
DF

Coding for Mobile Edge Computing
Using Luby-Transform codes to lower the latency in edge
computing systems

Master’s thesis in Communication Engineering

ANTON FRIGÅRD

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:NN

Coding for Mobile Edge Computing

Using Luby-Transform codes to lower the latency in edge computing
systems

ANTON FRIGÅRD

DF

Department of Electrical Engineering
Communication Systems Group

Chalmers University of Technology
Gothenburg, Sweden 2020

Coding for Mobile Edge Computing
Using Luby-Transform codes to lower the latency in edge computing systems
ANTON FRIGÅRD

© ANTON FRIGÅRD, 2020.

Supervisor: Alexandre Graell i Amat, Department of Electrical Engineering, Chalmers
University of Technology, Gothenburg, Sweden
Co-supervisor: Eirik Rosnes, Simula UiB, Bergen, Norway
Examiner: Alexandre Graell i Amat, Department of Electrical Engineering, Chalmers
University of Technology, Gothenburg, Sweden

Master’s Thesis 2020:NN
Department of Electrical Engineering
Communication Systems Group
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Wireless edge network consisting of multiple users and edge servers.

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Coding for Mobile Edge Computing
Using Luby-Transform Codes to lower the latency in edge computing systems
ANTON FRIGÅRD
Department of Electrical Engineering
Chalmers University of Technology

Abstract
The idea of mobile edge computing (MEC) is to provide external computational
and storage resources close to the end user, i.e., close to the network edge. Servers
are placed in the vicinity of the users and can be accessed through a direct wireless
connection. A typical MEC use case is computation offloading, where the users
want some data processed but cannot perform it themselves due to, e.g., not having
enough processing capacity or the need to save energy. The users transmit their
data to the MEC servers over the wireless channel, the MEC servers process the
data and then send the results back to the users.

As noted in the research on distributed computing, data servers tend to straggle,
i.e., at random occasions require an unacceptable amount of time to finish their
assigned tasks. The application of codes has proven to be useful in this regard,
enabling recovery of the results from a subset of servers instead of having to wait for
all servers to finish. The same principle can be applied in the MEC setting. There
is however another dimension to MEC as compared to distributed computing; that
of transmitting data over a wireless channel. In particular, it has been shown that
computing the same data on multiple servers can introduce diversity in the downlink
transmission. The servers that have computed the same data can then collaborate to
transmit the data with lower transmission latency than would otherwise be possible.

Zhang et al. investigated the use of maximum distance separable (MDS) codes
in the context of MEC to protect against straggling servers, and repetition codes
to provide a low downlink transmission latency. Their MDS hybrid scheme shows a
clear improvement to that of uncoded MEC.

In this thesis two coding schemes inspired by the work of Zhang et al. are
proposed and evaluated by simulations. The schemes are based on Luby-Transform
codes and inactivation decoding. Simulations indicate a lower total latency for
one of the proposed schemes as compared to the MDS hybrid. A lower bound
on the total latency is also derived and used as a benchmark for the schemes. If
the computation latency dominates the total latency, all schemes perform relatively
close to the bound. If instead the downlink transmission latency dominates the total
latency, the schemes perform somewhat further away.

Keywords: coding theory, distributed computing, information theory, mobile edge
computing,

v

Acknowledgements
I want to thank Alex, my supervisor, for giving me the opportunity to experience
what it means to do research. You have expected me to do my best while providing
me your support when needed, leading me to accomplish more than I thought I
would at the start of this thesis. My sincere thanks also to the guys at Simula UiB,
Bergen, Norway; Eirik Rosnes for your support as co-supervisor, and Siddharta
Kumar and Reent Schlegel for a fruitful collaboration. Your support has been most
appreciated.

Anton Frigård, Gothenburg, April 2020

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Thesis objective . 3
1.2 Thesis structure . 3

2 Preliminaries 5
2.1 Notation . 5
2.2 Coding theory . 5
2.3 Decoding complexity . 7
2.4 Luby-Transform codes . 7

2.4.1 Encoding . 7
2.4.2 Inactivation decoding . 8
2.4.3 Decoding failure probability 9
2.4.4 Decoding complexity . 9

2.5 Distributed computing . 11
2.6 Wireless communication . 12

3 System model 15
3.1 Uplink phase . 16
3.2 Computation phase . 16
3.3 Downlink phase . 18

3.3.1 Performance measure . 20
3.3.2 Key concepts . 20

4 Converse bound 21

5 Coding schemes 29
5.1 LT scheme . 29
5.2 LT-repetition scheme . 29
5.3 MDS-repetition scheme . 31

6 Numerical results 33

7 Conclusion 37

ix

Contents

Bibliography 39

x

List of Figures

2.1 Binary erasure channel . 6
2.2 Bipartite graph representation of an LT code with k = 3 and n = 5. . 8
2.3 Example of inactivation decoding of an LT code. 10
2.4 A wireless channel with 2 transmitters and 2 receivers 12

3.1 A general MEC network with e ENs and u users. 15
3.2 Computation phase scenario in Example 2. 17

6.1 Total latency τ(γ) as a function of γ for parameters e = 6, k = 600,
µ = 0.6, δ = 0.0005, and two values of η. 34

xi

List of Figures

xii

List of Tables

3.1 Scheduling table for the system in Example 1. 16
3.2 Example of transmission layout. 18

5.1 Scheduling for a general LT scheme. 30
5.2 Scheduling for Example 5 . 30

6.1 Design parameter values of LT- and MDS-repetition schemes for sim-
ulations with e = 6, k = 600, µ = 0.6, and δ = 0.0005. The values are
given for η = 0.8 without parentheses and for η = 8 inside parentheses. 34

xiii

List of Tables

xiv

1
Introduction

Performing heavy processing on resource-constrained devices may result in unac-
ceptably long execution delay and high energy consumption. This is often dealt
with by outsourcing computation tasks for processing at external units. Cloud com-
puting is one technique to accomplish this by offloading computations to remote
data centers. However, this strategy may also suffer from long delays, owing to the
large distances between users and data centers, and congestion in the core and back-
haul networks [1]. Consider for example a tourist who films objects of interest with
his smart phone, and wants information about the objects to be displayed on his
screen in real time. The video stream is offloaded to the cloud for image processing,
but the area is dense with tourists requiring digital services, forcing contention of
network resources and causing an annoying delay. For applications where latency is
critical, offloading to the cloud may therefore not be an adequate solution.

Mobile edge computing (MEC) is a concept aimed at eliminating some of this
delay by providing storage and processing capacity in the proximity of users [1–3].
A general MEC offloading scenario involves multiple users transmitting their data
over a wireless channel to a set of servers located at the network edge, which process
the data and transmit the results back to the users. Since the users are close to
the servers, the propagation delay will likely be short. Furthermore, some of the
load on the backhaul network is alleviated, since little or no data has to be sent to
the cloud. MEC is posed to play a key role in, e.g., the realization of 5G, Internet
of Things, augmented and virtual reality applications, video analytics, health care
services, and connected and self-driving vehicles [1–3]. Consider for example a traffic
scenario, where sensors around the road are used to detect accidents [3]. The sensor
data need to be quickly analyzed, such that emergency signals can be transmitted
to nearby vehicles, forcing them to slow down. The data is offloaded to MEC servers
that are deployed at nearby base stations, such that the data can be processed in
the close vicinity of the road and existing radio resources can be used to broadcast
the signals. We will hereafter refer to the MEC servers as edge nodes (ENs).

Since the wireless channel and ENs are shared by the users, a decision must
be made on how much of these resources to allocate to each user [4–12]. You et
al. [4] considered joint optimization of radio resources, how much data should be
offloaded and whether a user should offload none, part, or all of its data. The goal
was to minimize the sum user energy consumption under latency constraints. In [5]
a similar scenario was considered for binary offloading, i.e., when users either offload
all of their data or none at all. Resource allocation involving CPU frequency scaling
was consider in [6–8]. Dinh et al. [6] proposed algorithms for jointly optimizing
task allocation and users’ CPU frequency. The aim was to minimize computation

1

1. Introduction

latency and users’ energy consumption. A similar case was considered by Sardellitti
et al. [7], who minimized the users’ energy consumption under latency constraints
by jointly optimizing the transmit pre-coding matrices of the users and the CPU
cycles/second assigned to each user by the edge cloud. By jointly optimizing CPU
frequency, transmit power, and offloading ratio of a user, Wang et al. [8] separately
minimized the users’ energy consumption and computation time in a single-user,
single-EN setting. The authors also considered a setting with a single user and
multiple ENs.

Minimization of latency under energy constraints has also been considered [9,
10]. Chen et al. [9] proposed an efficient binary offloading scheme for an MEC
scenario with multiple users and ENs, jointly optimizing offloading decision and
computational resource allocation. In [10], Liu et al. optimized task allocation in a
single-user, single-EN scenario with partial offloading, showing that their offloading
policy outperforms benchmark policies.

Joint optimization of offloading decision, and radio and computational resources
was also considered in [11,12]. Zhang et al. [11] minimized the sum energy consump-
tion and latency in a multi-user setting. In [12], Wang et al. also included caching
at the edge to maximize the total revenue of the network.

By assigning data for processing at multiple ENs, diversity is introduced in the
downlink and the ENs can cooperate to transmit the results back to the users in a
shorter time [13,14]. This idea was leveraged by Li et al. [13] in a multi-user, multi-
EN system. The computation task of each user is divided into subtasks, which are
either executed locally, or offloaded and repeated across several ENs. An offloading
strategy with optimal task partition ratios and amount of repetition was devised
to minimize the total latency. While numerical evaluations show an improvement
compared to not using repetition, the price paid is an increased computational load.
The authors then extended this work in [14], precisely characterizing the tradeoff
between latency and computational load.

Distributed computing systems employing multiple servers have been noted to
randomly suffer from stragglers, i.e., servers that take a long time to finish their
respective tasks [15]. Since multiple servers are employed in MEC, it is reasonable
to assume the presence of stragglers here as well. By modeling stragglers in a cloud
computing scenario as erasures, it has recently been shown that erasure codes can
be applied to enable the completion of the overall computation from only a subset
of the servers [16–23]. In fact, repeating computation tasks across servers as was
done in the MEC setting in [13, 14] to enable cooperative transmission is a form of
coding that has been considered in the distributed computing setting as protection
against stragglers [16,17]. Out of the servers that have processed the same task the
system need only to wait for the quickest one.

Several works have specifically considered the use of error correcting codes for
matrix multiplication in distributed computing over the cloud [18–22]. Yu et al. [18]
proposed a coding strategy referred to as polynomial codes for large-scale matrix-
matrix multiplication and showed its optimality in terms of minimum number of
servers to wait for. The use of maximum distance separable (MDS) codes for dis-
tributed matrix-vector multiplication was considered by Lee et al. in [19], speeding
up computation compared to an uncoded strategy. A more efficient use of computa-

2

1. Introduction

tional resources was investigated by Mallick et al. [20] using Luby-Transform (LT)
codes [24] for distributed matrix-vector multiplication. Contrary to previous coded
schemes, this strategy does not discard computed products. MDS and LT codes
were also used by Severinson et al. [21] for distributed matrix-vector multiplication.
As opposed to previous work the encoding and decoding times were taken into ac-
count, and the MDS code was applied to matrix blocks instead of rows to lower the
decoding complexity. The authors then extended this work in [22] by considering
Raptor codes.

Whereas research on coding for distributed computing in data centers is exten-
sive, few have yet considered coding in the MEC scenario. Two recent papers, one
by Zhang et al. [23] and one by Keshtkarjahromi et al. [25], investigated coding for
protection against straggling ENs. Keshtkarjahromi et al. proposed a coded strat-
egy based on LT codes, showing its near-optimality and evaluating it in a testbed
of Android devices. Zhang et al. considered a concatenation of repetition and MDS
codes, making use of the same cooperative transmission as Li et al. in [13,14]. Their
MDS hybrid scheme, which we will refer to as MDS-repetition scheme in this thesis,
provides a lower latency than an uncoded approach. However, MDS codes have
a very high decoding complexity, which makes them unsuitable for most practical
applications. This fact motivates an investigation into practical coding schemes,
which can provide both a reasonable decoding complexity and a low latency.

1.1 Thesis objective
In this thesis we propose two coding schemes based on LT codes [24] and repetition
codes for lowering the latency in an MEC system consisting of multiple users and
multiple ENs. The LT codes are decoded using inactivation decoding, a maximum
likelihood decoding algorithm with moderate complexity [26]. We wish to find out
how these schemes perform in terms of latency compared to the MDS-repetition
scheme presented in [23]. Can we achieve better computation and communication
latency? How does the performance differ when changing parameter values? Which
scheme is more practical?

It is also interesting to investigate whether we can find a tight lower bound on
the total latency that holds for all coding schemes. This could then be used as a
reference to evaluate the performance of the proposed schemes.

1.2 Thesis structure
The thesis is organized as follows. In Chapter 2, the necessary mathematics and
other preliminaries are presented. Chapter 3 provides a thorough mathematical
description of the system under consideration. In Chapter 4, a lower bound on the
total latency is derived. Two coding schemes based on LT codes are presented in
Chapter 5, and compared with the converse bound and MDS-repetition scheme in
Chapter 6. In Chapter 7, we conclude our results.

3

1. Introduction

4

2
Preliminaries

The core of this thesis is the application of coding theory in MEC. This chap-
ter therefore begins with an introduction to the idea of coding. A special class
of random codes called LT codes is then presented, with an in-depth explanation
of the encoding and decoding procedures. We then consider a simple example of
wireless communication and present a form of cooperative transmission technique
which is crucial to this thesis. Furthermore, we consider the application of coding
in distributed computing, in some aspects a precursor to coding for mobile edge
computing, which is discussed last.

2.1 Notation
Vectors will be denoted by bold, lowercase letters, and matrices by bold, uppercase
letters. Random variables will be denoted by uppercase letters, and their realizations
by the lowercase counterparts. Random vectors will, as matrices, be denoted by bold,
uppercase letters, and their realizations will be bold and lowercase. However, their
randomness will be explicitly pointed out to avoid confusion. For some integer u,
we denote by [u] the set {1, . . . , u}. Sets will be denoted in calligraphic font. For
some real numbers a and b, we denote by [a, b] the set of all real values between a
and b.

2.2 Coding theory
The field of coding theory was born shortly after the publication of Claude Shan-
non’s landmark paper A Mathematical Theory of Communication in 1948, wherein
Shannon laid the groundwork for a theory of information [27]. It was well known at
the time that signals, which carry information, are affected by distortions of different
kinds during transmission, such as thermal noise. This distortion has the potential
to render the transmitted information unintelligible to the receiving part. What
Shannon showed was that to protect the information to be transmitted, one can
add additional information in a structured way so as to detect and possibly correct
for distortion. He called this adding of redundant information coding.

A very simple distortion model, or channel, is depicted in Figure 2.1. The
left hand side of the graph constitutes the transmitter, which transmits a length-k
sequence of zeros and ones, or bits, to the receiver at the right-hand side. During
transmission a bit may be erased, i.e., taking an unknown value. In particular, a bit
is erased with probability ε and received intact with probability 1− ε. This channel

5

2. Preliminaries

ε

1 − ε

εTr
an
sm
itt
er

0

1 1

0

1 − ε
R
eceiver

?

Figure 2.1: Binary erasure channel

is called the binary erasure channel (BEC). The job of the receiver is to estimate
which sequence of bits was transmitted in the potential presence of erasures. Note
that an erased bit is equally likely to be a 0 or 1 from the perspective of the receiver.
If this bit is considered merely by itself, the only reasonable action for the receiver
to take is to flip a coin, i.e., to choose between a 0 and a 1 uniformly at random.

However, to make a decision on the value of an erased bit we can consider it in
a larger context; the structure of the whole sequence of transmitted bits. Consider
for example the transmission of a bit sequence, or data word, u of length k = 2. For
protection we encode u using a single parity check (SPC) code to get a codeword
c of length n = 3. This entails appending a single bit to u such that there is an
even number of ones in c. For example, a data word u = [0, 1] would be encoded
into c = [0, 1, 1]. The data word bits are called information bits and the codeword
bits are called code bits. Ideally we would like to avoid having too many code bits
since these take up space in the transmission where information bits could have
been sent instead. The price we pay for the protection of coding is thus a longer
time to transmit the same amount of information, or alternatively require a larger
bandwidth.

Consider now transmitting c = [0, 1, 1] over the BEC. Assume that the channel
erases the first bit during transmission such that the received bit vector is y =
[?, 1, 1]. At the receiver side it is known that codewords must have an even number
of ones, which means that the only valid guess to which codeword was transmitted
is ĉ = [0, 1, 1]. We say that the receiver decodes y onto ĉ, which can then be mapped
back to û = [0, 1]. The receiver thus managed to both detect and correct the error
introduced by the channel. If instead the received word would be y = [?, ?, 1], then
the receiver would need to choose between the two equally likely codewords [0, 1, 1]
and [1, 0, 1]. There is therefore a risk of decoding the received word onto a codeword
that was not the one transmitted, i.e., there is a probability that decoding fails.

Encoding is often expressed as the multiplication c = uG, where the k × n
matrix G is the generator matrix of the code. In the SPC example, the generator
matrix is

6

2. Preliminaries

G =
[
1 0 1
0 1 1

]

and addition is carried out modulo 2. In general, the data word and codeword need
not necessarily be bit vectors. For example, in this thesis we will encode a matrix
W of size k× l by a generator matrix G of size n× k as C = GW . In this context
the rows of W are the analog of the bits of u in c = uG.

SPC codes are among the simplest codes constructed and can be categorized as
MDS codes. An (n, k) MDS code has the special feature that the transmitted data
word can be decoded from any k out of the n transmitted code symbols.

2.3 Decoding complexity
Decoding SPC codes is very simple, but most codes require more sophisticated de-
coding algorithms. Some algorithms provide very good error correcting capability
but are heavy on processing, and vice-versa. A benchmark in terms of error cor-
recting performance is maximum likelihood (ML) decoding. The downside of ML
decoding is that it is usually prohibitively heavy on processing. We say that ML
decoding has a high decoding complexity. The complexity of a decoding algorithm
can be measured in terms of the number of operations that it performs. For exam-
ple, brute force ML decoding of binary (n, k) linear block codes has a complexity
of O(2k) since the decoder needs to search through all valid codewords, of which
there are 2k. Clearly, for large k there will be a huge number of codewords to search
through. However, for some codes there exist ML decoding algorithms with a much
lower complexity. The Viterbi algorithm for decoding convolutional codes is one
such example.

2.4 Luby-Transform codes
A class of codes that perform very well on erasure channels is fountain codes. Foun-
tain codes are random and can generate any desired number n of output (code) bits
from an input (information) bit sequence of fixed length k to the encoder. A special
class of fountain codes with a low-complexity decoding algorithm is LT codes [24],
which will now be explained in more detail.

2.4.1 Encoding
We will restrict ourselves to binary LT codes. Consider the formation of output bit
ci, i ∈ [n]. The first step of encoding is drawing a degree d from a degree distribution
Ω. The encoder then selects d out of the k incoming bits uniformly at random and
sum them to form the output bit. Let Ωd be the probability of generating degree d.

Let us consider an example with k = 3 and n = 5. Assume that the degrees are
generated as d1 = d2 = d4 = 2, d3 = 3, and d5 = 1. In this case, the output bits
could be encoded as, e.g., c1 = x1 + x2, c2 = x2 + x3, c3 = x1 + x2 + x3, c4 = x1 + x3

7

2. Preliminaries

x1 x2 x3

y1 y2 y3 y4 y5

Figure 2.2: Bipartite graph representation of an LT code with k = 3 and n = 5.

and c5 = x3, where addition is over the binary field. Let y be the received bits and
assume that no bit was erased. We can represent the input bits and received output
bits and their connections by a bipartite graph as in Figure 2.2. The top circles
represent input bits and the bottom squares represent output bits. An output bit
is formed by the binary addition of the input bits connected to it by edges. In this
graph context we will refer to the input bits as input nodes, and the output bits as
output nodes.

2.4.2 Inactivation decoding
LT codes were first presented together with a suboptimal low-complexity decod-
ing algorithm often referred to as peeling decoding [24]. However, in this thesis
we will make use of an ML decoding algorithm known as inactivation decoding,
which can be seen as an extension of peeling decoding [26]. Inactivation decoding
is easily explained using the bipartite graph. Assume that a length-n codeword was
transmitted and that out of the n code bits, m bits were non-erased. Consider the
bipartite graph corresponding to the inputs bits u, which the receiver does not know
and wants to estimate, and received output bits y. Inactivation decoding works as
follows.

1. Find an output node yi that is connected to only one input node xj, i.e., which
has degree 1. If no such output node exists, one of the input nodes is marked
as inactive. The value of the inactive node is added to its neighbors and the
inactive node along with its edges are removed from the graph. This will
hopefully reduce the degree of some output node to 1, such that decoding can
move on to the next step. If not, this step is repeated until there appears an
output node of degree 1.

2. Since we know the value of yi and since it is connected to only xj, the value
of xj must be yi. We therefore set xj = yi and remove node yi and its edge to
xi from the graph.

3. Add the value of xi to the output nodes still connected to it and then remove
the connecting edges from the graph. If there remain edges in the graph, go
to step 1. If there remain no edges, move on to step 4.

4. Solve the linear system of equations corresponding to the inactive input nodes
by Gaussian elimination. Back-substitute to find the values of the non-inactive
input nodes.

8

2. Preliminaries

A decoding example with k = 5 and m = 7 is given in Figure 2.3. Addition is
carried out over the binary field.

2.4.3 Decoding failure probability

When transmitting a codeword over an erasure channel we do not know which
code bits will be erased. Combining this fact with the random nature of the LT
code we can not be sure that the linear system of equations involving the input
and output bits has a solution, nor that it has a single solution. We model this
randomness by a variable Φ, such that decoding is successful if k + Φ output bits
are received intact. The distribution of Φ is of great interest, since from it we
can determine the probability of decoding failure PF. This is the probability that
collecting k + φ output bits is insufficient in order to determine a unique solution
to the resulting linear system of equations, i.e., PF(φ) , Pr(Φ ≥ φ). In [26] the
decoding failure probability for finite codeword lengths was derived. The analysis
results in a recursion that has to be evaluated numerically and is computationally
demanding for large codeword lengths. We are instead interested in an upper bound
on PF derived in [28]. The bound is sufficiently tight for all values of φ and much less
computationally demanding than the true decoding failure probability. For binary
LT codes, the bound is [28]

PF(φ) ≤
k∑
i=1

(
k

i

)[
1
2 + 1

2
∑
d

Ωd
Kd(i; k)
Kd(0; k)

]k+φ

(2.1)

where Kζ(ξ; ν) is the Krawtchouk polynomial

Kζ(ξ; ν) =
ζ∑
i=0

(−1)i
(
ξ

i

)(
ν − ξ
ζ − i

)
.

2.4.4 Decoding complexity

The decoding complexity of inactivation decoding is driven by step 4. Here the
Gaussian elimination has a complexity of O(α3), where α is the number of inacti-
vations [26]. The degree distribution Ω has a significant impact on α and as such
can be optimized to minimize decoding costs. Two degree distributions were pre-
sented in Luby’s original paper on LT codes [24]; the ideal soliton distribution (ISD)
and the robust soliton distribution (RSD). The ISD is designed to keep the expected
number of degree-1 output nodes equal to one at every stage of the decoding process,
with the aim of keeping Φ small. Unfortunately the variance around this expected
value is not negligible and the lack of degree-1 output nodes may therefore be too
frequent, which increases the number of inactivations and drives up decoding costs.
The RSD solves this issue by increasing the expected number of degree-1 output
nodes to some predetermined value. The ISD is given by

9

2. Preliminaries

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

(a) The second output node is the only
of degree one.

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

=y2

+y2 +y2

(b) We set x3 = y2, and add y2 to y3
and y5. After this operation there is no
degree-1 output node. We therefore ran-
domly mark x4 as inactive.

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

=y2

+y2 +y2+x4 +x4

(c) x4 is added to y4 and y7 and the
corresponding edges are removed from
the graph. After this operation the only
degree-1 output node is the seventh.

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

=y2

+y2 +y2+x4 +x4

=
y7+x4

+y7+x4+y7+x4

(d) We set x5 = y7+x4 and add y7+x4 to
the current value of the fifth and sixth
output node. After this there are two
degree-1 output nodes. We randomly
choose the sixth output node to be han-
dled next.

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

=y2

+y2 +y2 +x4

=
y7+x4

+y7+x4+y7+x4

=
y6+y7+x4

+y6+y7+x4
+y6+y7+x4

+y6+y7

(e) We set x1 = y6 + y7 + x4, and y6 +
y7 + x4 is added to the current value of
the first, third, and fourth output node.
Randomly choose the first output node
to be handled next.

y2 y3 y4 y5 y6

x1 x2 x3 x4 x5

y1 y7

=y2

+y2 +y2 +x4

=
y7+x4

+y7+x4+y7+x4

=
y6+y7+x4

+y6+y7+x4
+y6+y7+x4

+y6+y7

y1+y6+y7+x4=

(f) Find the value of x4 by solving the
equation (y6 + y7 + x4) + (y1 + y6 + y7 +
x4)+x4 = y4. The result is x4 = y1 +y4.
We can then find the values of the other
input nodes.

Figure 2.3: Example of inactivation decoding of an LT code.10

2. Preliminaries

ΩISD
d =

1/k for d = 1
1/(d(d− 1)) for d = 2, . . . , k

and the RSD is given by

ΩRSD
d = ΩISD

d + τd∑k
d=1(ΩISD

d + τd)

where

τd =


b/ik for i = 1, . . . , k/b− 1
b ln(b/δ)/k for d = k/b

0 for d = k/b+ 1, . . . , k
(2.2)

b = c
√
k ln k

δ
(2.3)

for some real-valued design parameters δ > 0 and c > 0 [24].
In this thesis we do not take decoding time into account and instead aim at

minimizing E[Φ], i.e., the average overhead. In principle this can be done by picking
different values of δ and c, computing the RSD in (2.2), computing the decoding
failure probability using the bound in (2.1), and evaluating E[Φ].

2.5 Distributed computing
In distributed computing, a computation task is divided into subtasks and handed
out to different servers for parallel processing. The aim is to finish the task in a
shorter time than would be possible with only a single server, and to leverage avail-
able computational resources more efficiently. There are however a few challenges
that arise in this setting. For example, some servers may lag, or straggle, such that it
takes an unacceptable amount of time for them to finish their respective tasks. This
issue has been dealt with by the use of coding [15–17, 19–22, 29–32]. In particular,
the computation can be protected by modeling a straggling server as an erasure and
then apply erasure correcting codes such as MDS or LT codes.

Consider for example some length-l column vector x which we wish to multiply
by some k × l matrix W . We have three servers at our disposal. A straightforward
approach would be to divideW into three k

3 × l blocks asW =
[
W T

1 , W
T
2 , W

T
3

]T
and hand out one block to each server. Server s would compute ys = W sx and
the total computation would be y = Wx =

[
yT

1 ,y
T
2 ,y

T
3

]T
. However, the system is

vulnerable to stragglers since it needs to wait for all servers to finish.
Consider instead partitioningW into two k

2×l submatrices asW =
[
W T

1 , W
T
2

]T
and then applying an MDS code. The first and second servers are handed W 1 and
W 2 respectively, while the third is handed W 1 +W 2. The servers then compute

11

2. Preliminaries

h11

h22

h21

h12Tx 1

Tx 2

Rx 1

Rx 2

Figure 2.4: A wireless channel with 2 transmitters and 2 receivers

y1 = W 1x, y2 = W 2x, and y3 = (W 1 + W 2)x. The desired result y can then
be obtained from any set of two servers, i.e., we can tolerate one straggler without
affecting the reliability of the computation.

In [19] the straggling duration of a server was modeled as an exponential random
variable. Let η be the exponential distribution parameter. The expected value and
variance of an exponential random variable with parameter η is 1/η. This means that
as η decreases the average straggling duration increases and so does its variability.

2.6 Wireless communication
This thesis involves communication over a wireless channel. In particular we will use
a certain cooperative transmission technique, which is best explained by an example.

Consider the wireless channel depicted in Figure 2.4 with 2 transmitters and 2
receivers. The complex channel gain between transmitter i and receiver j is given
by hij. The channel as a whole can be described by the channel matrix

H =
[
h11 h21
h12 h22

]
.

Both transmitters are assumed to know the channel matrix, which is constant during
transmission. Assume that the first transmitter has stored two data vectors x1 and
x2, and that the second transmitter has stored only x2. The first vector can be
expressed as x1 = [x11,x12], where x11 and x12 are length-l bit vectors desired by
the first and second receiver, respectively. Similarly, x2 = [x21,x22], where x21 is
desired by the first receiver and x22 by the second.

Consider the transmission of x1 by the first transmitter. We first map x11 onto
a vector v of the same length, where the ith element is given by v(i) = (−1)x11(i),
and x11(i) is the ith element of x11. The first transmitter then broadcasts the signal
u(i) = v(i)/h11, i ∈ [l], where the vector v is scaled to compensate for the gain
introduced by the channel. Since the signal is destined for the first receiver, the
second receiver ignores it. The signal received by the first user is y1(i) = h11u1(i) +
z1(i) = v(i) + z1(i), i ∈ [l], where z1(i) is white Gaussian noise of unit power.

12

2. Preliminaries

We have thus created an additive white Gaussian noise (AWGN) channel. If the
signal-to-noise ratio (SNR) is high enough the transmission will succeed with high
probability. We can then transmit x12 to the second receiver in the same way, so
that x1 in its entirety is delivered in 2l time units.

Consider now the transmission of x2, which is cached by both transmitters. As
in the previous case, we map x21 and x22 onto vectors v1 and v2. Contrary to
the previous case, we may now transmit two signals at the same time, one for each
transmitter. The signals can be expressed in vector form as

[
u1(i)
u2(i)

]
= H−1

[
v1(i)
v2(i)

]

= 1
h11h22 − h12h21

[
h22 −h21
−h12 h11

] [
v1(i)
v2(i)

]

= 1
h11h22 − h12h21

[
h22v1(i)− h21v2(i)
−h12v1(i) + h11v2(i)

]

for i ∈ [l]. We have now scaled, or pre-coded, by the channel matrix inverse. This
technique is often called zero-forcing (ZF) pre-coding. Note that the transmitted
signal at each transmitter involves both v1 and v2, and thus x21 and x22. As such,
ZF requires the data to be cached at both transmitters. The received signals are[

y1(i)
y2(i)

]
= H

[
u1(i)
u2(i)

]
+
[
z1(i)
z2(i)

]
= HH−1

[
v1(i)
v2(i)

]
+
[
z1(i)
z2(i)

]
=
[
v1(i)
v2(i)

]
+
[
z1(i)
z2(i)

]

for i ∈ [l]. We thus created two parallel AWGN channels and carried out transmis-
sion in l time units. Compare this to the transmission of x1, where we created two
serial AWGN channels and carried out transmission over 2l time units. By caching
the same data at multiple transmitters we can thus lower the transmission time.

13

2. Preliminaries

14

3
System model

In this chapter a mathematical description of the MEC system under consideration
is presented. At first the components of the system and the offloading process are
described. The offloading process consists of three phases, each of which is explained
in-depth in the subsequent sections. The most important principles and variables
to remember are then summarized so that the reader can get an overview of the
problem. The chapter is concluded by introducing a measure of performance, such
that different coding schemes can be evaluated and compared.

EN 1 EN 2 EN e

User 1 User 2 User u

Figure 3.1: A general MEC network with e ENs and u users.

Consider a wireless network consisting of u single-antenna user devices in need of
offloading their computation tasks to e single-antenna ENs, as depicted in Figure 3.1.
Consider specifically a scenario in which each user i ∈ [u] has some length-r data
vector xi, and wants to compute the linear inference operation yi = Wxi, for some
k × r matrix W [23]. The elements are all from GF(q), where q is the power of a
prime. The matrix is stored distributively across the ENs. The offloading process
consists of three phases: uplink, computation, and downlink. Each phase will now
be explained in more detail.

15

3. System model

Table 3.1: Scheduling table for the system in Example 1.

EN 1 EN 2 EN 3
1 2 3
4 5 6
7 8 9
10 11 12
3 1 2
6 4 5

3.1 Uplink phase
The process starts with the users transmitting their data such that each EN can
construct the r× u matrix X = [x1, . . . ,xu]. We will assume that the transmission
scheme is the same for all coding schemes, yielding the same transmission latency.

3.2 Computation phase
Consider now that the ENs are prone to straggling. For protection, W is encoded
as C = GW before the offloading process begins, where the n × k matrix G with
elements from GF(q) is the generator of some code, and C is a matrix of size n× r.
The ENs store subsets of the rows of C of the same size. Let µ be the fraction of
rows of the original matrix W that each EN can store at most, where 1/e ≤ µ ≤ 1.
This constraint is enforced to make sure that each row of W can be stored at least
one time in the uncoded case, and that no EN has an unrealistic storage capacity.
Each EN is then responsible for computing the products between the rows that it
stores and the matrix X. For some row c of C, we will refer to a product cX
simply as a product. The order in which products are computed is described by a
scheduling table, where the element in column i ∈ [e] and row j ∈ [µk] is the index
of the jth product to be computed by EN i.

Example 1. Consider a scenario with e = 3, u = 3, µ = 1, and a matrix W with
k = 9 rows. We encode W with a (12, 9) MDS code and obtain n = 12 coded rows
c1, . . . , c12. Some of the rows are duplicated so that each EN stores 6 rows. A valid
scheduling is depicted in Table 3.1. Looking at the table we can see that the first EN
is responsible for computing the products c1X, c4X, c7X, c10X, c3X, c6X, in the
given order.

Following previous work, the straggling times of the ENs are modeled as random
variables Λ1, . . . ,Λe

i.i.d∼ exp(η) [15]. We define the vector of straggling times as
Λ , [Λ1, . . . ,Λe]. As soon as each EN has constructed X the computation phase
begins, marked by time t = 0. At time t = Λi, EN i will begin computing products
in the order designated by the corresponding column in the scheduling table. The

16

3. System model

EN 1

λ 2

δ

λ1

t

CδT

λ2
λ3

EN 2 EN 3

6

3

10

7

4

1

8

5

2

6

3

Figure 3.2: Computation phase scenario in Example 2.

ENs are assumed to have identical processing capabilities, such that the time it takes
to compute a product is some deterministic value δ for each of them. The number of
products completed by the ENs is represented by a length-e random process vector
D(t), where the ith element is the number of products completed by EN i at time
t.

The computation phase is halted when a certain stopping criterion is satisfied.
Assume some code and scheduling, and let d be a possible outcome of D at a
given time. We say that d is a stopping vector if we can recover the desired results
y1, . . . ,yu by decoding the computed products. To control the computation phase
we introduce a stopping set S of stopping vectors, such that the computation phase
ends as soon asD(t) ∈ S. The stopping set is designed with the code and scheduling
in mind and need not necessarily contain all possible stopping vectors. Following
the description above we define the computation latency as

TC ,
1
δ

min{t : D(t) ∈ S}. (3.1)

Assuming that the code, scheduling, and stopping set are known, TC is a function
of Λ and we will therefore sometimes write TC(Λ).
Example 2. Consider the scenario in Example 1 with scheduling in Table 3.1. Since
we are using a (12, 9) MDS code, we may recover the results y1,y2, and y3 from
any computation containing 9 or more distinct products. Thus, valid stopping vectors
are, e.g., [3, 3, 3], [6, 3, 0], and [6, 3, 2]. A valid stopping set is S = {[3, 3, 3], [6, 3, 2]}.
An example computation phase is depicted in Figure 3.2, where the straggling times
are such that D = [6, 3, 2] at the end of the computation.

Since a row of C may be stored at several ENs, the corresponding product
may have been computed more than once. We therefore introduce Mi, i ∈ [n], as

17

3. System model

Table 3.2: Example of transmission layout.

block user 1 user 2 user 3 user 4
1 1 1 1
2 2 2 1
3 3 2 2
4 3 3 3

the number of times product ciX has been computed across the ENs by time TC.
By definition Mi must satisfy 0 ≤ Mi ≤ e. We will hereafter refer to Mi as the
multiplicity of product ciX.

We denote by P the total number of products computed by time TC. Note that P
includes duplicates of computed products, and that it can be determined by knowing
the stopping set S and realization of Λ

For various reasons we might not want to transmit all computed products to the
users. For example, the ENs might have computed more distinct products than are
needed in order for the users to recover their data, i.e., to decode. Transmitting
such redundant products would increase the communication latency but result in no
benefits. Let V be the set of indices of all distinct products chosen for transmission.
Note that at least k products are needed in order for the users to recover their data,
which means that |V| ≥ k. V will sometimes informally be referred to as containing
products, while technically it contains the indices of products.

Example 3. For the computation phase scenario considered in Example 2 and de-
picted in Figure 3.2 the total number of computed products is P = 11. There are 9
distinct products, so that V = {1, . . . , 8, 10}. The multiplicities are M3 = M6 = 2
and 1 for the rest.

3.3 Downlink phase
We define the communication latency as

TD , lim
σ→∞

S

u log2(q)/ log2(1 + σ)

where S is the total transmission time, u log2(q) is the data size of a product in
bits, and log2(1 + σ) is the channel capacity of a discrete-time AWGN channel with
signal-to-noise ratio σ. We adopt the transmission strategy of [23], which is based
on [33]. The strategy is best explained by an example.

Example 4. Consider a product cX which has been computed by 3 ENs. There
are 4 users, such that cX = [cx1, cx2, cx3, cx4] where user j desires the log2(q)-
bit product cxj. Let us divide cxj into 3 packets

[
cx

(1)
j , cx

(2)
j , cx

(3)
j

]
, each of

18

3. System model

log2(q)/3 bits. Transmission is carried out by sending 3 packets at a time, over 4
blocks. The transmission strategy is illustrated in Table 3.2, where the index of the
ith user column and jth row represents the packet that will be sent to user i in block
j.

Consider now the transmission of packets cx(1)
1 , cx

(1)
2 , cx

(1)
3 in block 1. We map

packet cx(1)
i onto a sequence si(t), t ∈ [t′], of complex symbols, where t′ = log2(q)/3

log2(1+σ̃)
and σ̃ is the transmit power. Let H be the channel matrix between the ENs and the
first three users. Assuming H is invertible, the ENs transmit the signals

u1(t)
u2(t)
u3(t)

 = H−1

s1(t)
s2(t)
s3(t)


for t ∈ [t′], where we have pre-coded by the channel matrix inverse. This is the ZF
technique presented in Section 2.6. Note that the symbol sequences must be known
to all ENs. The three first users then receive the signalsy1(t)

y2(t)
y3(t)

 = H

u1(t)
u2(t)
u3(t)

+

z1(t)
z2(t)
z3(t)

 =

s1(t)
s2(t)
s3(t)

+

z1(t)
z2(t)
z3(t)


for t ∈ [t′], where zi(t) is complex white Gaussian noise of unit power, independent
across users and time. We have thus created 3 parallel and independent AWGN
channels, on which the users can recover the transmitted symbols with high probability
if σ̃ is large enough. Transmitting the other packets in the same way results in a
total transmission time of 4t′. Then the entire product cX is transmitted in

lim
σ̃→∞

4t′
u log2(q)/ log2(1 + σ̃) = lim

σ̃→∞

4 log2(q)/3
log2(1+σ̃)
u log2(q)

log2(1+σ̃)

= 1
3

(normalized) time units.

Applying the results from [33] one can show that a computed product ciX can
be transmitted in 1/min{Mi, u} time units [23]. We will assume that e ≤ u, such
that Mi ≤ u, ∀i ∈ [n]. The products are transmitted sequentially and TD can
therefore be expressed as

TD =
∑
i∈V

1
Mi

. (3.2)

Let G|V and C|V be the matrices with rows corresponding to the indices in V ,
such that C|V = G|VW . User j will have received C|Vxj at the end of the downlink
phase, such that it can decode onto G|−1

V C|Vxj = G|−1
V G|VWxj = Wxj = yj,

where G|−1
V is the left inverse of G|V . While this is not how decoding is carried out

in practice (see, e.g., Section 2.4.2 for inactivation decoding of LT codes), it serves
to illustrate the principle.

19

3. System model

3.3.1 Performance measure
The performance of the system is measured in terms of the total latency τ , defined
as

τ(γ) , E[TC] + γE[TD],

where the average is over Λ and γ is a parameter used for modeling the relative
weight between the computation and communication latency. Since we have assumed
that the uplink transmission latency is the same for any coding scheme, it is not
included in the total latency.

3.3.2 Key concepts
Some parts from this section will be used in the rest of the paper and we therefore
summarize the key concepts to remember. User j ∈ [u] wants to compute yj = Wxj.
The k rows of W are encoded to form the n rows of matrix C. These rows are
distributed across the ENs, possibly such that a row is duplicated. The order in
which the ENs compute their assigned products is determined by a scheduling table.
The straggling times Λ1, . . . ,Λe of the ENs are i.i.d. exponentially distributed with
parameter η. A stopping set S is needed in order to determine when to stop the
computation phase. The computation latency is denoted by TC. The total number
of computed products is denoted by P . The set V contains the indices of all distinct
products scheduled for transmission in the downlink, where |V| ≥ k. The number of
times product ciX has been computed across the ENs by the end of the computation
phase is denoted by Mi. Lastly, we defined TD as the communication latency and
gave an expression for it under ZF pre-coding.

Note that our freedom of design encompasses the code, scheduling, and stop-
ping set S. We will therefore specifically refer to this combination as the coding
scheme. A coding scheme and realization of Λ completely specify TC, P , V , TD, and
multiplicities M1, . . . ,Mn.

20

4
Converse bound

Bounds are important to understand the performance limits of a system. In this
chapter a lower bound on the total latency τ(γ) is derived. Bounds that express
limits along the lines of one cannot do better than this are called converse bounds.
Note that such a bound reveals nothing about the possibility of achieving it. We can
for example claim that τ(γ) ≥ 0 although it is clear that no practical system could
ever have a latency of zero. This chapter begins with a lemma needed to prove the
subsequent theorem. The result of the first theorem is then used to prove the main
theorem at the end of the chapter.
Lemma 1. Let a and b be positive, real-valued variables satisfying a > b. Then the
function

f(a, b) =


b2

a
if a/b ∈ N

da/beb−a
ba/bc + a−bba/bc

da/be otherwise
(4.1)

is monotonically decreasing in a and monotonically increasing in b.
Proof. Clearly, the term b2/a is monotonically decreasing in a and monotonically
increasing in b.

We now prove monotonicity in a for the second case in (4.1). Let a1 = cb and
a2 = (c+1)b for some positive integer c. If we only consider values of a in the interval
a1 < a < a2 the fraction a/b can not be an integer and thus f(a, b) is evaluated by
the second expression. Furthermore, we can conclude that da/be = a2/b = c+ 1 and
ba/bc = a1/b = c. Then

f(a, b) = (c+ 1)b− a
c

+ a− cb
c+ 1

= b

c

(c+ 1)b− a
b

+ b

c+ 1
a− cb
b

= b

c

(
1− a− cb

b

)
+ b

c+ 1
a− cb
b

= b

c

(
1− a− cb

(c+ 1)b− cb

)
+ b

c+ 1
a− cb

(c+ 1)b− cb

= b

c

(
1− a− a1

a2 − a1

)
+ b

c+ 1
a− a1

a2 − a1

= b2

a1

(
1− a− a1

a2 − a1

)
+ b2

a2

a− a1

a2 − a1
. (4.2)

21

4. Converse bound

Let α = a−a1
a2−a1

, such that α goes from 0 to 1 as a goes from a1 to a2. Then (4.2) can
be rewritten as

f(a, b) = b2

a1
(1− α) + b2

a2
α.

This is a convex combination of the values b2/a1 and b2/a2, where b2/a1 > b2/a2. The
function must therefore be monotonically decreasing on the interval a1 < a < a2.
Now note that at the end points (a1, b) and (a2, b) of this interval, the function
f(a, b) is evaluated by the first expression in (4.1), yielding exactly b2/a1 and b2/a2,
respectively. Thus, the first expression fills in the points for which the discontinuous
second expression would evaluate to zero, making f(a, b) continuous in a on the
interval a1 ≤ a ≤ a2. Recall that a takes values in [b,∞). This interval can be seen
as a concatenation of intervals [cb, (c + 1)b] for c = 1, 2, . . ., and so f(a, b) must be
continuous and monotonically decreasing in a on the entire interval [b,∞).

We now prove monotonicity in b. Let d be a positive integer and define b1 =
a/(d + 1) and b2 = a/d. Consider b on the interval b1 < b < b2, such that da/be =
a/b1 = d+ 1 and ba/bc = a/b2 = d. Then

f(a, b) = (d+ 1)b− a
d

+ a− db
d+ 1

= a

d

(d+ 1)b− a
a

+ a

d+ 1
a− db
a

= a

d

(d+ 1)b− a
a+ da− da

+ a

d+ 1
a− db

a+ da− da

= d

d

a

d

(d+ 1)b− a
(d+ 1)a− da + d+ 1

d+ 1
a

d+ 1
a− db

(d+ 1)a− da

= a

d2
(d+ 1)db− ad
(d+ 1)a− da + a

(d+ 1)2
(d+ 1)a− (d+ 1)db

(d+ 1)a− da

= a

d2
(d+ 1)db− ad
(d+ 1)a− da + a

(d+ 1)2

(
1− (d+ 1)db− da

(d+ 1)a− da

)

= a

d2

b− a
d+1

a
d
− a

d+1
+ a

(d+ 1)2

1−
b− a

d+1
a
d
− a

d+1


= b2

2
a

b− b1

b2 − b1
+ b2

1
a

(
1− b− b1

b2 − b1

)
. (4.3)

Let β = b−b1
b2−b1

, such that β goes from 0 to 1 as β goes from b1 to b2. Then (4.3) can
be rewritten as

f(a, b) = b2
1
a

(1− β) + b2
2
a
β,

which is a convex combination of the values b2
1/a and b2

2/a, where b2
1/a < b2

2/a. The
function must therefore be increasing on the interval b1 < b < b2. Again, note that
at the end points (a, b1) and (a, b2) of this interval, the function f(a, b) is evaluated

22

4. Converse bound

by the first expression in (4.1), yielding exactly b2
1/a and b2

2/a, respectively. As such,
the first expression fills in the points for which the discontinuous second expression
would evaluate to zero, making f(a, b) continuous in b on the interval b1 ≤ b ≤ b2.
Recall that b takes values in [0, a). This interval can be seen as a concatenation of the
intervals

[
a
d+1 ,

a
d

]
, d = 1, 2, . . ., and so f(a, b) must be continuous and monotonically

increasing in b on the entire interval [0, a).

We now use the results of the lemma to derive a lower bound on the communi-
cation latency TD.

Theorem 1 (Lower bound on the communication latency). For any coding scheme
and Λ resulting in P computed products, TD can be lower bounded as

TD ≥ T ∗D(P), (4.4)

where

T ∗D(P) =


k2

P
if P/k ∈ N

dP/kek−P
bP/kc + P−kbP/kc

dP/ke otherwise,
(4.5)

and k is the number of rows in matrix W .

Proof. Consider an arbitrary coding scheme. Assume that we have a realization λ
that leads to a total number of computed products p, set V with cardinality v, and
set of multiplicities {mi}. Let α be the average multiplicity of the products in V .
Then αv is the total number of products in V , plus all corresponding duplicates.
We can express αv as

αv =
∑
i∈V

mi. (4.6)

Under ZF pre-coding, the communication latency is given by

tD =
∑
i∈V

1
mi

. (4.7)

Looking at (4.7) we see that tD is completely specified by the number of products v
in V , and the multiplicities {mi} of these products. Also note that the multiplicities
are constrained by (4.6), since α and v are fixed. The aim of this proof is now to
find the combination of multiplicities {mi} that minimizes tD for a fixed α and v,
and then to optimize over α and v to provide the most beneficial constraint given
by (4.6).

To this end, we define vm as the number of products in V of multiplicity m,
where 1 ≤ m ≤ e. We can then express v, αv, and tD in terms of vm as

23

4. Converse bound

v =
e∑

m=1
vm (4.8)

αv =
e∑

m=1
mvm (4.9)

tD =
e∑

m=1

vm
m
. (4.10)

Consequently, determining the best distribution of multiplicities {mi} is equivalent
to determining the best distribution of {vm}.

We will now first derive a bound that holds when α is an integer, and then
a second bound that holds when α is not an integer. The final bound is then a
combination of these two bounds.

First bound. Consider the case when α is an integer. If all products in V have
the same multiplicity α, i.e., vm = v for m = α and zero otherwise, by (4.10) the
latency is v/α. Comparing this to all other choices of {vm} we have

tD −
v

α
=

e∑
m=1

vm
m
− v

α

(a)=
e∑

m=1

vm
m
− 1
α

e∑
m=1

vm

=
e∑

m=1
vm
α−m
mα

=
α∑

m=1
vm
α−m
mα

+
e∑

m=α
vm
α−m
mα

≥ 1
α2

α∑
m=1

vm(α−m) + 1
α2

e∑
m=α

vm(α−m)

= 1
α2

e∑
m=1

vm(α−m)

(b)= 1
α2 (αv − αv)

= 0

where in (a) we used (4.8), and in (b) we used (4.8) and (4.9). The latency v/α is
thus the lowest possible when α is an integer.

Second bound. Consider now the case when α is not an integer. The idea of the
proof in this case is to partition V into two sets and then apply the same calculations
as in the previous case to each of the subsets.

Let us partition V into the disjoint sets A and B, with |A| = (dαe − α)v and
|B| = (α− bαc)v. Denote by αA and αB the average multiplicity of the products in
set A and B, respectively. Note that αA |A| is the number of products in A plus all

24

4. Converse bound

its duplicates. The same holds for αB |B|. Together they must make up αv products,
i.e., all products in V plus their corresponding duplicates. Then

αv = αA(dαe − α)v + αB(α− bαc)v (4.11)

Denote by vAm and vBm the number of products of multiplicity m in set A and B,
respectively. Then

αA |A| =
∑
i∈A

mi =
e∑

m=1
mvAm (4.12)

and the same holds for B. We may also express tD as

tD =
∑
i∈V

1
mi

=
∑
i∈A

1
mi

+
∑
i∈B

1
mi

=
e∑

m=1

vAm
m

+
e∑

m=1

vBm
m
. (4.13)

Consider the case when all products in A have the same multiplicity bαc and all
products in B have the same multiplicity dαe, i.e., when vAm = |A| for m = bαc and
vBm = |B| for m = dαe, and zero otherwise. In this case αA = bαc and αB = dαe, so
that constraint (4.11) is satisfied. Then by (4.13) the latency is |A|bαc + |B|

dαe . We would
like to compare this latency with the latency of any other choice of {vAm} and {vBm}.
To this end, consider first

e∑
m=1

vAm
m
− |A|
bαc

(a)=
e∑

m=1

vAm
m
− 1
bαc

e∑
m=1

vAm

=
e∑

m=1
vAm
bαc −m
mbαc

=
bαc∑
m=1

vAm
bαc −m
mbαc

+
e∑

m=dαe
vAm
bαc −m
mbαc

≥ 1
dαebαc

bαc∑
m=1

vAm(bαc −m) + 1
dαebαc

e∑
m=dαe

vAm(bαc −m)

= 1
dαebαc

e∑
m=1

vAm(bαc −m)

(b)= bαc |A| − αA |A|
dαebαc

where we used ∑e
m=1 v

A
m = |A| in both (a) and (b), and in (b) we also used (4.12).

Similarly, for B we have

25

4. Converse bound

e∑
m=1

vBm
m
− |B|
dαe

=
e∑

m=1

vBm
m
− 1
dαe

e∑
m=1

vBm

=
e∑

m=1
vBm
dαe −m
mdαe

=
bαc∑
m=1

vBm
dαe −m
mdαe

+
e∑

m=dαe
vBm
dαe −m
mdαe

≥ 1
bαcdαe

bαc∑
m=1

vBm(dαe −m) + 1
bαcdαe

e∑
m=dαe

vBm(dαe −m)

= 1
bαcdαe

e∑
m=1

vBm(dαe −m)

= dαe |B| − αB |B|
bαcdαe

.

We can then conclude that

tD −
|A|
bαc
− |B|
dαe

=

=
e∑

m=1

vAm
m

+
e∑

m=1

vBm
m
− |A|
bαc
− |B|
dαe

≥ bαc |A| − αA |A|
dαebαc

+ dαe |B| − αB |B|
bαcdαe

= bαc |A|+ dαe |B| − (αA |A|+ αB |B|)
dαebαc

(a)= αv − αv
dαebαc

= 0,

where in (a) we used (4.11). Thus, the lowest possible latency for α not an integer
is |A|bαc + |B|

dαe = dαev−αv
bαc + αv−bαcv

dαe .

Final Bound. Letting v′ = αv and combining the two bounds, we define

f(v, v′) =


v2

v′ if v′/v ∈ N
dv′/vev−v′

bv′/vc + v′−vbv′/vc
dv′/ve otherwise

(4.14)

By Lemma 1, this function is monotonically decreasing in v′ and monotonically
increasing in v. Since v′ ≤ p and v ≥ k, we can therefore lower bound f(v, v′) by
t∗D(p), where

t∗D(p) =


k2

p
if p/k ∈ N

dp/kek−p
bp/kc + p−kbp/kc

dp/ke otherwise.
(4.15)

26

4. Converse bound

This bound holds for any coding scheme and λ resulting in p computed products.

We are now ready to state and prove the main theorem of this thesis.

Theorem 2 (Lower bound on the total latency). For any coding scheme, the total
latency can be lower bounded as

τ(γ) ≥ E
[

min
p∈{k,...,eµk}

[
TC(Λ, p) + γT ∗D(p)

]]
, (4.16)

where k is the number of rows in matrix W , TC(Λ, p) is the computation latency
when waiting for p products in total and T ∗D(p) is given by

T ∗D(p) =


k2

p
if p/k ∈ N

dp/kek−p
bp/kc + p−kbp/kc

dp/ke otherwise.

Proof. The aim of this proof is to lower bound τ(γ) until the bound does not depend
on some underlying coding scheme. Consider

τ(γ) = E[TC(P) + γTD(Λ)]
≥ E[TC(P) + γT ∗D(P)]

≥ E
[

min
p∈{k,...,eµk}

[
TC(Λ, p) + γT ∗D(p)

]]
. (4.17)

Recall that the computation phase results in P computed products in total. In
the first inequality we thus begin by choosing the smallest possible communication
latency for P computed products, which follows from Theorem 1. However, to
evaluate this expression we would need to assume a stopping set, which is part of
the coding scheme. This is because a stopping set and Λ completely determines TC
and P .

Consider then the last inequality. We here take control over P and choose the
value that would minimize the total latency for the given Λ. Note that we do
not know if there exists a coding scheme that for the given Λ would result in the
optimal P . Neither do we know if there exists a coding scheme that would result in
the optimal P at all times. This is why the bound is a converse.

We still need to know the value of Λ in order to determine the optimal number
of products to compute and TC. The dependence of TC on both p and Λ is therefore
specifically highlighted. On the other hand, T ∗D(P) depends on Λ through P and as
such, T ∗D(p) does not depend on Λ.

The bound can be interpreted as using the best possible coding scheme for every
outcome of Λ. This is of course practically impossible since the coding scheme must
be set before the system is used and not during runtime.

27

4. Converse bound

28

5
Coding schemes

Recall that the code, scheduling, and stopping set S constitute the freedom of design
of the system. In this chapter we present three different coding schemes that will
be evaluated by simulations in the next chapter. The first two coding schemes are
based on LT codes and inactivation decoding. The third scheme was presented
in [23] and is based on MDS codes. It will serve as a benchmark for the two LT
schemes designed in this thesis.

As discussed in Section 2.4.3 LT codes are random and can be decoded if k + Φ
out of the n transmitted output symbols are received intact. If k+φ output symbols
are collected there is a risk that decoding will not succeed, since Φ is random. We
referred to the probability of this event as the decoding failure probability PF(φ) =
Pr(Φ ≥ φ). Let us therefore accept some pre-determined failure probability Pe.
Note that there exists an overhead φmin such that if k + φmin output symbols are
always collected the probability of decoding failure will be Pe. In fact, φmin can be
found by numerically solving the equation Pe = PF(φmin), where the upper bound
on PF(φ) presented in (2.1) is convenient to use.

5.1 LT scheme
We encode the k rows of W by a fixed-rate LT code to get eµk rows c1, . . . , ceµk.
The scheduling is depicted in Table 5.1. The stopping set is designed as

S =

s :
e∑
i=1

si = k + φmin, 0 ≤ si ≤ µk

. (5.1)

The computation phase is thus halted as soon as the first k + φmin products have
been computed. We are now ready to express the total latency of the LT scheme.
Proposition 1 (Total latency of the LT scheme).

τ(γ) = E[TC] + γ(k + φmin). (5.2)
Proof. The ENs will always compute k + φmin products in total and each product
will have multiplicity 1. Then from (3.2) we have TD = ∑

i∈V 1/Mi = k + φmin.

5.2 LT-repetition scheme
Let ρ1 and ρ2 be positive, rational numbers. We encode the rows of W by a fixed-
rate LT code to get ρ1k coded rows c1, . . . , cρ1k. These are then repeated ρ2 times,

29

5. Coding schemes

Table 5.1: Scheduling for a general LT scheme.

EN 1 EN 2 ... EN e

1 2 ... e
e+ 1 e+ 2 ... 2e
...

e(µk − 1) + 1 e(µk − 1) + 2 ... eµk

Table 5.2: Scheduling for Example 5

EN 1 EN 2 EN 3 EN 4
1 2 3 4
5 6 7 8
9 10 11 12
4 1 2 3
8 5 6 7
12 9 10 11
3 4 1 2
7 8 5 6

resulting in ρ1ρ2k rows in total. If ρ2 is not an integer, (dρ2e − ρ2)ρ1k of the ρ1k
LT-coded rows are repeated bρ2c times, and the remaining (ρ2 − bρ2c)ρ1k rows are
repeated dρ2e times. Each EN stores ρ1ρ2k/e rows. The scheduling is best described
by an example.

Example 5. For an LT-repetition scheme with parameters e = 4, k = 6, ρ1 = 2,
and ρ2 = 8/3 the scheduling is depicted in Table 5.2. To begin, the ρ1k = 12 LT-
coded rows are assigned to the upper ρ1k

e
×e block of the scheduling table, from left to

right, top to bottom. A duplicate of the block is created, circularly shifted and placed
beneath the upper block. A duplicate of the second block is created, out of which the
top 2 rows are singled out, circularly shifted, and placed beneath the second block.

In general, we have

ρ1 ∈ {1} ∪
[
k + φmin

k
, eµ

]
, (5.3)

ρ2 ∈ [1, eµ]. (5.4)

where ρ1 = 1 corresponds to the uncoded option, i.e., not using an LT code at all.
Note that the specific pair ρ1 = (k + φmin)/k and ρ2 = 1.0 corresponds to the LT
scheme in the previous section.

30

5. Coding schemes

Since the total storage capacity of the ENs is eµk rows and the total number of
coded rows is ρ1ρ2k, any valid combination of ρ1 and ρ2 must satisfy

ρ1ρ1 ≤ eµ. (5.5)

We also enforce the constraint

ρ1
k

e
∈ N (5.6)

to make sure that no row in the scheduling table is partly filled. We design the
stopping set as

S(p) =

s :
e∑
i=1

si ≥ p, 0 ≤ si ≤ ρ1ρ2k/e, |V| = k + φmin

, (5.7)

where

p ∈ {k, . . . , ρ1ρ2k} (5.8)

is the least number of products that we want to compute in total. Thus, the com-
putation stops when k + φmin distinct products have been computed and at least p
products have been computed in total. The parameter p has a similar function to
the p considered in the minimization of the converse bound in (4.16); it is used to
find the specific LT-repetition coding scheme that provides the lowest total latency
on average.

Proposition 2 (Total latency of LT-repetition scheme).

τ(γ) = min
ρ1,ρ2,p

E[TC + γTD] (5.9)

under the constraints given by (5.3), (5.4), (5.5), (5.6), and (5.8).

5.3 MDS-repetition scheme
Zhang et al. presented in [23] a coding scheme which they call the MDS hybrid
scheme. It will be used as a benchmark in this thesis and we therefore state some
of its details here, with some minor modifications. A thorough explanation of the
scheme can be found in the original paper. For consistency, we will refer to the
scheme as the MDS-repetition scheme.

Let ρ1 be a positive, rational number. The k rows of W are encoded using a
(ρ1k, k) MDS code and then repeated ρ2 times to get ρ1ρ2k coded rows in total. In
contrast to the LT-repetition scheme, ρ2 must now be an integer. The scheduling
is designed by dividing the ρ1k MDS-coded rows into batches and distribute the
batches across the ENs. As with the LT-repetition scheme the storage condition

ρ1ρ2 ≤ eµ (5.10)

31

5. Coding schemes

must be satisfied.
The stopping set is designed such that the system waits for the quickest ξ ENs

to finish their entire assigned set of products, where 0 ≤ ξ ≤ e. Any products
computed by ENs that are not among the ξ quickest are discarded, even if these
products are duplicates of the products computed by the ξ quickest ENs, and as
such could be used to lower the communication latency. This restriction is solely
enforced to enable an analysis of the total latency.

In order to guarantee a successful recovery of the results, ρ1, ρ2, and ξ must
satisfy (

e

ρ2

)
−
(
e− ξ
ρ2

)
≥ 1
ρ1

(
e

ρ2

)
. (5.11)

Let dmin = max{ρ2 − (e− ξ)} and dmax = max{ξ, ρ2}. Define

H(l) ,
l∑

j=1

1
j
,

B(d) ,

(
q
d

)(
e−ξ
ρ2−d

)
ρ1k(

e
ρ2

)
for some d ∈ [dmin, dmax]. Let also

dξ , inf

i :
dmax∑
d=i

B(d) ≤ k

.
Proposition 3 (Total latency of the MDS-repetition scheme).

τ(γ) = min
ξ

H(e)−H(e− ξ)
ητ

+ ρ1ρ2k

e
+ γmin

ρ1,ρ2

 dmax∑
d=dξ

B(d)
d

+
m−∑dmax

d=dξ
B(d)

dξ − 1


(5.12)

where ρ1 ∈ [1, eµ], ρ2 ∈ {bξµc, . . . , beµc}, and ξ ∈ {d1/µe, . . . , e}. The parameters
must satisfy constraints (5.10) and (5.11).

32

6
Numerical results

The coding schemes were evaluated for the parameter combinations e = 6, k = 600,
µ = 0.6, and δ = 0.0005. In (5.12) we provided an analytical expression for the total
latency of the MDS-repetition scheme [23], which will be used as a benchmark. The
total latencies for the two LT schemes in (5.2) and (5.9) contain expectations and
as such must be evaluated by Monte Carlo simulations. The total latency for each
scheme is depicted in Figure 6.1 for η = 0.8 (top curves) and η = 8 (bottom curves).
Also included in the figure is the converse bound in (4.16). The bound contains an
expectation and must therefore also be evaluated by simulation.

For the two LT schemes, we accept a decoding failure probability of Pe = 10−4.
Using the bound in (2.1) the overhead φmin ≈ 15 is found numerically, which is
relatively small. By (5.3), (5.4), and (5.8) the parameters of the LT-repetition
scheme takes values as ρ1 ∈ {1}∪[615/600, 3.6], ρ2 ∈ [1, 3.6] and p ∈ {600, . . . , 2160}
under constraints ρ1ρ2 ≤ 3.6 and 100ρ1 ∈ N given by (5.5) and (5.6).

Contrary to the LT-based schemes, the MDS-repetition scheme guarantees suc-
cessful decoding. From Proposition 3 we have ξ ∈ {2, . . . , 6}, ρ1 ∈ [1, 3.6], and
ρ2 ∈ {b0.6ξc, . . . , 3}. The parameters must also satisfy constraints (5.10) and (5.11).
The resulting parameter choices for the LT-repetition and MDS-repetition scheme
are presented in Table 6.1 for given values of γ.

Recall that the converse bound can be interpreted as choosing the best possible
coding scheme for every Λ, i.e., choosing the scheme during runtime. In practice the
coding scheme is set before the system is in use, which is of course the case with the
two LT schemes and the MDS-repetition scheme. The pre-set coding scheme will
most likely not be optimal for every Λ and we would therefore expect the schemes
to perform worse than the converse on average. By looking at Figure 6.1 this is
indeed the case. Furthermore, a smaller η will yield more severe straggling and a
larger spread of the straggling times. We would therefore expect it to be less likely
that a specific coding scheme is optimal for most realizations of Λ, since the system
would operate in a highly varying environment. This is indeed also the case; we
see in general that the schemes perform further away from the converse bound for
η = 0.8 as compared to η = 8. Another consequence of severe straggling is that the
computation latency will increase on average. This is why the curves for η = 0.8 are
shifted higher up than the curves for η = 8.

Consider the results for η = 0.8. For small values of γ the computation latency
E[TC] dominates the total latency and we would therefore expect it to be advanta-
geous to use codes with good protection against stragglers. By looking at Table 6.1
we see that both hybrid schemes result in their respective largest ρ1 and smallest
ρ2, which corresponds to using only LT and MDS codes. These codes provide better

33

6. Numerical results

Table 6.1: Design parameter values of LT- and MDS-repetition schemes for sim-
ulations with e = 6, k = 600, µ = 0.6, and δ = 0.0005. The values are given for
η = 0.8 without parentheses and for η = 8 inside parentheses.

LT-repetition MDS-repetition
γ ρ1 ρ2 p ρ1 ρ2 ξ

0 3.6 (3.4) 1.0 (1.0) 600 (600) 3.0 (2.0) 1.0 (1.0) 2 (3)
1 3.6 (3.4) 1.0 (1.0) 600 (1320) 3.0 (2.0) 1.0 (1.0) 2 (4)
2 3.6 (1.0) 1.0 (3.6) 600 (1620) 3.0 (1.0) 1.0 (3.0) 2 (5)
3 3.6 (1.0) 1.0 (3.6) 600 (1740) 3.0 (1.0) 1.0 (3.0) 2 (5)
4 1.0 (1.0) 3.6 (3.6) 1080 (1800) 3.0 (1.0) 1.0 (3.0) 2 (5)
5 1.0 (1.0) 3.6 (3.6) 1080 (1800) 3.0 (1.0) 1.0 (3.0) 2 (5)
6 1.0 (1.0) 3.6 (3.6) 1080 (1800) 1.0 (1.0) 3.0 (3.0) 4 (6)
7 1.0 (1.0) 3.6 (3.6) 1440 (1800) 1.0 (1.0) 3.0 (3.0) 4 (6)
8 1.0 (1.0) 3.6 (3.6) 1440 (2040) 1.0 (1.0) 3.0 (3.0) 4 (6)
9 1.0 (1.0) 3.6 (3.6) 1440 (2040) 1.0 (1.0) 3.0 (3.0) 4 (6)
10 1.0 (1.0) 3.6 (3.6) 1440 (2100) 1.0 (1.0) 3.0 (3.0) 4 (6)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
0

500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000
5,500
6,000
6,500

η = 0.8

η = 8

γ

To
ta
ll
at
en
cy

LT
LT-repetition
MDS-repetition
Converse bound

Figure 6.1: Total latency τ(γ) as a function of γ for parameters e = 6, k = 600,
µ = 0.6, δ = 0.0005, and two values of η.

34

6. Numerical results

straggler protection than repetition codes, and we can therefore conclude that our
expectation is correct. Note that with ρ1 = 3.6 and ρ2 = 1.0 the LT-repetition
scheme is identical to the LT scheme, which is why the corresponding curves are on
top of each other for small γ.

For small γ we would also expect the schemes to opt for computing as few
products as possible in order to lower the computation latency. As discussed, the
LT-repetition scheme is identical to the LT scheme for small γ, and the ENs will
therefore compute the minimum number of products k+ φmin. The MDS-repetition
scheme stops the computation phase when the smallest possible number of ENs
have completed their products, which is ξ = 2. The results thus seem to be in order.
Similarly, in the minimization in (4.16) the converse bound favors small values of p
for all Λ, i.e., it favors computing as few products as possible in order to obtain a
low computation latency. This is why the schemes perform close to the converse for
small γ.

As γ grows the communication latency E[TD] has a larger impact on the total
latency and it is therefore more beneficial to use a repetition code rather than an
MDS or an LT code. This is why the LT-repetition scheme tunes into ρ1 = 1.0
and ρ2 = 3.6 at roughly γ = 4, which corresponds to no LT code and maximum
amount of repetition. The MDS-repetition scheme similarly converts to a pure
repetition code at roughly γ = 6. Recall that a repetition code not only decreases
the communication latency, but also protects against straggling servers. This is why
it is so beneficial to go for repetition as γ grows large enough.

The LT-repetition scheme has a better performance than the MDS-repetition
scheme for all considered values of γ. In general this is a consequence of the MDS-
repetition scheme discarding products computed by ENs that are not among the ξ
quickest, which is clearly a wasteful strategy. On the other hand, the LT-repetition
scheme avoids this by accepting products computed by any EN. The difference in
outcome for the two strategies is clearly seen for larger γ. Here the inclines of the
curves of the MDS and LT-repetition schemes are roughly the same, which tells
us that the communication latency is roughly the same. However, to achieve the
same communication latency the MDS-repetition scheme needs to compute more
products than the LT-repetition scheme and thus have a higher computation latency
on average. Lastly, the LT scheme can not adapt to a changing γ and its curve is
therefore a straight line.

For η = 8, the results follow the same principles as for η = 0.8. Note however
that the two hybrid schemes convert to pure repetition at a smaller γ than in the
η = 0.8 case. This is because the computation latency is lower, which means that
the communication latency has a larger impact on the total latency. As such, the
schemes opt for a lot of repetition and computing a lot of products since the decrease
in communication latency outweighs the increase in computation latency.

35

6. Numerical results

36

7
Conclusion

We considered latency-critical distributed matrix-vector multiplication in a mobile
edge computing scenario consisting of multiple users and multiple ENs. The re-
sults indicate that coding has the potential to lower the overall latency by provid-
ing protection against straggling ENs and enabling transmission cooperation in the
downlink, at the cost of an increased computational load. We presented two cod-
ing schemes based on Luby-Transform (LT) codes and inactivation decoding, which
has a lower decoding complexity than the MDS-coded scheme recently presented
by Zhang et al [23]. One scheme is based solely on an LT code and is aimed at
providing a low computation latency by computing as few products as possible, and
avoiding stragglers. The other scheme is based on a concatenation of an LT code
and a repetition code. In this case the idea is to leverage both the straggler pro-
tection provided by the LT code and the cooperative transmission enabled by the
repetition code. The results show that our LT-repetition scheme outperforms the
MDS-repetition scheme from [23] for most parameter combinations.

We also derived a lower bound on the total latency, which can be interpreted
as choosing the optimal coding scheme for every outcome of straggling. However,
in practice a coding scheme is chosen before the system is in use, and can not
be changed during runtime. Furthermore, even if a coding scheme performs well
on average, it is unlikely to perform well at all times. In general, this causes a
discrepancy between the bound and the curves of the coding schemes. For certain
choices of parameters the schemes do however perform close to the bound. This is
especially the case when the computation latency is critical.

This work will lead to the submission of a journal article, in which additional
results will be presented. Importantly, the time it takes for users to decode will
be taken into account. This is in fact vital to investigate, since the decoding time
might increase the total latency up to the point where it would be quicker for a user
to process the data by itself, instead of offloading it.

Another factor to take into account in future work is the cost of coordinating the
ENs in the computation phase. Our LT-coded schemes most likely require a larger
number of messages sent between the ENs than the MDS-coded scheme by Zhang
et al, which will increase the communication load. Lastly, there are indications that
the converse bound potentially can be tightened, and it would be interesting to
investigate whether this is indeed plausible.

37

7. Conclusion

38

Bibliography

[1] Pavel Mach and Zdenek Becvar. Mobile Edge Computing: A Survey on Ar-
chitecture and Computation Offloading. IEEE Communications Surveys and
Tutorials, 19(3):1628–1656, 2017.

[2] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. Mobile Edge Com-
puting: A Survey. IEEE Internet of Things Journal, 5(1):450–465, 2018.

[3] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, and Valerie Young.
Mobile Edge Computing A key technology towards 5G. ETSI White Paper No.
11 Mobile, (11):1–16, 2015.

[4] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung Hoon Kim.
Energy-Efficient Resource Allocation for Mobile-Edge Computation Offload-
ing. In IEEE Transactions on Wireless Communications, volume 16, pages
1397–1411. IEEE, 2017.

[5] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin Peng,
Li Pan, Sabita Maharjan, and Yan Zhang. Energy-Efficient Offloading for Mo-
bile Edge Computing in 5G Heterogeneous Networks. IEEE Access, 4:5896–
5907, 2016.

[6] Thinh Quang Dinh, Jianhua Tang, Quang Duy La, and Tony Q.S. Quek.
Offloading in Mobile Edge Computing: Task Allocation and Computational
Frequency Scaling. IEEE Transactions on Communications, 65(8):3571–3584,
2017.

[7] Stefania Sardellitti, Gesualdo Scutari, and Sergio Barbarossa. Joint optimiza-
tion of radio and computational resources for multicell mobile-edge comput-
ing. IEEE Transactions on Signal and Information Processing over Networks,
1(2):89–103, 2015.

[8] Yanting Wang, Min Sheng, Xijun Wang, Liang Wang, and Jiandong Li. Mobile-
Edge Computing: Partial Computation Offloading Using Dynamic Voltage
Scaling. IEEE Transactions on Communications, 64(10):4268–4282, 2016.

[9] Min Chen and Yixue Hao. Task Offloading for Mobile Edge Computing in
Software Defined Ultra-Dense Network. IEEE Journal on Selected Areas in
Communications, 2018.

39

Bibliography

[10] Juan Liu, Yuyi Mao, Jun Zhang, and Khaled B. Letaief. Delay-optimal com-
putation task scheduling for mobile-edge computing systems. In IEEE Inter-
national Symposium on Information Theory - Proceedings, volume 2016-Augus,
pages 1451–1455, Barcelona, aug 2016. Institute of Electrical and Electronics
Engineers Inc.

[11] Jiao Zhang, Xiping Hu, Zhaolong Ning, Edith C.H. Ngai, Li Zhou, Jibo Wei,
Jun Cheng, and Bin Hu. Energy-latency tradeoff for energy-aware offloading in
mobile edge computing networks. IEEE Internet of Things Journal, 5(4):2633–
2645, 2018.

[12] Chenmeng Wang, Chengchao Liang, F. Richard Yu, Qianbin Chen, and Lun
Tang. Computation Offloading and Resource Allocation in Wireless Cellular
Networks with Mobile Edge Computing. IEEE Transactions on Wireless Com-
munications, 16(8):4924–4938, 2017.

[13] Kuikui Li, Meixia Tao, and Zhiyong Chen. Exploiting Computation Replication
in Multi-User Multi-Server Mobile Edge Computing Networks. 2018 IEEE
Global Communications Conference, GLOBECOM 2018 - Proceedings, pages
1–7, 2018.

[14] Kuikui Li, Meixia Tao, and Zhiyong Chen. Exploiting Computation Replication
for Mobile Edge Computing: A Fundamental Computation-Communication
Tradeoff Study. pages 1–23, 2019.

[15] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of
the ACM, 56(2):74–80, 2013.

[16] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. Ef-
fective straggler mitigation: Attack of the Clones. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation, NSDI
2013, pages 185–198, 2019.

[17] Da Wang, Gauri Joshi, and Gregory Wornell. Using straggler replication to re-
duce latency in large-scale parallel computing. Performance Evaluation Review,
43(3):7–11, 2015.

[18] Qian Yu, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. Polynomial
codes: An optimal design for high-dimensional coded matrix multiplication.
Advances in Neural Information Processing Systems, 2017-Decem(Nips):4404–
4414, 2017.

[19] Kangwook Lee, Maximilian Lam, Ramtin Pedarsani, Dimitris Papailiopoulos,
and Kannan Ramchandran. Speeding Up Distributed Machine Learning Using
Codes. IEEE Transactions on Information Theory, 64(3):1514–1529, 2018.

[20] Ankur Mallick, Malhar Chaudhari, Utsav Sheth, Ganesh Palanikumar, and
Gauri Joshi. Rateless Codes for Near-Perfect Load Balancing in Distributed
Matrix-Vector Multiplication. Proceedings of the ACM on Measurement and
Analysis of Computing Systems, 3(3):1–40, dec 2019.

40

Bibliography

[21] Albin Severinson, Alexandre Graell I. Amat, and Eirik Rosnes. Block-Diagonal
and LT Codes for Distributed Computing with Straggling Servers. IEEE Trans-
actions on Communications, 67(3):1739–1753, 2019.

[22] Albin Severinson, Alexandre Graell I. Amat, Eirik Rosnes, Francisco Lázaro,
and Gianluigi Liva. A Droplet Approach Based on Raptor Codes for Dis-
tributed Computing with Straggling Servers. In International Symposium on
Turbo Codes and Iterative Information Processing, ISTC, volume 2018-Decem,
2019.

[23] Jingjing Zhang and Osvaldo Simeone. On Model Coding for Distributed Infer-
ence and Transmission in Mobile Edge Computing Systems. IEEE Communi-
cations Letters, 23(6):1065–1068, 2019.

[24] Michael Luby. LT Codes. In 43 rd Annual IEEE Symposium on Foundations
of Computer Science, page 10. IEEE, 2002.

[25] Yasaman Keshtkarjahromi, Yuxuan Xing, and Hulya Seferoglu. Dynamic
Heterogeneity-Aware Coded Cooperative Computation at the Edge. In Pro-
ceedings - International Conference on Network Protocols, ICNP, pages 23–33,
2018.

[26] Francisco Lazaro, Gianluigi Liva, and Gerhard Bauch. Inactivation Decoding
of LT and Raptor Codes: Analysis and Code Design. IEEE Transactions on
Communications, 65(10):4114–4127, 2017.

[27] C. E. Shannon. A Mathematical Theory of Communication. Bell System Tech-
nical Journal, 1948.

[28] Birgit Schotsch, Giuliano Garrammone, and Peter Vary. Analysis of LT codes
over finite fields under optimal erasure decoding. IEEE Communications Let-
ters, 17(9):1826–1829, 2013.

[29] Songze Li, Mohammad Ali Maddah-Ali, and A. Salman Avestimehr. A unified
coding framework for distributed computing with straggling servers. In 2016
IEEE Globecom Workshops, GC Wkshps 2016 - Proceedings, pages 1–6. IEEE,
2016.

[30] Songze Li, Mohammad Ali Maddah-Ali, Qian Yu, and A. Salman Avestimehr. A
fundamental tradeoff between computation and communication in distributed
computing. IEEE Transactions on Information Theory, 64(1):109–128, 2018.

[31] Albin Severinson, Alexandre Graell I. Amat, and Eirik Rosnes. Block-Diagonal
Coding for Distributed Computing With Straggling Servers. IEEE Transactions
on Communications, 67(3):1739–1753, 2019.

[32] Sanghamitra Dutta, Viveck Cadambe, and Pulkit Grover. ’Short-Dot’: Com-
puting Large Linear Transforms Distributedly Using Coded Short Dot Prod-
ucts. In IEEE Transactions on Information Theory, volume 65, pages 6171–
6193, 2019.

41

Bibliography

[33] Jingjing Zhang and Osvaldo Simeone. Fundamental Limits of Cloud and Cache-
Aided Interference Management with Multi-Antenna Base Stations. IEEE In-
ternational Symposium on Information Theory - Proceedings, 2018-June:1425–
1429, 2018.

42

	List of Figures
	List of Tables
	Introduction
	Thesis objective
	Thesis structure

	Preliminaries
	Notation
	Coding theory
	Decoding complexity
	Luby-Transform codes
	Encoding
	Inactivation decoding
	Decoding failure probability
	Decoding complexity

	Distributed computing
	Wireless communication

	System model
	Uplink phase
	Computation phase
	Downlink phase
	Performance measure
	Key concepts

	Converse bound
	Coding schemes
	LT scheme
	LT-repetition scheme
	MDS-repetition scheme

	Numerical results
	Conclusion
	Bibliography

