 servers M 1 byte
CGKS with 3 servers 2M 2 bytes
TGE(4, 2) 4M 16M
TGE(5, 4) 4M 20M
TGE(5, 3) 6M 30M
TGE(5, 2) 6M 30M
TGE(6, 3) 9M 54M
TGE(8, 4) 16M 128M

Table 4.1: Size of a query, by protocol.

30

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Direct download

CGKS with 2 servers

CGKS with 3 servers

TGE(4, 2)

TGE(5, 4)

TGE(5, 2)

TGE(5, 3)

TGE(6, 3)

TGE(8, 4)

Figure 4.2: CDF of: Per server average time spent sending a query to a server.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000 iterations.
Labels according to average performance.

4.2.2 Upload

How much time each protocol spends uploading data is affected by how much data is
sent, the physical distance between the client and the servers, and the infrastructure
connecting the client to the servers. We argue, that as the physical distance between
our client computer and our servers does not change during our simulations, and as
the infrastructure is not altered (as we know of), the time spent sending the queries
to the servers is directly related to the size of each query contains. We expect the
time spent on uploading the queries for each protocol to be directly related to how
much data is sent to each single server.

By comparing our findings in Figure 4.2 to the number of bytes sent to each
server, as seen in Table 4.2, we argue that our expectations are close to our findings.
We argue there might be deviation as discussed as the time problem in Section 4.1.1
and because sending and receiving data is also affected by how much total data is
sent, as discussed in the Asynchronous python3 problem in Section 3.3.

31

Protocol Bytes sent to each server Bytes sent to all servers

Direct download 2 2
CGKS with 2 servers M 2M
CGKS with 3 servers 2M 6M
TGE(4, 2) 4M 16M
TGE(5, 4) 6M 20M
TGE(5, 2) 6M 30M
TGE(5, 3) 6M 30M
TGE(6, 3) 9M 54M
TGE(8, 4) 16M 128M

Table 4.2: Bytes sent by each protocol

32

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Direct download

CGKS with 2 servers

CGKS with 3 servers

TGE(5, 2)

TGE(5, 3)

TGE(5, 4)

TGE(4, 2)

TGE(6, 3)

TGE(8, 4)

Figure 4.3: CDF of: Server average time spent on computing reply. Querying
1 random file of a database of 1000 files. Files of 1MB. 1000 iterations. Direct
download omitted.

4.2.3 Server Computation

We argue the time spent on server computation is related to the workload on the
server. For the direct download scheme, the workload on the server amounts to
retrieving a file from an indexed database once and sending the file. On average,
the time spent for a server computing for this scheme is 0.001239 seconds.

For CGKS’s scheme, the workload consists of computing the response of the
database onto the query. The CGKS scheme with 3 servers has double the amount
of files in the database, but the file sizes are half the size of those in the CGKS
scheme with 2 servers, they would both have the same computational complexity.
As the queries are uniform random binary vectors, the expected number of 1’s,
signaling to include that indexed file in the response, would be 1

2
M . This means

that the workload is to compute a response of 1
2
M Megabyte (MB), or 1

2
Gigabyte

(GB).
In the TGE scheme, each server has to compute the response of wl onto Ql. W

is the encoded database of M 1MB files, and thus is of size n
k
M MB. wl is thus of

size 1
k
M MB. The query Ql is a composite of k sub-queries ql,i, where the server

needs to compute the response of wl onto each of the k sub-queries. This means
that the workload of the TGE scheme is to compute a response of M MB, or one
GB.

We can observe in Figure 4.3 that the TGE schemes are clustered around the

33

Protocol Workload

Direct download 0
CGKS with 2 servers Response of 1

2
M MB

CGKS with 3 servers Response of 1
2
M MB

TGE(4, 2) Response of M MB
TGE(5, 2) Response of M MB
TGE(5, 3) Response of M MB
TGE(5, 4) Response of M MB
TGE(6, 3) Response of M MB
TGE(8, 4) Response of M MB

Table 4.3: Workload of a single server in a protocol.

2 seconds mark, and have little variation in performance. We observe in Figure
4.3 that the CGKS scheme with 3 servers performs at about 1 second on average
and the CGKS scheme performs at about 1.5 seconds on average. Our expectation
was for the two CGKS schemes to be clustered, as they seemingly have the same
workload. We attribute the worse performance of the CGKS scheme with 2 servers,
compared to the CGKS scheme with 3 servers, to larger file sizes to load into the
NumPy array data structure.

34

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

TGE(8, 4)

TGE(6, 3)

TGE(5, 2)

TGE(5, 3)

Direct download

CGKS with 3 servers

TGE(4, 2)

CGKS with 2 servers

TGE(5, 4)

Figure 4.4: CDF of: Average time spent on downloading a reply from a server.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000 iterations.
Labels according to average performance.

4.2.4 Download

As we argue in Section 4.2.2, we assume our findings should be related to the number
of bytes downloaded. Note that all of our download transmissions are encoded as 2
bytes per byte, as discussed in Section 3.4. The direct download scheme downloads
2 times the number of bytes in a file, 2ω, bytes. The CGKS schemes download 2ω

σ

per server, and 2nω
σ

in total from all the servers. The amount of bytes sent by the
servers in the TGE scheme is

The number of bytes sent by each single server = 2
ω

α

The number of bytes downloaded from all servers = 2
nω

α

Based on this, we would expect the performance of the different protocols in our
findings to reflect a ranking of performance similar to Table 4.4, which is the proto-
cols ranked by how much data is downloaded from each server in the protocol. Our
findings presented in Figure 4.4 are prone to the averaged data problem discussed in
Section 4.1.2 and to the local time problem discussed in Section 4.1.1. We observe
that our findings do not match our expectations. In our findings in Figure 4.4, only
TGE(8, 4), TGE(5, 4), and CGKS with 2 servers perform according to our expected
ranking. We argue the performance of the protocols to also be influenced by the to-

35

Protocol Bytes downloaded from
one server divided by two

Bytes downloaded from
all servers divided by two

TGE(8, 4) 1
4
ω 2ω

TGE(5, 2) 1
3
ω 5

3
ω

TGE(6, 3) 1
3
ω 2ω

CGKS with 3 servers 1
2
ω 3

2
ω

TGE(4, 2) 1
2
ω 2ω

TGE(5, 3) 1
2
ω 5

2
ω

Direct download ω ω
CGKS with 2 servers ω 2ω
TGE(5, 4) ω 5ω

Table 4.4: Bytes downloaded from servers divided by two

tal amount of bytes downloaded, as can be explained by the lack of multi-threading
in our implementation as discussed in Section 3.3.

36

Protocol Bytes downloaded from all servers divided by two

TGE(5, 2) 5
3
ω

TGE(8, 4) 2ω
TGE(6, 3) 2ω
TGE(4, 2) 2ω
TGE(5, 3) 5

2
ω

TGE(5, 4) 5ω

Table 4.5: Total number of bytes downloaded from all servers in protocol divided
by two.

4.2.5 Client Computation

0 1 2 3 4 5 6 7 8 9

·10−2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Direct download

CGKS with 2 servers

CGKS with 3 servers

TGE(5, 2)

TGE(5, 3)

TGE(5, 4)

TGE(4, 2)

TGE(6, 3)

TGE(8, 4)

Figure 4.5: CDF of: Time spent reconstructing and decoding reply from servers.
Querying 1 random file of a database of 1000 files. Files of 1MB. 1000 iterations.

After downloading the replies from the servers, the simulation reconstructs the file.
Our findings presented in Figure 4.5 show the time each protocol spends after fully
downloading the replies until the file is fully reconstructed. For the direct download
scheme, the workload consists of restructuring an array to match the shape of the
image, and then converting said array to a .png file, and this workload also affects
the other schemes.

For the CGKS scheme, the process of retrieving the file from the responses is to
subtract the interference from the response(s) and then do a modulus operation on all
the data. For the TGE scheme, the workload consists of decoding and restructuring
the data. We expect this workload to be dependent on the amount of bytes in

37

the replies. In our findings in Figure 4.5 we can observe that our findings do not
match our expectations. For TGE(5, 2), TGE(5, 3), and TGE(5, 4), our expectations
seem to be correct, but our expectations seem to be flawed when observing the
performance of the different half-rate codes, TGE(4, 2), TGE(6, 3), and TGE(8, 4).

Based on our observations in Figure 4.5, we alter our assumptions. We speculate
the decoding is reliant on the specific contents of our files. As we detail in Section
3.4, there are 10 different images in our database, although the database is filled
with 1000 of them. We speculate the decoding of specific images takes different
amounts of time, explaining the skewed performance of all the schemes.

38

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Direct download

CGKS with 2 servers

CGKS with 3 servers

TGE(5, 2)

TGE(5, 3)

TGE(5, 4)

TGE(4, 2)

TGE(6, 3)

TGE(8, 4)

Figure 4.6: CDF of: Total time spent retrieving a file from server(s). Querying 1
random file of a database of 1000 files. Files of 1MB. 1000 iterations.

4.2.6 Total Time Spent

For the total time spent, throughout all of the sections of the protocols, we ex-
pected the direct download scheme with no privacy measures to outperform the
TGE scheme and the CGKS scheme. We also assumed TGE’s scheme to perform
better than CGKS’s scheme, based on the theoretical optimal download rate of
the former. In our findings in Figure 4.6, we observe, that while the direct down-
load scheme performs as expected, TGE performs worse than CGKS. For the PIR
schemes, we expected the time spent on downloading and decoding to be the time
frames of more significance in terms of limiting the performance of the protocols
as a whole. The time spent for each server computing a reply was a larger part
of the total time, and we conclude the time spent computing the replies to be the
largest contributing factor to the total time spent per protocol. On this note, it is
important to emphasize that the time cost of the server computation is expected to
grow linearly with the number of files in the database.

39

Chapter 5

Conclusion

The initial objective of this thesis was to study the performance of a simulation of
two PIR protocols, namely a protocol by Tajeddine et al. and a protocol by Chor et
al., and a direct download scheme with no privacy guarantee, implemented on AWS’s
servers. In the first part of this thesis, we detail the different schemes and how we
have implemented them. We provide details on our simulation environment, and
remark how our implementation affects our simulations. In the second part of this
thesis, we provide the findings of our simulations and remark how our findings make
us question and adjust our expectations. We conclude the time spent computing
the responses for the PIR protocols was proportionally longer than we anticipated
and conclude this is the main bottleneck in relation to the total time spent when
doing a private retrieval. Our thesis details the many unforeseen challenges we
have met when trying to simulate PIR. Doing a thorough review of all the possible
sources affecting the time spent transmitting data over the internet has been a great
challenge, and the list of issues we have encountered is possibly incomplete. The lack
of pure multi-threading in Python3 has proved to be a large source of frustration
when transmitting data and implementing server-side algorithms. We conclude that
our implementation is fragile and small changes could affect the results.

5.1 Future Work
In this section, we aim to provide trajectories for further study.

5.1.1 Reducing Time Spent Downloading

As our implementation encodes over GF(257) our transmissions are twice the size
they could have been, by encoding over GF(28). We propose encoding over GF(28)
would still ensure the integrity of the data, and we assume this will reduce the time
spent on download by half.

Our simulations of the multi-server schemes are plagued by the lack of pure multi-
threading, for the readers and writers, when sending and receiving data. We propose
implementing the reader and writer in a programming language that allows pure
multi-threading, as we expect this to eliminate the assumed skewed data discussed
in Section 3.3.

40

5.1.2 Compute Response of Servers in Parallel

In Section 4.2.3 and Section 4.2.6 we argue computing the responses of the database
onto the queries is the main practical bottleneck for the PIR schemes. We propose
computing the responses of the database in parallel, in a programming language
that features pure multi-threading capabilities. We expect this would drastically
reduce the time spent on server computation for the PIR schemes.

5.1.3 Study of Weak PIR

We propose a study of a simulation of weak PIR protocols compared to TGE’s
scheme. Reducing the privacy requirement in trade for better performance is the
main objective of weak PIR. A study of a simulation of both a weak and strict
PIR protocol would possibly give valuable insight into the difference in practical
performance.

41

Bibliography

[1] “International Telecommunication Union facts and figures 2022.” https://ww
w.itu.int/itu-d/reports/statistics/2022/11/24/ff22-internet-use/.
Accessed: 2023-08-25.

[2] C. Duhigg, “How companies learn your secrets,” 2012.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-
trieval,” in Proceedings of IEEE 36th Annual Foundations of Computer Science,
pp. 41–50, 1995.

[4] R. Tajeddine, O. W. Gnilke, and S. El Rouayheb, “Private information retrieval
from mds coded data in distributed storage systems,” IEEE Transactions on
Information Theory, vol. 64, no. 11, pp. 7081–7093, 2018.

[5] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE
Transactions on Information Theory, vol. 63, no. 7, pp. 4075–4088, 2017.

[6] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private information
retrieval,” Journal of the ACM (JACM), vol. 45, no. 6, pp. 965–981, 1998.

[7] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: Single database,
computationally-private information retrieval,” in Proceedings 38th annual sym-
posium on foundations of computer science, pp. 364–373, IEEE, 1997.

[8] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download
ensures perfectly private information retrieval,” in 2014 IEEE International
Symposium on Information Theory, pp. 856–860, 2014.

[9] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in 2015 IEEE International Symposium on Information Theory
(ISIT), pp. 2842–2846, 2015.

[10] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed pir with low stor-
age overhead,” in 2015 IEEE International Symposium on Information Theory
(ISIT), pp. 2852–2856, 2015.

[11] K. Banawan and S. Ulukus, “The capacity of private information retrieval from
coded databases,” IEEE Transactions on Information Theory, vol. 64, no. 3,
pp. 1945–1956, 2018.

[12] H. Sun and C. Tian, “Breaking the mds-pir capacity barrier via joint storage
coding,” Information, vol. 10, no. 9, p. 265, 2019.

42

https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-internet-use/
https://www.itu.int/itu-d/reports/statistics/2022/11/24/ff22-internet-use/

[13] J. Zhu, Q. Yan, C. Qi, and X. Tang, “A new capacity-achieving private informa-
tion retrieval scheme with (almost) optimal file length for coded servers,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 1248–1260,
2020.

[14] R. Zhou, C. Tian, H. Sun, and T. Liu, “Capacity-achieving private information
retrieval codes from mds-coded databases with minimum message size,” IEEE
Transactions on Information Theory, vol. 66, no. 8, pp. 4904–4916, 2020.

[15] J. Li, D. Karpuk, and C. Hollanti, “Towards practical private information re-
trieval from mds array codes,” IEEE Transactions on Communications, vol. 68,
no. 6, pp. 3415–3425, 2020.

[16] S. Kumar, H.-Y. Lin, E. Rosnes, and A. Graell i Amat, “Achieving maximum
distance separable private information retrieval capacity with linear codes,”
IEEE Transactions on Information Theory, vol. 65, no. 7, pp. 4243–4273, 2019.

[17] H.-Y. Lin, S. Kumar, E. Rosnes, and A. G. i. Amat, “Asymmetry helps: Im-
proved private information retrieval protocols for distributed storage,” in 2018
IEEE Information Theory Workshop (ITW), pp. 1–5, 2018.

[18] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann,
D. Karpuk, and I. Kubjas, “t-private information retrieval schemes using transi-
tive codes,” IEEE Transactions on Information Theory, vol. 65, no. 4, pp. 2107–
2118, 2019.

[19] J. Lavauzelle, R. Tajeddine, R. Freij-Hollanti, and C. Hollanti, “Private infor-
mation retrieval schemes with product-matrix mbr codes,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 441–450, 2021.

[20] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information retrieval
codes with optimal message size and upload cost,” IEEE Transactions on In-
formation Theory, vol. 65, no. 11, pp. 7613–7627, 2019.

[21] Y. Zhang, E. Yaakobi, T. Etzion, and M. Schwartz, “On the access complexity
of pir schemes,” in 2019 IEEE International Symposium on Information Theory
(ISIT), pp. 2134–2138, 2019.

[22] H. Sun and S. A. Jafar, “Optimal download cost of private information retrieval
for arbitrary message length,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 12, pp. 2920–2932, 2017.

[23] C. Tian, “On the storage cost of private information retrieval,” IEEE Transac-
tions on Information Theory, vol. 66, no. 12, pp. 7539–7549, 2020.

[24] H. Sun and S. A. Jafar, “The capacity of robust private information retrieval
with colluding databases,” IEEE Transactions on Information Theory, vol. 64,
no. 4, pp. 2361–2370, 2018.

[25] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private infor-
mation retrieval from coded databases with colluding servers,” SIAM Journal
on Applied Algebra and Geometry, vol. 1, no. 1, pp. 647–664, 2017.

43

[26] R. G. L. D’Oliveira and S. El Rouayheb, “One-shot pir: Refinement and lifting,”
IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2443–2455, 2020.

[27] L. Holzbaur, R. Freij-Hollanti, J. Li, and C. Hollanti, “Toward the capacity of
private information retrieval from coded and colluding servers,” IEEE Trans-
actions on Information Theory, vol. 68, no. 1, pp. 517–537, 2021.

[28] K. Banawan and S. Ulukus, “The capacity of private information retrieval from
byzantine and colluding databases,” IEEE Transactions on Information Theory,
vol. 65, no. 2, pp. 1206–1219, 2019.

[29] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti, “Pri-
vate information retrieval from coded storage systems with colluding, byzantine,
and unresponsive servers,” IEEE Transactions on Information Theory, vol. 65,
no. 6, pp. 3898–3906, 2019.

[30] Y. Gertner, Y. Ishai, E. Kushilevitz, and T. Malkin, “Protecting data privacy
in private information retrieval schemes,” in Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pp. 151–160, 1998.

[31] H. Sun and S. A. Jafar, “The capacity of symmetric private information re-
trieval,” IEEE Transactions on Information Theory, vol. 65, no. 1, pp. 322–329,
2019.

[32] D. Asonov and J.-C. Freytag, “Repudiative information retrieval,” in Proceed-
ings of the 2002 ACM workshop on Privacy in the Electronic Society, pp. 32–40,
2002.

[33] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sen-
sitivity in private data analysis,” in Theory of Cryptography: Third Theory of
Cryptography Conference, TCC 2006, New York, NY, USA, March 4-7, 2006.
Proceedings 3, pp. 265–284, Springer, 2006.

[34] C. Dwork, “Differential privacy,” in International colloquium on automata, lan-
guages, and programming, pp. 1–12, Springer, 2006.

[35] I. Samy, M. Attia, R. Tandon, and L. Lazos, “Asymmetric leaky private infor-
mation retrieval,” IEEE Transactions on Information Theory, vol. 67, no. 8,
pp. 5352–5369, 2021.

[36] H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, and E. Yaakobi, “Weakly-
private information retrieval,” in Proceedings IEEE International Symposium
on Information Theory (ISIT), pp. 1257–1261, 2019.

[37] H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, and E. Yaakobi, “Multi-
server weakly-private information retrieval,” IEEE Transactions on Information
Theory, vol. 68, no. 2, pp. 1197–1219, 2022.

[38] H.-Y. Lin, S. Kumar, E. Rosnes, A. Graell i Amat, and E. Yaakobi, “The
capacity of single-server weakly-private information retrieval,” IEEE Journal
on Selected Areas in Information Theory, vol. 2, no. 1, pp. 415–427, 2021.

44

[39] I. Samy, R. Tandon, and L. Lazos, “On the capacity of leaky private informa-
tion retrieval,” in 2019 IEEE International Symposium on Information Theory
(ISIT), pp. 1262–1266, 2019.

[40] H. Y. Lin, S. Kumar, E. Rosnes, A. G. i. Amat, and E. Yaakobi, “The capacity of
single-server weakly-private information retrieval,” in 2020 IEEE International
Symposium on Information Theory (ISIT), pp. 1053–1058, 2020.

[41] Y. Yakimenka, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Optimal rate-distortion-
leakage tradeoff for single-server information retrieval.” submitted to IEEE
Journal on Selected Areas in Communications, June 2021.

[42] “python.org/about/ python3 about.” https://www.python.org/about/. Ac-
cessed: 2023-09-14.

[43] “numpy.org learn.” https://numpy.org/learn/. Accessed: 2023-09-14.

[44] “sympy.org about.” https://www.sympy.org/en/index.html. Accessed:
2023-09-14.

[45] “pypi.org pillow.” https://pypi.org/project/Pillow/. Accessed: 2023-09-
14.

[46] “python.org streams.” https://docs.python.org/3/library/asyncio-stre
am.html. Accessed: 2023-08-23.

[47] “python.org kernel globalinterpreterlock.” https://wiki.python.org/moin/G
lobalInterpreterLock. Accessed: 2023-08-23.

[48] “Ubuntu Manuals chronyc.” https://manpages.ubuntu.com/manpages/imp
ish/man1/chronyc.1.html. Accessed: 2023-09-15.

[49] “NextGen Network Synchronization packet timing: Network time protocol.” ht
tps://link.springer.com/chapter/10.1007/978-3-030-71179-5_7#Sec9.
Accessed: 2023-09-15.

[50] “Engineering at Meta building a more accurate time service at facebook scale.”
https://engineering.fb.com/2020/03/18/production-engineering/ntp
-service/. Accessed: 2023-09-15.

45

https://www.python.org/about/
https://numpy.org/learn/
https://www.sympy.org/en/index.html
https://pypi.org/project/Pillow/
https://docs.python.org/3/library/asyncio-stream.html
https://docs.python.org/3/library/asyncio-stream.html
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://manpages.ubuntu.com/manpages/impish/man1/chronyc.1.html
https://manpages.ubuntu.com/manpages/impish/man1/chronyc.1.html
https://link.springer.com/chapter/10.1007/978-3-030-71179-5_7#Sec9
https://link.springer.com/chapter/10.1007/978-3-030-71179-5_7#Sec9
https://engineering.fb.com/2020/03/18/production-engineering/ntp-service/
https://engineering.fb.com/2020/03/18/production-engineering/ntp-service/

	Acknowledgements
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Our Objective
	Thesis Organization

	Preliminaries
	Finite Fields
	Linear Codes
	Private Information Retrieval (PIR)
	Chor et al.'s Scheme
	Tajeddine, Gnilke, and El Rouayheb's Scheme
	Database Structure
	Queries
	Retrieval

	Related Work
	Classic Private Information Retrieval
	Coded Private Information Retrieval
	Symmetric Private Information Retrieval
	Leaky/Weak Private Information Retrieval

	Implementation Details
	Programming Language and External Libraries
	Amazon Web Services
	Communication
	Database Details
	Direct Download
	CGKS's Scheme
	TGE's Scheme, RS(5,2)
	Encoding the Database
	Queries
	Decoding

	Findings
	Considerations
	Local Time Problem
	Averaged Statistics

	Results
	Generating Queries
	Upload
	Server Computation
	Download
	Client Computation
	Total Time Spent

	Conclusion
	Future Work
	Reducing Time Spent Downloading
	Compute Response of Servers in Parallel
	Study of Weak PIR

	References

