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Abstract

It is well established that a symmetric cipher may be described as a system of
Boolean polynomials, and that the security of the cipher cannot be better than the
difficulty of solving said system. Compressed Right-Hand Side (CRHS) Equations
is but one way of describing a symmetric cipher in terms of Boolean polynomi-
als. The first paper of this thesis provides a comprehensive treatment firstly of
the relationship between Boolean functions in algebraic normal form, Binary De-
cision Diagrams and CRHS equations. Secondly, of how CRHS equations may
be used to describe certain kinds of symmetric ciphers and how this model may
be used to attempt a key-recovery attack. This technique is not left as a theo-
retical exercise, as the process have been implemented as an open-source project
named CryptaPath. To ensure accessibility for researchers unfamiliar with alge-
braic cryptanalysis, CryptaPath can convert a reference implementation of the
target cipher, as specified by a Rust trait, into the CRHS equations model auto-
matically.

CRHS equations are not limited to key-recovery attacks, and Paper II explores
one such avenue of CRHS equations flexibility. Linear and differential cryptanal-
ysis have long since established their position as two of the most important crypt-
analytical attacks, and every new design since must show resistance to both. For
some ciphers, like the AES, this resistance can be mathematically proven, but
many others are left to heuristic arguments and computer aided proofs. This
work is tedious, and most of the tools require good background knowledge of a
tool/technique to transform a design to the right input format, with a notable
exception in CryptaGraph. CryptaGraph is written in Rust and transforms a
reference implementation into CryptaGraphs underlying data structure automat-
ically.

Paper II introduces a new way to use CRHS equations to model a symmetric
cipher, this time in such a way that linear and differential trail searches are possi-
ble. In addition, a new set of operations allowing us to count the number of active
S-boxes in a path is presented. Due to CRHS equations effective initial data com-
pression, all possible trails are captured in the initial system description. As is
the case with CRHS equations, the crux is the memory consumption. However,
this approach also enables the graph of a CRHS equation to be pruned, allowing
the memory consumption to be kept at manageable levels. Unfortunately, prun-
ing nodes also means that we will lose valid, incomplete paths, meaning that the
hulls found are probably incomplete. On the flip side, all paths, and their corre-
sponding probabilities, found by the tool are guaranteed to be valid trails for the
cipher. This theory is also implemented in an extension of CryptaPath, and the
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name is PathFinder. PathFinder is also able to automatically turn a reference im-
plementation of a cipher into its CRHS equations-based model. As an additional
bonus, PathFinder supports the reference implementation specifications specified
by CryptaGraph, meaning that the same reference implementation can be used
for both CryptaGraph and PathFinder.

Paper III shifts focus onto symmetric ciphers designed to be used in conjunc-
tion with FHE schemes. Symmetric ciphers designed for this purpose are relatively
new and have naturally had a strong focus on reducing the number of multipli-
cations performed. A multiplication is considered expensive on the noise budget
of the FHE scheme, while linear operations are viewed as cheap. These ciphers
are all assuming that it is possible to find parameters in the various FHE schemes
which allow these ciphers to work well in symbiosis with the FHE scheme. Un-
fortunately, this is not always possible, with the consequence that the decryption
process becomes more costly than necessary.

Paper III therefore proposes Fasta, a stream cipher which has its parameters
and linear layer especially chosen to allow efficient implementation over the BGV
scheme, particularly as implemented in the HElib library. The linear layers are
drawn from a family of rotation-based linear transformations, as cyclic rotations
are cheap to do in FHE schemes that allow packing of multiple plaintext elements
in one FHE ciphertext. Fasta follows the same design philosophy as Rasta, and
will never use the same linear layer twice under the same key. The result is a
stream cipher tailor-made for fast evaluation in HElib. Fasta shows an improve-
ment in throughput of a factor more than 7 when compared to the most efficient
implementation of Rasta.
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Chapter 1

Introduction

1.1 Historical introduction to cryptography
The word cryptography comes from the two Ancient Greek words kryptós and
graphein, meaning “hidden”, or “secret” and “to write”, respectively. As the ear-
liest form of cryptography was simply to write, as most people were analphabets,
one could argue that cryptography is as old as writing itself. Early deliberate
cryptography, where writing was deliberately altered so that its message was hid-
den, dealt with converting the message into unreadable groups of figures. One
such example is found in hieroglyphs from around 1900BC. Egyptian scribes used
hieroglyphs in a non-standard way, presumably to hide the meaning from those
unfamiliar with the change. This change is akin to writing in a foreign language
and learning the new meaning of the hieroglyphs is all it takes to decode the
message.

As time went on, more techniques for hiding messages were invented. The
ancient Greeks used the scytale, a tape wrapped around a piece of stick. The
message would be written while the tape was wound around the stick, and when
the tape was unwound the writing would become meaningless. The message could
then be sent to a recipient, who would wind the tape back around a stick to make
the message readable. This technique makes use of a secret, one which cannot
be learned, but rather owned. A stick of the same diameter is needed for both
the initial making of the hidden message, and then to make the message readable
again. Use a stick of the wrong diameter, and the letters would not line up
correctly. Such a secret component of a cipher is known as the key.

Perhaps a more familiar method of cryptography is the Caesar cipher. It is
named after Julius Caesar, whom has been reported to use it to communicate with
his generals. This cipher is a rather simple cipher, and functions by replacing a
letter with another letter some fixed number of positions down the alphabet. For
example, with a right shift of 4, the letter A would be replaced with E, B with
F, etc. All it takes to get the message back is to reverse the operation. In this
example, the fixed number 4 is the key.

Unfortunately for the Greeks and Romans, both ciphers are easy to break,
meaning that it is easy to recreate the hidden message even without knowing the
secret key. For the scytale, we can try sticks of various diameters until we find the
right one, and in case of the Caesar cipher we can try to shift the alphabet with
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all the fixed numbers between 1 and 26. Trying all the available keys is known
as a brute force attack and is an important metric when it comes to evaluating a
ciphers strength, which we will come back to later. The obvious fix to the small
key size of the Caesar cipher is to substitute a letter with a random different
letter in the alphabet, instead of a fixed shift. Such a substitution will increase
the number of possible keys from 26 to 26! ≈ 288, a number which is infeasible to
brute-force even with the benefit of having computers to aid the attack.

A brute-force attack is not the only way to undo the hiding in the Caesar
cipher, nor the substitution cipher with random replacements of plaintext letters.
All natural languages have some letters which are more used than others. For
example, ’E’ is the most frequent letter in English, followed by ’T’. Counting
the frequencies of letters, the number of times each letter appears, in the hidden
message allows us to guess which letter is a substitute for the letter ’E’. For the
Caesar cipher, this will in turn give us the fixed number the alphabet is shifted
by, which means that we have recovered the secret key.

The number of keys in the substitution cipher is large enough to make it
infeasible to search through all possible permutations of the alphabet looking for
the one that gives meaningful plaintext. Instead, we can guess the substitution of
each letter in the ciphertext based on the knowledge of the frequencies of letters
in the plaintext language, for example English, and then we try to decrypt the
ciphertext. Some of the guesses are likely to be wrong, but most will likely be
the correct substitutions. The wrong ones will be obvious. For example, a word
decrypted to “Caepar” is probably meant to be “Caesar”, and we have corrected
the wrong guess for “s”. Examining frequencies of common digrams enhances
the technique further, and breaks the substitution cipher given a few hundred
characters of ciphertext. This cryptanalytical technique is known as frequency
analysis, and is a good example of how cryptanalysis can be applied to recover
secrets in a more clever way than brute force.

Up until recent years, hiding messages through cryptography was reserved
for the rich and mighty. By the time the middle ages came around, all of the
western countries used cryptography in one form or another. The hiding was done
manually by scribes, and it was used mainly to communicate with their embassies.
Progress on both new ways to hide the message, and how to recover the secrets
were made, albeit slowly. When the western countries started to colonize the
world, they took their methods with them.

In times of war, having good methods of encrypting the message will ensure
that generals can communicate securely with their troops, potentially giving a
strategic and tactic advantage over the enemy. Similarly, breaking the enemy’s
encryption would enable oneself to listen in on the enemy’s communications, al-
lowing your own generals to stay informed on the enemy’s intents and movements.

Breaking the encryption has played a major role in more than one war. In Jan-
uary 1917, the German Foreign Office sent an encrypted telegram to the Mexican
government [32]. It proposed a military alliance between Germany and Mexico
should the US enter WW1 against the Germans. In return, the Mexicans were
promised Texas, Arizona and New Mexico, territories lost to the US in the 1836
war. What the Germans did not know was that the message was intercepted by
the British signal intelligence, and that the Brits had already recovered most of
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the secret key. The British then recovered the plain text message of the telegram
and shared it with the US. This revelation enraged the Americans, and this tele-
gram, known as the Zimmerman Telegram [32], helped to generate support for
the American declaration of war on Germany, in April 1917.

During the Second World War, the British once again demonstrated their
proficiency in breaking encryptions. The team at Bletchley Park, the principal
center for allied code-breaking operations during the Second World War, broke
several of the Axis’ encryption schemes, most notably the Enigma and Lorenz
ciphers. Some estimate that the war was shortened by two to four years due to
the efforts at Bletchley Park [16].

The team at Bletchley Park had developed automated machinery to aid in their
cryptanalytical efforts, culminating in the development of the Colossus. Colossus
was the world’s first fully programmable, digital computer. Today, digital com-
puters are not reserved for the rich and powerful but are readily available to the
common man and civilian businesses. This transition took time, and up to some
time after the Second World War, the main use of cryptography continued to be
for military and diplomatic communication, with the main purpose of preserv-
ing confidentiality, the secrecy of the message. As the transition progressed, the
users of cryptography diversified, and so did the needs and requirements of the
cryptography. Billions upon billions of dollars are exchanged and secured using
cryptography. Access to sensitive areas, both physical and digital, as well as the
ability to identify individuals, are regulated through security systems with cryp-
tography as a central pillar. Critical infrastructure, such as the power grid, have
gone digital and is also in need of solid security systems, again with cryptography
as a core pillar, to stay safe and functioning. Breaches of cryptography in modern
digital systems may indeed have severe repercussions.

1.2 Modern Day Cryptography

The first widely adopted cipher intended for non-military use did not come until
1977, at least in the Western countries, when the National Bureau of Standards,
today known as NIST, together with IBM and the National Security Agency
(NSA) published the Data Encryption Standard (DES) [25]. During the 1990s,
DES’ low key length of 56 bits deemed it necessary to find a replacement. Follow-
ing a five-year public standardization process, the Advanced Encryption Standard
(AES) [26] was chosen in 2001, and formally approved in 2002.

The 1970s saw another major development. In 1976, Withfield Diffe and Mar-
tin Hellman effectively introduced the first asymmetric cryptosystem, a cryp-
tosystem which takes two keys. One key is used for encryption of the message,
while the other is used for decryption. In normal asymmetric encryption, the de-
cryption key is kept secret while the encryption key is made publicly available.
Consequently, a cryptosystem which uses the same key for both encryption and
decryption became known as a symmetric key cryptosystem.

Asymmetric cryptosystems also give us the ability to write digital signatures.
The basic idea is that a hash output, basically a unique fingerprint of the message
we want to sign, is signed with the secret key, and then appended to the message.
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Anyone with the public key can then verify the signature.
Post WWII have also seen a formalization of the security objectives available

to secure systems. Naturally, different systems have different objectives, and
unsurprisingly cryptography plays an important role in achieving them. Arguably
the four most important and desirable objectives according to [27] are:

1. Confidentiality: Keeping information secret for all but authorized parties.

2. Integrity: Ensuring that messages have not been modified after they were
created.

3. Message Authentication/ Data Origin Authentication: Knowledge
of where a message originated.

4. Non-repudiation: The sender of a message can not deny the creation of
the message.

The history of cryptography up to the Second World War is a display of sym-
metric ciphers being used to achieve confidentiality. Asymmetric ciphers also en-
sure confidentiality, but are mostly used as a secure way to exchange symmetric
keys.

As the secret key of an asymmetric cryptosystem is supposed to be kept secret,
it is assumed that only the holder of the secret key could sign a file in the first
place. Further, as the hash function should give a different fingerprint even for a
file differing in only one character, digital signatures provide integrity and message
authentication. The same can be achieved for symmetric ciphers through the use
of message authentication codes (MAC). Although the fingerprint is produced
differently, and a MAC uses symmetric keys instead of asymmetric keys, the result
is otherwise the same: integrity and message authentication is achieved. Today
symmetric encryption and message authentication are often combined into a single
primitive, named authenticated encryption. Non-repudiation is only achieved
through digital signatures.

It may seem that symmetric and asymmetric ciphers mostly work indepen-
dently of one another. However, they form a nice symbiosis. Symmetric cryp-
tosystems are computationally undemanding and fast compared to asymmetric
cryptosystems, but require that both parties share the same key. Asymmetric
encryption is more computationally demanding but the encryption key is public
while keeping its decryption key secret. This make asymmetric ciphers ideal to
solve one major challenge with symmetric ciphers: how to securely exchange a
symmetric key over an insecure channel? The key could be sent in a sealed en-
velope using normal mail, or perhaps exchanged by meeting in person, but this
would not be very efficient, nor scalable. Asymmetric cryptosystems solve this
problem elegantly: The public key is used to encrypt a secret symmetric key, which
is then decrypted by the other party. A good example of this symbiosis at play is
the internet, as that is basically how web traffic is encrypted. As a symmetric key
is typically quite small, the symmetric key can be exchanged efficiently through
the means of an asymmetric cryptosystem, before the parties subsequently switch
to fast symmetric cryptography for the remainder of the session.
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Lastly, recent years have seen the rise of cloud computing services. Basically,
cloud services are specialized companies offering to handle the storage of digital
data on behalf of a client. In addition, they usually have powerful computers
available for rent. This offers flexibility for clients, as they may scale up or down
operations fast, without the need to maintain or increase any local hardware.

However, this does not come without its own set of security concerns, many
of which can be summed into one question: Can we trust the cloud service?
To address concerns while still allowing clients to make use of the benefits of
the cloud, a new research topic within cryptography have gained traction: Fully
Homomorphic Encryption. The idea is to allow cloud services, or any other digital
service for that matter, to perform computations on encrypted data, producing
the same result as if the data were unencrypted during computations. This way,
confidentiality would be maintained, the data is always encrypted while in the
cloud and the result will only be decrypted once it has been downloaded to a
local client machine. Despite much progress in recent years, fully homomorphic
encryption is still too computationally costly for most practical uses. Fortunately,
it is a field in continuous development, and these hurdles may indeed be overcome.

1.3 On the security of cryptosystems

In 1883, the Dutch cryptographer A. Kerckhoff outlined six principles a good
cryptosystem should have [9, 17, 18]. Some are more relevant than others, and
particularly one has grown to such renown that it is today known as Kerckhoff’s
principle: The only thing secret about a cryptosystem should be the key. That
means that even when the full details about the cryptosystem apart from the key
is known to an adversary, there should be no way to retrieve the original message,
nor the key used to encrypt it. If a method exists which enables the retrieval
of the message and/or secret key, the cryptosystem may be considered broken.
However, we know that it is, at least in theory, always possible for an adversary
to try all possible keys and see which ones that give meaningful plaintexts. We
therefore have to make a distinction between unconditionally secure ciphers and
computationally secure ciphers.

A cipher is considered unconditionally secure if it yields no information about
the original message, nor the key, even when faced with an adversary with in-
finite computational powers. Even trying all possible keys will not yield any
information about the message nor key. The only encryption cipher known to be
mathematically proven to be unconditionally secure is the cipher known as the
one-time pad. It is perhaps most known as the cipher which encrypts the “hot-
line” between Washington D.C. and Moscow. Unfortunately, the secret key in
the one-time pad needs to be as long as the message one intends to send. This
makes it impractical to use in almost all use cases, and the most widely used
cryptosystems today are therefore only secure in the computational sense of the
word.

It is impossible for cryptosystems with smaller keys than the message to be
unconditionally secure. In contrast to unconditionally secure ciphers, compu-
tationally secure ciphers cannot be mathematically proven to be secure. These
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ciphers, which encompasses all the most widely used ciphers today, therefore come
with a security claim. In a nutshell, the security claim is a claim of how much com-
putational work must at least be done in order to recover the plaintext message
and/or the secret key. As modern ciphers are designed to be used on computers,
these claims come in the form of n-bit security.

A bit is the smallest building block of computers, and an n-bit security claim
amounts to claiming that the work needed to be done is akin to finding an n-
bit random string of bits. For symmetric ciphers, this n-bit string is often the
secret key itself, whereas the story is somewhat more complicated for asymmetric
ciphers. Finding this n-bit string is always possible to do by brute force, i.e.
trying all possible n-bit strings. As bits may have the value 0 or 1, there are 2n

possible bit-strings of length n. Trying all possible strings of length n is known
as a brute-force attack, and since it is always possible to do for these ciphers, it
is used as the bar which all other attacks are measured against. In order for the
cipher to be considered secure, this claimed minimum amount of work needed to
be done by an attacker must be more than we expect is possible to do. Precisely
where this limit goes is hard to pinpoint, as computers continue to increase in
computational power, and some adversaries have more computational power than
others. It is reckoned that 80-bit security should be adequate to make brute-force
attacks infeasible in most cases, but ciphers claiming 128-bit security or more are
often used.

The inclusion of n-bit security allows us to update our notion of breaking a
cipher: A cryptosystem is considered broken if there exist a way to retrieve either
the original message and/or secret key which requires less work than brute-force.
We have already seen an example of this: The number of possible keys in the
substitution cipher is approximately ≈ 288, which a priori would seem to yield 88-
bit security. However, frequency analysis recovers the key with much less work,
and the cipher is therefore broken. Interestingly, the cipher may still be considered
safe to use. This is the case for AES. The best known attack on AES-128 is the
biclique attack [6]. However, the attack has a complexity of 2126.1, barely lower
than the security claim but still far above what is feasible to execute today. Thus,
AES-128 is still considered safe to use.

As we have already established that computationally secure cryptosystems
cannot be proven to be secure, so we are left with the heuristic way of verifying
the security of cryptosystems: Try to find ways to break the cryptosystem faster
than brute-force. The more attempts we make without finding a way to break it
in practice, the more we feel that we can trust that it will be secure.

The standardized and most used cryptosystems all have proven resistance to
all the attack vectors we know today. However, as new use cases for crypto arise,
new cryptosystems are invented. In turn, these must also be tested before we
may give them our trust. Moreover, as we cannot say that only white swans exist
because we have only seen white swans, we cannot say that there is no unknown
attack out there which breaks a trusted and widely used cryptosystem. We must
therefore continuously and tirelessly work to push the limits of cryptography.



Chapter 2

Background

2.1 Symmetric encryption
The term “cryptosystem” is a rather wide term, encompassing many different use
cases, crypto primitives, and crypto protocols. The width of this term makes it
too imprecise for the remainder of this thesis, as it almost exclusively concerns
symmetric encryption. We will therefore limit the scope and only talk about
symmetric ciphers from here on.

Traditionally speaking, symmetric ciphers provide message confidentiality, the
property of keeping the message hidden or incomprehensible for all but authorized
parties with the secret key. As the knowledge and understanding of symmetric
ciphers have increased over time, so have the use cases. The family of modern
symmetric ciphers encompasses primitives and/or modes of operation which also
provide message integrity and origin authentication.

2.1.1 Formal definition of symmetric encryption
The set of acceptable messages (also known as plaintexts) to a cipher is called
the message space M, and the set of possible ciphertexts is called the ciphertext
space C. The set of possible keys is known as the key space K. A symmetric
cipher has two functions Ek : M → C and Dk : C → M, both parameterized with
a key k ∈ K. The former is said to encrypt the plaintext into its corresponding
ciphertext, while the latter decrypts the ciphertext back into its corresponding
plaintext. For encryption and decryption to be coherent, the following equality
must hold for all m ∈ M and k ∈ K:

Dk(Ek(m)) = m. (2.1)

One consequence of (2.1) is that for a fixed k, both Dk and Ek must be injective
mappings, and if M = C then Dk and Ek are permutations and each others’
inverses. In the following we will assume that all operations of the cipher are
carried out by a computer, and we will therefore consider M = C = Fn

2 and
K = Fκ

2 to be sets of binary strings of finite length.



8 Background

2.1.2 Types of symmetric ciphers
Symmetric ciphers can be divided into two categories. Ciphers which produce
a pseudo-random stream of bits which are directly xor’ed with message bits are
known as stream ciphers. The other category, block ciphers, encrypts one block
of bits of fixed size at the time.

Stream ciphers

Stream ciphers encrypt plaintexts one bit at a time. It does so by using the secret
key to produce a string of bits of arbitrary length, called the key stream, which
is xor’ed one bit at a time with the plaintext bits. It is important that the key
stream behaves as a random string of bits, not allowing an attacker to correctly
estimate future key stream bits from the key stream produced so far with higher
probability than random guessing. A stream cipher needs a keyed function to
produce the key stream, and the security of the stream cipher depends on the
security of this function. A nice benefit of stream ciphers is that it is the same
function which is being used for both encryption and decryption.

The one-time pad is a stream cipher. To provide the unconditional security for
which it is known for, the key and the key stream must be the same, and the key
stream is not generated from a mathematical function, but rather from a truly
random source. The decay interval of caesium-137 nuclei can be one such source.

Block ciphers

When using a block cipher, the plaintext must be split into blocks of bits of the
same size. These are processed independently by an encryption function, using
the same key for each block. A block cipher relies on the concepts of confusion and
diffusion to make Ek and Dk appear as permutations randomly drawn from the
space of all possible permutations on M. The purpose of confusion is to obscure
the relationship between the key and ciphertext. Diffusion spreads the influence
of each plaintext bit over many ciphertext bits with the goal of hiding statistical
properties of the cipher. Confusion and diffusion are important in all kinds of
ciphers, but is perhaps more evident in block ciphers, as every plaintext bit in a
block should ideally influence every ciphertext bit in the same block.

Modes of operation on block ciphers

There are several ways a block cipher can be applied when encrypting a message,
where each way, called a mode, has various advantages and drawbacks. Some
offer the possibility to encrypt and/or decrypt in parallel, while others facilitate
adding message integrity in addition to confidentiality. Many modes make use
of an initializing vector as a source of extra randomness, to avoid that equal
plaintexts always get encrypted to equal ciphertexts under the same key.

• Initializing Vector and nonce: For a given key k, a block cipher will al-
ways produce the same ciphertext for the same plaintext. This makes the
result deterministic, and combined with knowledge about the scheme being
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used may allow an attacker to launch attacks. For instance, knowing that the
third block in a bank transfer scheme always specifies the recipient account
combined with a deterministic mode may allow for a block substitution at-
tack. The attacker first initiates a transfer of its own, from his account to
another of his accounts, capturing the third block. He may then proceed
to intercept other money transfers, and substitute the third block with the
one containing his own account as the recipient. This is only possible if the
same key is used for all transfers.
To avoid this problem, modes of operations have been introduced, making
use of an initialization vector (IV). An IV is a bit string used to introduce
randomness or freshness into the encryption: The IV makes it so that the
same message encrypted twice under the same key, but different IV’s, will
yield different ciphertexts. Unlike the secret key, the IV is not required to
be secret, and may therefore be exchanged in plaintext prior to starting the
encryption or sent together with the ciphertext.
It is important to note though, that most modes requires the IV to be used
only once before being replaced. When this is the case, the IV is also known
as a nonce, the notion of a number that is only used once.

• Electronic Codebook Mode (ECB): Block ciphers encrypt n bits at a
time, where n is the block size. If a message is longer than n bits, it needs to
be partitioned into n bit blocks. The ECB mode is the most straightforward
way to do this, where each block is encrypted individually, as shown in Figure
2.1. Any message whose length is not a multiple of n bits will be padded
according to a padding scheme, so the last block of the padded message fits
exactly into the last block.
In addition to being simple to apply, ECB has some other advantages. Each
block may be encrypted and decrypted in parallel, as there are no interde-
pencencies among the blocks. This also means that if a block should get
corrupted during transit, we are still able to decrypt the other blocks cor-
rectly. The drawback of ECB is that it is deterministic, so equal plaintexts
will always be encrypted into the same ciphertexts for a given key.

EK

m0

c0

EK

m1

c1

EK

m2

c2

· · · · · · EK

mt−1

ct−1

Figure 2.1: ECB mode of operation

• Cipher Block Chaining Mode (CBC): CBC makes use of an IV to
randomize the encryption. As the name suggests, the change from ECB is
that blocks are chained together, see Figure 2.2. Each block i depends on the
previous block i − 1. This is done by xor’ing the ciphertext block ci−1 with
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plaintext block pi prior to the encryption of pi. As there is no ciphertext to
xor with the first message block, an IV is used instead. This ensures that
the same message will not yield the same ciphertext twice as long as the IV
is not reused.
CBC cannot encrypt blocks in parallel, the ciphertext for the previous block
must be made before encryption of the next block can start. Decryption,
on the other hand, may be done in parallel as all the ciphertext blocks are
present from the start. An attacker may still try to substitute block three of
the bank transfer scheme, but the decrypted result will be something random
and not the account specified by the attacker.

pt−1

Ek

ct−1

· · · · · ·

ct−2

p2

Ek

c2

p1

Ek

c1

p0

Ek

c0

IV

Figure 2.2: CBC mode

• Output Feedback Mode (OFM): This mode transforms a block cipher
into a stream cipher, where n bits of the key stream is produced at a time.
The block cipher is initially seeded with a nonce, and the output of the block
cipher is then used as the first part of the key stream. The key stream from
block i is next used as input to create key stream block i + 1, as illustrated
in Figure 2.3.
Since the key stream generation is independent of the message, precompu-
tation of the key stream is possible, although not in parallel. The use of a
nonce ensures this mode never produces the same key stream twice for the
same key.

EK
(t−1)(IV )

EK

ct−1

pt−1

· · · · · ·

EK

c2

p2

EK

c1

p1

IV

EK

c0

p0

Figure 2.3: OFM mode of operation

• Counter Mode (CTR): This mode also turns the block cipher into a
stream cipher, and is shown in Figure 2.4. The initial block is seeded with
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a nonce xor’ed with a counter. For each encryption of a block, the counter
is incremented. The counter may be simple, an integer that increases by 1
for example, or more complex, such as using an LFSR. The important part
is that the counter is updated deterministically.
CTR takes no feedback, nor does it chain blocks together in any other way.
As a result, it is fully parallellizable both for encryption and decryption. This
makes it well suited for applications which require high throughput. On the
other hand, there is a limit to how many bits can be encrypted before the
key or the nonce must be changed. If the counter is d bits long, then 2d

blocks of key stream can safely be produced before the keystream starts to
repeat, which makes the cipher vulnerable. The value 2d then becomes a
data-limit of the cipher/mode.

EK

IV

c0

p0

EK

IV ⊕ 1

c1

p1

EK

IV ⊕ 2

c2

p2

· · · · · · EK

IV ⊕ t

ct

pt

Figure 2.4: Counter mode of operation

2.1.3 Attacker models
Attacker models are used to mimic the capabilites of an attacker. It is always
assumed that the attacker has full knowledge of the ciphers, except for the secret
key. In the following the five most common attacker models are covered, where
the attacker has an increasing amount of knowledge and/or influence over the
cipher used.

• Ciphertext-only attack: The attacker has access to only the ciphertext,
with no knowledge of the corresponding plaintext.

• Known-plaintext attack: The attacker has access to both the plaintext
and the corresponding ciphertext.

• Chosen plaintext attack: The attacker can choose the plaintext to en-
crypt, and then receives the corresponding ciphertext.

• Chosen ciphertext attack: The attacker can choose the ciphertext to
decrypt, and then receives the corresponding plaintext.
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• Related-key attack: The attacker can request to receive encryptions under
a key related to the secret key, where the attacker chooses the relation.

The ciphertext-only attack is the most restrictive of these assumptions for the
attacker, and is always assumed to be available for the attacker. If an attacker
can listen in on the communication channel between two parties, which is the
reason we use encryption in the first place, then the attacker will have access to
the ciphertext.

Next comes the known-plaintext attack. Here the attacker has no influence
over the plaintext nor ciphertext, but is able to gather a set of pairs of plain-
text and ciphertext encrypted under the same, but unknown, key. It is not an
unreasonable scenario: many protocols in use today have a standard way of open-
ing, or contains messages whose content can be guessed with high probability.
This means that some plaintext can be known, resulting in at least some known
plaintext/ciphertext pairs.

In terms of symmetric ciphers, the chosen plaintext and chosen ciphertext
attacks are essentially the same attack, but in reverse order. They are the hardest
of these scenarios to achieve for an attacker, as the attacker somehow needs to
get hold of the encryption function while it is keyed, in order to query it for
plaintexts/ciphertexts of the attacker’s choice. It is expected that modern ciphers
are secure in the chosen plaintext attack model.

A related-key attack seeks to take advantage of relations between keys, where
the attacker defines the relation. The attacker is able to request encryptions of
chosen plaintexts under these related keys. This attack setting gives a lot of power
to the attacker, but may also be the hardest setting for an attacker to actually
achieve in practice. The attack is therefore sometimes not considered as relevant
in security analyses. Moreover, if an attacker is able to achieve this setting where
the attacker has no restrictions in choosing the relation between the used keys,
then any cipher gets broken by a related-key attack [15].

2.1.4 Estimated resistance against brute-force at-
tacks

Chapter 1 has a section regarding the security of cryptosystems, where we stated
that a cryptosystem is either unconditionally secure, or computationally secure.
If the system is computationally secure, a security claim with regards to the
amount of work required to retrieve the secret key or the plaintext must be put
forth. This work is usually on the form that at least 2n simple operations of some
kind must be performed. A key k ∈ K of length n bits will give a key space of
size 2n, and an attacker may always try to find k by exhaustive search through K
and see which key that returns a sensible plaintext. Such an attack is known as
an exhaustive search attack or a brute-force attack, and symmetric ciphers have
traditionally based their security claim on resistance against this attack. It is
expected that such an attack will require approximately 2n−1 operations on the
average to succeed.

The value n must therefore be chosen such that a brute-force attack becomes
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infeasible to execute. This begs the question, when is n large enough that 2n

operations becomes infeasible to do?

size of n Security estimation
56-64 short term: a few hours or days

112-128 long term: several decades in the absence of quantum computers
256 long term: several decades, even with quantum computers that run the currently

known quantum computing algorithms

Table 2.1: Estimated time to break n-bit security, as given by [27]

Determining when n transitions from feasible to infeasible is not straightfor-
ward. Once set, the value should regularly be reconsidered, as computers become
more powerful over time. When DES became the standard symmetric ciphers for
the US government in 1977, it was with an effective key length of 56 bits. This
implies that a brute-force attack will require doing 256 encryptions, which was
infeasible to achieve at the time, meaning that n = 56 was reasonable in 1977.
On the other hand, computer technology has come a long way since then. The
first publicly acknowledged1 brute-force of DES happened in 1997, when the DE-
SCHALL project used idle computer cycles from across the internet to find the
right key in less than 96 days. The next year, 1998, the Electronic Frontier Foun-
dation spent approximately $250,000 on a machine which found the key in a little
more than 2 days [11]. Both cost and time was further decreased and in 2006-2008
teams from the universities of Bochum and Kiel built and improved the COPA-
COBANA DES cracker. The first COPACOBANA cost around $10000 [19], a
significant decrease in cost, but used less than 9 days on the average. Since CO-
PACABANA is parallelizable, spending more money will decrease the average
time.

Another example of the need to re-evaluate good sizes of n can be found in [27].
This version of the textbook was last updated in 2010, and contains Table 2.1. It
is clear that already then values of n in the range of 56−64 were considered to give
only very limited security, and given the timings from the DES attacks pre-2010,
this seems reasonable. However, computers have grown stronger still, and 56− 64
does no longer provide any short-term security, as illustrated by Bitcoin.

We know that Bitcoin publishes a new block on its chain approximately every
10 minutes, and that to publish a block, a certain amount of work must be done.
Bitcoin aims to have a consistent publishing schedule and is therefore designed to
be able to adjust how much work it requires to be done. Current estimates of how
much work is needed to be done are in the range of 270 to 280 hash operations.
The computers working on computing a new block are highly specialized and
optimized for this task, and it is well known that the Bitcoin network collectively
has enormous computing power. However, it goes to show that a determined
attacker may put in the necessary effort to brute-force values for n in the range of
56− 64. If the Bitcoin mining network was used for an attack, even n = 80 could
be brute-forced in a matter of hours.

Despite the recent improvements in computational powers, the other security
1There are speculations that NSA were the first to brute-force DES, maybe even many years earlier.
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estimates in [27], 112− 128 and 256, should remain correct as stated in Table 2.1.
This follows from the fact that increasing n by one will double the amount of
work needed to be performed. So n = 112 requires 232, or about 4 billion, times
more work to be done than n = 80. Brute-forcing n = 128 requires about 281
trillion times more work than n = 80. This should still be re-evaluated regularly,
and developments in particularly quantum computers and quantum computer
algorithms may rapidly change these estimates as well.

2.2 Graph Theory
It is not uncommon to have large datasets containing multiple datapoints and
relationships, and then to have one or more tasks drawing on this dataset for their
solutions. A road map may for example contain millions of intersections connected
by roads, and forms the basis for a GPS’ route choices. Naturally, a user would
like to get an optimal route calculated in seconds rather than hours. Graphs are
well suited for these kinds of tasks. Logistics, web routing and work on computer
circuits are but a few more examples of its usage areas. Many algorithms have
been discovered which solve many common tasks in a time-frame proportional
with the size of the dataset. It can also be shown that many problems originally
not written in the context of graphs may be rewritten in a graph framing.

Definition 1 A graph is a set V of vertices or nodes, and a collection E ⊆ V×V of
edges. An edge connects a pair of vertices (u, v) and is identified by its endpoints
(u, v). The edges are either directed or undirected. A directed edge expresses
a connection from u to v, but not in the other direction. An undirected edge
expresses a connection in both directions.

An undirected graph is a graph where all the edges are undirected. Likewise,
a directed graph is a graph containing only directed edges. An edge represents
a relation between two nodes. By adding weights and/or labels to edges, fur-
ther information on the nature of the relationship may be added. Edges can be
combined to form paths in the graph.

Definition 2 A path in a graph is a sequence of nodes connected by edges. The
length of a path is its number of edges. A cycle is a path of length ≥1 whose first
and last node is the same.

Relationships are not limited to one edge connecting two nodes. Nodes also
have indirect relationships, through the presence of paths. Another aspect of
relationships and nodes are the notion of in and out degree.

Definition 3 The in-degree of a node v ∈ V is the number of edges in E of the
form (u, v). Correspondingly, the out-degree of v is the number of edges in E of
the form (v, u).

Definition 4 A source node is a node in a directed graph with in-degree 0. Sim-
ilarly, a sink node is a node with out-degree 0.
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Source nodes and sink nodes are the starting points and end points of directed
acyclical graphs, with edges flowing from a source node to a sink node.

Definition 5 (Directed Acyclical Graph) A directed acyclical graph (DAG)
is a graph whose edges are all directed and which contains no cycles. A DAG
must contain at least one sink node and at least one source node.

2.2.1 Binary Decision Diagram
Boolean algebra has formed a corner stone in computer science since Shannon
drew the link between Boolean algebra and switching circuits in his 1938 paper
[33]. Common ways of specifying a Boolean function are truth tables, Kavanaugh
maps and as a polynomial over F2 in algebraic normal form (ANF). These all have
applications they are well suited for, but come with the disadvantage that their
sizes grow exponentially in terms of the number of variables n.

A Binary Decision Diagram (BDD) is an alternative way of representing
Boolean functions. The general idea is to define a Boolean function in terms
of a DAG. The BDD is thus not algebraic in nature, and as such it is not as easily
manipulated, but comes with potential speed and memory advantages. Where a
truth table is guaranteed to need 2n entries to properly represent a Boolean func-
tion, the BDD may, and often will, require less than 2n nodes. Furthermore, a
BDD representing a Boolean function of n variables is guaranteed to evaluate an
input in n operations or less. Consider the Boolean function f = a ∨ bc. A pro-
cedure for evaluating f could be as follows: Start by looking at a. If a = 1, then
f = 1 and we are done. Otherwise, we need to look at b. If b = 1, then f = 0, and
we are finished. However, if b = 0 we need to look at c to determine the value of
f . Figure 2.5 shows a simple diagram of this procedure. We enter the diagram
by the source node, and then follow the flow down to one of the sinks, noting the
variable associated with each node we pass through and choosing the edge labeled
with the corresponding value, 0 or 1, as this variable is assigned as input. This
means that the sink node we end in gives us the value of f for the assignment of
values to the variables, as defined by each path. This diagram is an example of a
small BDD.

Figure 2.5: A BDD based on the Boolean function f = a ∨ bc.
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Definition 6 (Binary Decision Diagram) A Binary Decision Diagram (BDD)
is a directed acyclical graph, with exactly one source node and two sink nodes. Each
node has exactly two outgoing edges, one labeled 0 and the other labeled 1. Fur-
thermore, the two sink nodes are labeled the 0-sink and the 1-sink. Each node in
the BDD, except for the two sinks, as a variable associated with it.

Any node, except for the source node, may have any in-degree but will always
have an out degree of 2. Choosing an out edge of a node is the same as assigning
that edge’s value to the node’s variable. A path through a BDD then captures
the relation between an assignment to the set of variables and the resulting value
to f given this assignment.

The prototype for BDDs was introduced by C. Y. Lee in 1959 [21], then as
an alternative way of representing switching circuits. The paper focuses on using
BDDs in the context of what we today call logic synthesis2. An interesting result
is that Lee shows that when n > 64, then a BDD will always resolve a function f
in n variables with less operations than f given as a polynomial in ANF. When
n ≤ 64, it depends on f which needs the fewest operations, but it is worth noting
that a BDD always resolves f in ≤ n operations.

The first time the name binary decision diagram is used is in 1978 by S.B.
Akers [1]. In this paper, Akers has generalized the notion from circuits to “digital
functions”, and explores the applicability of BDDs to what we today call formal
verification of programs. But it is not until R. E. Bryants paper in 1986 [7] that
BDDs gain traction as a tool for various applications. By imposing restrictions
on the order of variables, and through the introduction of reduction mechanisms,
Bryant is able to show that any reduced BDD is unique up to the ordering of the
variables. This implies that any Boolean function has a unique representation as
a BDD, up to the ordering of the variables. Through this, novel operations on
BDDs were introduced, and many view [7] as instrumental for the widespread use
BDDs see today.

As a consequence, mainly ordered BDDs and reduced ordered BDDs are used
today3.

Definition 7 An Ordered BDD (OBDD) is a BDD where for all paths in the
BDD, the variables are encountered in the same order, and each variable occurs
at most once.

Definition 8 A Reduced Ordered BDD (ROBDD) is an OBDD which has been
reduced to its canonical form. This implies that it contains the minimum number
of nodes for a given variable order.

An ROBDD can be obtained by removing appropriate nodes and by merging
identical nodes in the OBDD. The specifics of the reduction operations can be
found in [7].

A ROBDD may be constructed from a truth table. Each row in the truth table
becomes a path in an OBDD, with the path ending in the correct sink node as

2Logic synthesis is the process of going from an abstract description of the functionality of a circuit, to the
actual physical circuit itself.

3That is, as BDDs themselves and not including derivations such as FBDD, ZBDD, OFDD, EVBDD, etc.
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(a) (RO)BDD, with associated (sub-)
Boolean functions.

(b) ANF and truth table.

Figure 2.6: Example of BDD, ANF and the truth table for a Boolean function.
Dashed lines represent 0-assignments, solid lines represent 1-assignments.

specified by the table. Naturally, each path is inserted one variable at a time, in
the same ordering for each path. The OBDD may then be reduced to a ROBDD
by following the reduction algorithms. Figure 2.6 shows a small example of a
BDD with ANFs associated to each node. The ANF associated to the root node
is the Boolean function associated with the complete BDD.

ROBDDs may also be constructed from Boolean polynomials given in ANF.
Our introductory example to BDDs have already given us an example for how
this is done. The algorithm starts in the source node, and then derives the
OBDD through the repeated applications of the Shannon expansion formula
f(x0, x1, x2, . . . , xn−1) = x0f(1, x1, x2, . . . , xn−1)∨x0f(0, x1, x2, . . . , xn−1). Figure 2.6a
shows the result of this procedure for the 3-variable function f(x0, x1, x2) =
x0x1x2 + x1x2 + x0 + x1 + x2 + 1.

2.3 Cryptanalysis
Cryptanalysis is the science of analyzing cryptosystems in order to learn more
about their strengths and weaknesses. Years of analysis of a multitude of vari-
ous ciphers and design theories have yielded much insight, and the basics of what
properties a secure cipher needs is well understood. Yet cryptanalysis has not
outplayed its role. First, as new use cases arise, so must new ciphers, and knowl-
edge gained from cryptanalysis offers a solid foundation to build upon. These new
ciphers must be resistant against known attacks, and since most ciphers cannot
be proven to be secure, we are left with the heuristic method of trying to break
them. Cryptanalysis thus provides both guidance for the initial design, and a way
to gain trust in the finished cipher. Which brings us to the next point. We do
not know what we do not know, which means that we cannot retire cryptanalysis.
Novel designs may have novel weaknesses, and there might also be novel generic
attacks which we do not yet know about.

Here we will present a brief overview of the cryptanalysis techniques most
relevant for the papers in this thesis.
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2.3.1 Linear and Differential cryptanalysis
Linear and differential cryptanalysis have a long history and strong results to
show for. It is therefore two of the attack vectors any new design must show
resistance against. Linear cryptanalysis is a known plaintext attack, while differ-
ential cryptanalysis is a chosen plaintext attack. They both work by exploiting
key-independent properties in the cipher.

Linear cryptanalysis was first introduced by Matsui [23] in 1994. It works
by finding statistical biases in the non-linear layers of a cipher. The biases give
skewed probabilities, compared to what one would expect from random uniform
distributions, that a sum of particular bits in one cipher state will be equal to a
sum of bits in another cipher state. These biases in the cipher state may be chained
together, such that linear equations in the unknown key bits can be calculated
from the plaintext and ciphertext states. This is under the assumption that the
attacker is given enough known plaintext-ciphertext pairs so the statistical biases
can be distinguished in the data set. Once these linear equations are found, they
can easily be solved to find the secret key.

The first public paper on differential cryptanalysis was published by Eli Biham
and Adi Shamir [4] in 1991, although the NSA knew about the technique as early
as 19744 [22]. A differential attack exploits the difference between two plaintexts.
Different differences will propagate through the non-linear layers with different
probabilities, where such propagations can be chained together in a trail.

Given enough plaintext-ciphertext pairs encrypted under the same key, both
the linear and the differential attack will recover the key. The pairs are used in
a brute-force style attack on the statistical property, bias of probability, and the
number of pairs required is dependent on the size of the probabilities or biases
in a trail. A cipher defends against these attacks by ensuring that the statistical
properties forces the number of plaintext-ciphertext pairs needed to be so big that
it is infeasible or impossible to collect enough of them.

Naturally, variants of these two techniques have appeared in the years since
their discovery, for example the boomerang attack [35], the rectangle attack [3],
the multi-linear attack [5] and the differential-linear attack [20].

2.3.2 Algebraic Cryptanalysis
Algebraic cryptanalysis makes use of algebra and algebraic equations to analyze
and mount attacks on ciphers. An algebraic attack is a two-part process. First,
the cipher must be described as some sort of algebraic system of equations. Next,
the system must be solved in such a way that the secret key is retrieved as part
of the solution. All ciphers may be represented as a system of polynomials, and
the security of the cipher then relies on the difficulty of solving this system. The
hardness may lie in how to describe the system and/or how to solve the resulting
system. If the total complexity of modelling and then solving the system is less
than for brute-force, the cipher is considered broken.

4They actually used it to strengthen DES non-linear layers, but kept the knowledge secret from the public.
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There exist several attack vectors based on algebraic attacks, and we will
mention a few:

− Gröbner basis attacks [12, 13] aim to find a particular kind of basis for an
ideal in a polynomial ring, known as a Gröbner basis. The crux of the attack
is to compute this basis. Once found, the Gröbner basis allows to solve the
system in a straightforward fashion.

− A linearization attack will describe each ciphertext bit as a polynomial in
algebraic normal form, where the variables are the (known) plaintext bits
and key bits. Each monomial in this ANF with a degree higher than 1 will
be substituted with a new variable, allowing the system of polynomials to be
converted into a system of linear equations. If the attacker collects enough
such equations, the system may be solved as a linear equation system. To
defend against this, the cipher must ensure that the complexity of solving
this linear system is higher than that of brute-force, i.e., that the number of
variables in the linear system is sufficiently high.

− The SAT [34] solving attack will represent the cipher as a Boolean formula,
using the unknown bits of the secret key as variables. The job for the SAT
solver is to find an assignment of the variables such that the Boolean formula
evaluates to true. The difficult part of the attack is to find this assignment.

− Multiple Right-Hand Side (MRHS) equations [28] model the cipher as collec-
tions of linear equation systems. One S-box forms the foundation of one such
system of linear equations, where the input and output bits of the S-box are
described as the linear combinations (the left-hand side), and each entry in
the lookup table forms a right-hand side vector to this linear system. This
means that each linear system will have multiple right-hand side vectors, and
one such system is known as a MRHS equation. The hard problem here is to
identify which right-hand side vectors across all the MRHS equations that
combines to form a consistent solution to the system of MRHS equations.
The solving algorithm is straightforward, but the number of right-hand sides
grows exponentially, causing lack of memory to quickly become a problem.

− Compressed Right-Hand Side (CRHS) equations [31] and [Chapter 4.1] build
upon MRHS equations and BDDs. The right-hand sides are compressed into
a graph, where the graph is a modified version of ROBDDs. This improves
on the memory consumption compared to MRHS. The crux is otherwise the
same as for MRHS equations.

CRHS equations play an important role in the two first papers of this thesis,
which warrants a closer look.

2.3.3 CRHS equations
Compressed Right-Hand Side equations aim to model the non-linear parts of a
cipher as a set of linear equation systems, and is applicable to ciphers using S-
boxes for non-linearity. The basic idea is to describe each input bit to an S-box as
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a linear combination of the output bits of the S-boxes in the previous round and
(round-) key bits5. The output bits from the S-boxes and (round-) key bits are
the variables in the system. At this stage, we do not know what the values of the
input and output linear combinations are, and as such all the entries of the S-box’s
lookup table are valid solutions to the system of linear equations. As a memory
optimization technique, these right-hand side vectors are compressed into paths
in a modified ordered BDD. Since all linear combinations will be encountered
in the same order, we may generalize the notation slightly by associating the
linear combination with a level instead of individual nodes. This means that a
level consists of only nodes associated with the same linear combination. More
formally, a CRHS equation can be defined as follows.

Definition 9 (Compressed Right-Hand Side Equation) A CRHS equation
is an ordered BDD with a single terminal node and linear combinations of variables
associated to each level. The set of linear combinations is referred to as the left-
hand side of the CRHS equation, and the paths of the DAG as the equation’s right-
hand sides. A CRHS equation represents the Boolean equation f(x0, . . . , xn−1) = 1,
where f is the Boolean function corresponding to the BDD.

Choosing a path through the DAG in a CRHS equation, as seen in Figure 2.7a,
is then the same as fixing a right-hand side vector for the set of linear combinations
in the equation’s left-hand side (Figure 2.7b). This system of linear equations can
then be solved using standard linear algebra.

Definition 10 The solution set of a CRHS equation is the union of the solution
sets of all linear equation systems given by the left-hand side and the CRHS equa-
tion’s right-hand sides. The solution set of a collection of CRHS equations is the
intersection of the solutions of each CRHS equation.

(a) Choosing a path (blue) through a CRHS equa-
tion...

(b) ... assigns a right-hand side to the system of
linear equations

Figure 2.7: Example of CRHS equation and one associated linear system.

This solution set of a CRHS equation is precisely the assignments for which
the Boolean function associated with the equation’s DAG evaluates to 1. We say
that a CRHS equation is in a consistent state if and only if every path in its DAG
yields a consistent system of linear equations.

5Or one may go in reverse and describe each output bit in terms of the next rounds input bits.
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Because of its links to BDDs, CRHS equations may be manipulated by many,
if not all, of the operations available to manipulate BDDs. In addition, CRHS
equations have introduced some new operations of its own, like join, adding two
levels together and linear absorption. Only some of the operations available to
BDDs are relevant for CRHS equations, and the details for the various operations
on CRHS equations can be found in [7, 30, 31]. We will summarize them here.

− Swap: The swap operation swaps two adjacent levels, taking care to update
the edges of the involved levels. This is akin to swapping the positions of
two linear equations in a normal system of linear equations, albeit with the
limitation that the two equations must be adjacent.

− Add: One can add the linear combination of one level onto the linear combi-
nation of the level directly below, taking care to update the involved levels
accordingly. This is akin to adding together two linear equations in normal
linear algebra.

− Linear absorption: Linear absorption uses add and swap to resolve inconsis-
tencies in the encoded linear systems. Essentially, right-hand sides that give
inconsistent systems are removed.

− Join: Two CRHS equations may be joined into one larger CRHS equation.
This is simply done by replacing the sink node of the first with the source
node of the other.

− Count paths: Counts the number of paths which a CRHS equation contains.

A newly joined CRHS equation will contain a number of paths equal to the
number of paths in the first CHRS equation multiplied with the number of paths
in the second CRHS equation. It will also usually be in an inconsistent state.
Repeated use of the linear absorption algorithm can then be used to bring the
CRHS equation back to a consistent state. A set of CRHS equations describe a
cipher, and the repeated applications of join and linear absorptions are used to
solve the system.

The use of CRHS equations in algebraic attacks are not limited to only key-
recovery attempts. This Thesis explores the use of CRHS equations to search
for linear and differential trails, and it is believed that other avenues are worth
exploring as well.

2.4 Symmetric ciphers designed for FHE
Classic symmetric encryption ensures that any data must be decrypted before
any operations and/or calculations may be performed on it. This is not always
a desirable property, with the most prominent example being that of cloud com-
puting. Cloud computing offers flexibility to clients in the form of scalability of
both hardware and software resources, without the need to maintain and operate
these resources themselves. However, clients may have sensitive data they want
to send to the cloud, but which should not be in the cloud in plaintext. Classic
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encryption gives them a dilemma, do we download the data we need locally to op-
erate on it, or do we trust the cloud provider with the decryption key and make
use of the superior computational powers of the cloud?

Fully Homomorphic Encryption (FHE) makes it possible to perform arbitrary
operations on encrypted data, yielding the same result (but still encrypted) as if
the data had been decrypted before the operations. The idea of FHE was intro-
duced by Rivest, Adleman and Dertoyzos in [29]. Since then, various attempts
at creating a FHE scheme were attempted, but it was not until 2009 that the
first fully homomorphic encryption scheme was published [14]. The field of FHE
is therefore still a relative new field in cryptology. The FHE schemes themselves
are out of scope for this thesis, but the interaction between classical encryption
schemes and FHE schemes is of relevance.
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Figure 2.8: Mixing classical symmetric encryption and FHE . The client only needs to encrypt
K with an FHE scheme HE once, and encrypts all data p using the symmetric algorithm E .
The cloud gets the bits of K encrypted under HE , encrypts the bits of received ciphertexts with
HE and homomorphically runs the decryption circuit of E to get HE (p, Pk).

Unfortunately, FHE schemes are computationally demanding to run, and it is
therefore difficult for many non-cloud devices to implement them. If these devices
have data they want uploaded to the cloud, they need to do it in a different
way than to encrypt it using FHE. The solution is to encrypt the data using
classical symmetric encryption, which is then uploaded to the cloud. The secret
symmetric key is encrypted using FHE and sent alongside the encrypted data
to the cloud. For devices completely unable to perform FHE, the key may be
pre-encrypted by a different, more powerful device. This may be relevant for
various medical peripherals. The encrypted data may then be re-encrypted under
FHE, before the cloud runs the decryption circuit of the inner, classic encryption.
The homomorphic properties will ensure that this will completely remove the
symmetric layer of encryption, leaving the data only encrypted by FHE. It is then
possible to do further calculations on the data. See Figure 2.8 for an illustration
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of the process.
Another drawback with current FHE schemes is that there is a limited num-

ber of operations they can perform before they must run a costly reset operation,
known as bootstrapping. They effectively have a budged that can be spent be-
fore a bootstrapping must be performed that refills the budget. Multiplications
are the most expensive in terms of this budget, while linear operations such as
additions and xor’ing bits together are considered cheap. It is desirable that the
decryption process uses as little of this budget as possible, and several ciphers de-
signed to be cheap have been proposed: LowMC [2], Flip [24], Kreyvium [8] and
the Rasta family [10] are all designed with FHE in mind. They have done great
work in reducing the number of multiplications per encrypted bit and number
of multiplications overall. However, they are all also assuming that it is possi-
ble to find parameters in the various FHE schemes which allows these ciphers to
work in symbiosis with the FHE scheme. Unfortunately, that is not always possi-
ble, with the consequence that the decryption process becomes more costly than
anticipated.
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Chapter 3

Introduction to the papers

This chapter provides a summary of the three papers that this thesis is based
on. Paper I and Paper II both address Compressed Right-Hand Sides Equations,
while Paper III investigates the importance of parameters specific to FHE schemes
when designing symmetric ciphers intended to be used in an FHE setting.

Paper I: Boolean Polynomials, BDDs and CRHS Equations - Connect-
ing the Dots with CryptaPath

John Petter Indrøy, Nicolas Costes, and Håvard Raddum (2020), Selected Areas
in Cryptography - SAC 2020

Compressed Right-Hand Side (CRHS) equations are an effective way to repre-
sent and evaluate Boolean equations. It is based on the Binary Decision Diagram
(BDD) and may as such be considered a variant or an evolution of BDDs. Paper I
begins by giving a thorough treatment of the similarities of CRHS equations and
BDDs, including some relevant operations available to both of them, and some
only to CRHS equations.

A CRHS equation may also be understood as a compressed representation of
sets of relations, and this view is utilized to describe how we may mount algebraic
attacks on symmetric ciphers utilizing S-boxes for non-linearity. The scope of
this paper is limited to key recovery attacks, although CRHS equations are not.
Algebraic attacks are two-fold, first the cipher is modelled using a system of
equations, then the system is solved. We therefore first describe how a cipher is
modelled as a System of CRHS equations. Next, we explain the algorithm used
to solve the system, including the complexity of the attack and drawbacks.

Lastly, CryptaPath is introduced. CryptaPath is an open-source implemen-
tation modelling a cipher as a systems of CRHS equations and the relevant op-
erations for solving the model. It only requires a reference implementation of
an eligible cipher to be used in an attack, CryptaPath will handle the system of
CRHS equations automatically. This ensures accessibility for users who are not
familiar with this kind of algebraic cryptanalysis.
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Paper II: Trail Search with CRHS Equations

John Petter Indrøy, Håvard Raddum (2021), Submitted to: Transactions on Sym-
metric Cryptology (ToSC) Vol. 2021 Issue 3

Paper II introduces PathFinder, an automatic tool for searching for linear and
differential trails. The tool is based on Compressed Right-Hand Side (CRHS)
Equations, and introduces both a new approach for modelling the differential dis-
tribution table (DDT) or linear approximation table (LAT) of an S-box. By basing
each CRHS equation on the LAT or DDT of the cipher, all possible trails may
initially be captured and stored in memory. As with the traditional approach of
CRHS equations, the number of nodes in the system of CRHS equations will grow
as the linear dependencies gets absorbed. To counteract this, a pruning operation
is introduced, alongside an operation for counting the number of active S-boxes
in the system. The pruning will delete nodes which corresponds to paths of a
weight above a dynamically decided threshold, in an attempt to retain as many
paths of low weight as possible. PathFinder calculates probabilities for (partial)
hulls and not only individual trails. The results are varying, although PathFinder
is able to verify that the lower bound given by the designers on the number of
active S-boxes in full 12-round PRINCE is met with equality.

As with CryptaPath, PathFinder only requires a reference implementation of
an eligible cipher to begin the search, and PathFinder will handle the transfor-
mation to the system of CRHS equations automatically. The reference imple-
mentation specification is the same as used by CryptaGraph, allowing users to
implement the reference once but use both tools to search for trails. The na-
ture of CryptaGraph and PathFinder is such that the path searching algorithms
complement each other, and using both should give improved results.

Paper III: Fasta - a stream cipher for fast FHE evaluation

Carlos Cid, John Petter Indrøy, Håvard Raddum (2021), Submitted to: Transac-
tions on Symmetric Cryptology (ToSC) Vol. 2021 Issue 3

Fully homomorphic encryption is a topic in growth, and recent years have seen a
number of symmetric ciphers designed to work in symbiosis with FHE. These ci-
phers have focused on minimizing the multiplicative complexity of the algorithm,
in an effort to reduce their cost in terms of an FHE-scheme’s noise budget. This
is a natural design choice, as homomorphic multiplications are the most expen-
sive operations in FHE, while the linear operations are considered to be almost
for free.

Inefficient packing of the linear layer may add a noticeable extra cost to the
evaluation of the algorithm. Paper III therefore proposes Fasta, a stream cipher
which has its parameters and linear layer especially chosen to allow efficient im-
plementation over the BGV scheme, particularly as implemented in the HElib
library. The linear layers are drawn from a family of rotation-based transforma-
tions, as cyclic rotations are cheap to do in FHE schemes that allow packing of
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multiple plaintext elements in one FHE ciphertext. As is the case with Rasta,
Fasta will not use the same linear layer twice, under the same key.

The result is a stream cipher tailor-made for fast evaluation in HElib. Fasta
shows an improvement in throughput of a factor more than 7 when compared to
the most efficient implementation of Rasta.
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Paper I

4.1 Boolean Polynomials, BDDs and CRHS Equa-
tions - Connecting the Dots with CryptaPath

John Petter Indrøy, Nicolas Costes, and Håvard Raddum
Selected Areas in Cryptography - SAC 2020, LNCS Vol. 12804 (2020)
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Boolean Polynomials, BDDs and CRHS
Equations - Connecting the Dots with

CryptaPath

John Petter Indrøy, Nicolas Costes, and H̊avard Raddum

Simula UiB, Bergen, Norway

Abstract. When new symmetric-key ciphers and hash functions are
proposed they are expected to document resilience against a number of
known attacks. Good, easy to use tools may help designers in this process
and give improved cryptanalysis. In this paper we introduce CryptaPath,
a tool for doing algebraic cryptanalysis which utilizes Compressed Right-
Hand Side (CRHS) equations to attack SPN ciphers and sponge construc-
tions. It requires no previous knowledge of CRHS equations to be used,
only a reference implementation of a primitive.
The connections between CRHS equations, binary decision diagrams and
Boolean polynomials have not been described earlier in literature. A
comprehensive treatment of these relationships is made before we explain
how CryptaPath works. We then describe the process of solving CRHS
equation systems while introducing a new operation, dropping variables.

Keywords: algebraic cryptanalysis · binary decision diagram · equation
system · block cipher · tool · open source

1 Introduction

It is not enough to simply propose a new design for symmetric ciphers. Along-
side the design, there must be design rationale and security evaluation which
describe how this design is resistant against attacks. This can be quite a labori-
ous task, even if one includes only the most common attacks. As attack vectors
are becoming more and more complex, experience and good intuition is impor-
tant while designing the cipher. We therefore recognize the need of some sort of
tool for assisting researchers designing a new symmetric primitive, which allows
for automated analysis, enabling efficient testing of alternatives and leading to
informed decisions. Ideally, this tool would cover all the most common attack
techniques. That would be a large undertaking, and this ambition needs to be
divided into several projects.

Fortunately, this is also recognized by other researchers, and an automated
tool to use with linear and differential cryptanalysis has already been published:
CryptaGraph [15]. We wish to add to this contribution by proposing a tool
for algebraic cryptanalysis. There are many algebraic attacks, like Gröbner base
computations, SAT-solving and interpolation attacks. We decided to go for Com-
pressed Right-Hand Sides (CRHS) due to their compact representation of a set of
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binary vectors and the promising results for solving non-linear equation systems
in [20, 24, 32]. Our tool is named CryptaPath, as we have drawn inspiration from
CryptaGraph. The name is not the only similarity; with only small adjustments
a reference implementation made for CryptaPath can be used with CryptaGraph
and vice versa. A difference from CryptaGraph is that our tool also extends to
sponge constructions.

Algebraic Cryptanalysis The first step of an algebraic attack is to convert
the primitive into a system of equations. Next, we try to solve this system. If the
complexity of solving such a system is lower than the complexity of the brute
force attack, the cipher is considered broken.

When designing new ciphers, the focus is often on defending against linear
and differential attacks. This was also the case for PURE, a variant of the KN
cipher [23]. The KN cipher is provably secure against differential cryptanalysis.
PURE was broken by an interpolation attack in [23]. In [22], a combined attack
using differential paths and an (minimally modified) of-the-shelf SAT solver was
able to generate full collisions for the hash functions MD4 and MD5. Last year,
a successful Gröbner basis attack against Jarvis and Friday was presented [1].
This goes to show that algebraic cryptanalysis can be efficient on symmetric
primitives.

There are various ways to model a cipher as a system of equations, and
subsequently attack the cipher via trying to solve the system:

– SAT solving first converts the cipher into a Boolean formula, and then tries
to find values to the arguments such that the formula evaluate to true [22,
31].

– A Gröbner basis is a particular kind of generating set of an ideal in a poly-
nomial ring. Finding a Gröbner basis is the crux of this attack. Well-known
Gröbner basis finding algorithms are F4 [11] and F5 [10].

– Compressed Right-Hand Sides equations models the cipher as a system of
linear equations with multiple right-hand sides. The hard problem here is to
identify only the few right-hand side vectors which yield a consistent system
of linear equations [24, 27].

The solution to any of these systems of equations will contain the secret values
we are looking for, i.e. the secret key of a symmetric cipher, or a pre-image for
a hash function.

Existing research tools Our work focuses extensively on the correspondence
between polynomials in the Boolean polynomial ring and binary decision dia-
grams (BDD). PolyBoRi [4] is an existing framework that has the exact same fo-
cus. However, PolyBoRi’s way to represent polynomials using BDDs differs from
ours. While PolyBoRi associates one monomial with every path in the BDD, we
associate paths with the assignment of values to the variables themselves. This
difference will become clear in Section 2.2.
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There exist many tools for BDD manipulation [13, 21, 8, 16, 30], the most
utilized one probably being CUDD [30]. Unfortunately, none of them suits our
needs. We decided to make our own implementation of CRHS equations us-
ing Rust. Rust is fast and memory-efficient, with memory-safe and thread-safe
guarantees and many classes of bugs being eliminated at compile time.

1.1 Our contribution

We propose a new tool called CryptaPath for assisted algebraic cryptanalysis
using the CRHS representation. CryptaPath allows for algebraic analysis of any
symmetric primitive that can be described as an SPN structure, such as most
block ciphers, and sponge constructions. Running this tool on an SPN block
cipher takes a single plaintext – ciphertext pair, converts it into a system of
CRHS equations, and then tries to solve the system. If successful, it will return
all solutions to the system, including all keys transforming the given plaintext
into the given ciphertext. In the case of a sponge-based hash function, the tool
will take in a hash digest, and try to find a matching pre-image. The researcher
is only required to provide a reference implementation for CryptaPath to work,
but may choose to dive deeper under the hood of the analysis if desired.

The caveat is the amount of memory required to launch a successful attack.
For this reason, we have included the possibility of fixing bits in the key or
pre-image. This allows CryptaPath to solve systems in practice. The number of
rounds in the primitive is also a parameter which is possible to vary.

This tool builds on theory developed over several decades. CHRS equations
can be described as a unification of MRHS equations [25] and BDDs. Earlier
work describes how CRHS equation systems can be solved, but a thorough ex-
planation of the relationships between Boolean polynomials in algebraic normal
form, BDDs and CRHS equations has not been made before. We address this
gap in literature in Section 2.

In addition, we have included a novel operation to the toolbox of CRHS:
dropping variables. Dropping of variables is a technique which allows the solver
to reduce the size of the system, and thus to save space. This operation comes
with its own caveat, see Section 4.2 for details.

Finally, the source code of CryptaPath is available at
https://github.com/Simula-UiB/CryptaPath.

2 Preliminaries

Algebraic attacks are attacks where a cipher is represented as a system of equa-
tions and one tries to break the cipher by solving the system. While it is well
known that the general MQ-problem is NP-hard [12], it is less known how to
argue convincingly that a system of equations representing one particular ci-
pher specification must be hard to solve. If the equation system is represented
as Boolean polynomials in algebraic normal form (ANF) one may try to es-
timate the minimal degree a Gröbner base solver will reach before producing
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linear forms, and then give a lower bound on the attack complexity based
on that. However, there can always be other ways of representing the equa-
tions, giving systems that are easier to solve. In this paper we use the CRHS
representation, and start by explaining the correspondence between binary de-
cision diagrams and multivariate polynomials in the Boolean polynomial ring
F2[x0, . . . , xn−1]/(x20 + x0, . . . , x

2
n−1 + xn−1).

2.1 Binary Decision Diagrams and Boolean Functions

A Binary Decision Diagram (BDD) is an efficient way to represent and evaluate
Boolean functions [5]. Boolean functions have numerous use cases, with examples
found in computer assisted design [6], network analysis [17], formal verification
[6], artificial intelligence, risk assessment [14], cryptology [24, 27], and more.

A BDD is a rooted, directed acyclical graph (DAG), with labeled nodes.
There are two kinds of nodes, decision nodes and terminal nodes. A terminal
node is labeled either with the value 0 or 1, while each decision node N is
labeled by a Boolean variable xi. A decision node has two children, often called
the low child and the high child. The edge from decision node N to its low (high)
child represents an assignment of the associated Boolean variable xi to 0 (1).
These edges are drawn as dashed (solid) lines in all figures.

To construct a BDD representing a given Boolean function f(x0, . . . , xn−1),
we start with the root node and associate f to it. Choose a variable from f , say
x0, as the decision variable, or label, for the root node and create its low and high
child. Associate f(0, x1, . . . , xn−1) with the low child and f(1, x1, . . . , xn−1) with
the high child. Continue recursively from each of the children by deciding on the
next variable, then creating more decision nodes associated with polynomials
made from partial assignments to f . If several nodes get associated to the same
polynomial they will be merged into one. In the end the last variable gets fixed,
so the only two nodes created at the bottom will be the terminal nodes 0 and 1.

Conversely, to find the ANF of the Boolean function associated to a given
BDD we start with the terminal nodes 0 and 1 and find the ANFs associated to
the nodes by going upwards in the BDD. Assume a decision node N decides on
variable xi and that the ANFs corresponding to its low and high children have
already been computed as g0 and g1, respectively. By the theory of Shannon ex-
pansion [29], the ANF of N will then be xig1+(xi+1)g0. Recursively computing
ANFs for the nodes in the BDD this way will eventually compute the ANF f
associated with the root node. This f will be the ANF of the Boolean function
associated with the BDD.

Figure 1 shows a small example of a BDD with the ANFs associated to each
node. The ANF associated to the root node is the Boolean function associated
with the complete BDD.

Following a path from the root node through the BDD can therefore be
viewed as assigning values to the arguments of a Boolean function, and the value
of the function for those assignments is given by the terminal node in which the
path ends. Each variable xi can only occur once on any path of the BDD. Every
decision node has two children, so all possible assignments are present as paths.
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(a) (RO)BDD, with associated
(sub-) Boolean functions.

(b) ANF and truth table.

Fig. 1: Example of BDD, ANF and the truth table for a Boolean function.
Dashed lines represent 0-assignments, solid lines represent 1-assignments.

The BDD therefore encodes the complete truth table of a Boolean function
associated with the BDD. If we encounter the Boolean variables in the same
order for each path in the BDD, we say that the BDD is ordered. The size of
the BDD (i.e., its number of nodes) may be sensitive to the order we choose for
the variables. Finding the optimal order of variables is an NP-hard problem [3].
Because a BDD utilizes a DAG, evaluating the Boolean function can be done
very efficiently: in n steps or less, where n is the number of variables of the
Boolean function.

Size wise, truth tables, Karnaugh maps and other classical representations
of Boolean functions grow exponentially with the number of variables involved.
There exist more practical approaches where its size is dependent on the Boolean
function it represents, and where sub-exponential growth is possible. BDDs fall
into this category.

Another desirable property of BDDs, is that a BDD can be reduced to a
canonical representation, i.e. for every function there exists a unique BDD rep-
resenting it, up to the ordering of variables, which has a minimal number of
nodes. A BDD in this state is called reduced (see [5, Sec. 4.2]).

BDDs may also be understood as a compressed representation of sets or rela-
tions, where operations are executed directly on this compressed representation.
This view is closer to how we use and understand BDDs in terms of CRHS
equations.

2.2 Compressed Right-Hand Sides and Boolean Equations

We use reduced ordered BDDs (ROBDDs) as the fundamental building block
of Compressed Right-Hand Side equations. As they are, ROBDDs are too strict
in its definition for us to use them the way we would like. We will therefore
redefine some of the rules regarding ROBDDs, and call them Compressed Right-
Hand Side equations. The changes we make consists of one minor generalization,
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and two major changes to the definition of ROBDDs, “transforming” them into
CRHS equations:

First, we divide the ordered BDD into levels where each level has nodes of
only the same Boolean variable. This allows us to generalize the notation slightly,
by associating the decision variable with a level instead of individual nodes. Sec-
ond, we have only one terminal node, the 1-terminal node, instead of both. This
means that we no longer associate the Boolean function f(x0, . . . , xn−1) with the
root node. Instead, the root node is now associated with the Booelan equation
f(x0, . . . , xn−1) = 1. Third, and more significantly, we allow linear combina-
tions of variables to be associated with a level, and not only single variables.
We also allow the same variable to be associated with multiple levels, or more
generally, we do not require the linear combinations of the levels to be linearly
independent. This means that where standard ROBDDs have as many levels as
variables, CRHS equations may have both more or fewer variables than levels.

As the CRHS equation is an evolution from the ROBDD, we base the defi-
nition of CRHS equations on ROBDDs:

Definition 1. A CRHS equation is a reduced, ordered BDD with a single ter-
minal node and linear combinations of variables associated to each level. The set
of linear combinations is referred to as the left-hand side of the CRHS equation,
and the paths of the DAG as the equation’s right-hand sides. A CRHS equation
represents the Boolean equation f(x0, . . . , xn−1) = 1, where f is the Boolean
function corresponding to the BDD.

Having linear combinations instead of single variables still allows us to use
Shannon expansion to compute the ANF of the individual nodes in the CRHS
equation, and therefore also for the ANF of the Boolean equation the CRHS
equation represents. However, since CRHS equations allow linear combinations
to be associated with the levels, it can be even more effective, in terms of nodes,
in compressing a polynomial than a standard BDD. Figure 2a shows the CRHS
equation made from the same BDD as in Figure 1a, but where the levels now
are associated with some linear combinations. The linear combinations have been
randomly chosen for the sake of demonstrating a concrete example. In Figure 2b
the Boolean equation is written out in ANF.

While we have only 6 nodes in the CRHS equation, the ANF contains 46
terms. The BDD representing the same ANF with single variables will contain
18 nodes. In general it is easy to construct CRHS equations where the number
of terms in the associated ANF is exponential in the number of nodes in the
DAG.

We think of the linear combinations as the left-hand sides of a set of linear
equations and all the paths compressed in the DAG as the set of right-hand sides.
Choosing a path through the DAG in a CRHS equation, as seen in Figure 3a, is
then the same as fixing a right-hand side vector for the set of linear combinations
in the equation’s left-hand side (Figure 3b). This system of linear equations can
than be solved using standard linear algebra.
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(a) CRHS

(b) ANF

Fig. 2: Example of a CRHS equation and its corresponding ANF.

Definition 2. The solution set of a CRHS equation is the union of the solution
sets of all linear equation systems given by the left-hand side and the CRHS
equation’s right-hand sides.

This solution set of a CRHS equation is precisely the assignments for which
the Boolean function associated with the equation’s DAG evaluates to 1.

(a) Choosing a path (blue) through a CRHS
equation...

(b) ... assigns a right-hand side to the sys-
tem of linear equations

Fig. 3: Example of CRHS equation and one associated linear system.

While we normally ignore the underlying Boolean polynomials associated
with the nodes, including the ANF associated with the root, they are useful for
showing that operations available to a BDD can be done on CRHS equations
without changing the solution set of the equation.

2.3 Basic operations on CRHS equations

Traditionally, there have been two operations on BDDs relevant for CRHS equa-
tions: Reduction of a BDD [5] and the swapping of the variables of two adjacent
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levels of a BDD [26]. With the transition from Multiple Right Hand Sides equa-
tions [25] to CRHS equations, two more operations were introduced [27, 28]:
adding the linear combination of one level onto the level below, and level extrac-
tion. Both of these operations are a natural consequence of the introduction of
linear dependencies among the linear combinations of the CRHS equation. Com-
bined with swapping, they allow for an adapted version of Gaussian elimination
to be performed on the linear combinations of the levels. How these operations
are used together will be covered in Section 4. Here we will briefly describe the
operations, for full details see [26, 27].

The reduction algorithm merges together nodes that have the same Boolean
polynomial associated with them. They can easily be identified, since if two
nodes have the same low child and high child, they must represent the same
Boolean polynomial. The DAG of a CRHS equation can end up in an unreduced
state when any of the other operations is performed.

Level extraction can be applied in the special case when the ”linear com-
bination” l associated with a level is just a constant b ∈ {0, 1}. In that case
all outgoing edges from the nodes on the level assigning the value (b + 1) give
an inconsistency and should be deleted. When only b-edges remain as outgoing
edges, it can be shown using Shannon expansion that the polynomial associated
with a node on the b-level is equal to the polynomial associated with its remain-
ing child. We can therefore merge the parent and child node. Since all nodes on
the level can be merged this way, the whole level is effectively removed, and the
number of levels in the CRHS equation decreases by 1.

The swap operation is an algorithm which swaps the linear combinations of
two adjacent levels, taking care to rearrange the nodes and edges in such a way
that the underlying ANF of the root node is preserved. In other words, doing a
swap operation does not change the solution set of a CRHS equation.

Adding two levels in a CRHS equation is akin to the matrix operation of
adding one row onto another. The first row stays the same, while the second
row becomes the sum of the two. However, where any row in a matrix may be
added to any other row, adding two levels in a CRHS equation requires the
two levels to be adjacent. The procedure adds the linear combination of the top
level to the one below it, and modifies edges and nodes in the process. As with
the swap operation, the add operation is designed to preserve the underlying
Boolean polynomial, so the solution set of a CRHS equation is not changed after
an add operation.

One may use the swap operation to achieve both the adjacency and the or-
dering requirements as needed. In particular, one can use the swap and add
operations to produce any linear combination in the span of the linear com-
binations for the levels, and make it appear on any desired level in a CRHS
equation.

Swapping, adding and level extraction may leave the DAG in an unreduced
state and it is therefore recommended to run the reduction algorithm afterwards.
Swapping and adding levels can increase or decrease the number of nodes on the
affected levels. This is entirely deterministic when the levels are known, and the
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processes are described in [26] and [27, 28]. Level extraction will always decrease
the number of nodes.

3 Modelling cryptographic primitives as system of CRHS
equations

Any cryptographic primitive can be modelled as a system of non-linear equations,
where any secret material is represented by variables. In this section we first
briefly recall how block ciphers designed as substitution-permutation networks
(SPN) are built, before explaining how a system of CRHS equations representing
an SPN cipher can be constructed. It is straight forward to adapt this description
to other types of ciphers or hash functions, as long as the non-linearity comes
from S-boxes or other mappings that operate independently on blocks consisting
of relatively few bits.

3.1 The structure of SPN block ciphers

SPN block ciphers are constructed by iterating a round function a number of
times. Each round consists of the application of a non-linear transformation of
the cipher state followed by an affine transformation and the xor addition of a
round key. An SPN cipher starts with the addition of a whitening key to the
plaintext, before iterating the round function r times. The output of the last
round is the ciphertext. We refer to the block of bits at any point during the
encryption procedure as the cipher state.

The non-linear layer is typically made by dividing the cipher state into blocks
of b bits each, and substituting each block with the value given by a fixed b-bit
S-box.

The affine transformation in a round can be constructed in many different
ways, with various trade-offs. However, any affine transformation can be thought
of as a linear transformation of the cipher state, followed by the addition of a
constant. The linear transformation can always be realised as the multiplication
of the cipher state with a fixed matrix over GF (2). The only thing we care about
in this paper is that each bit in the cipher state after the affine transformation
is just a linear combination of the bits at the input, with the possible addition
of a constant 1-bit.

An SPN cipher with r rounds needs r + 1 round keys, denoted as
K0,K1, . . . ,Kr. The whitening key is K0 and Ki is used in round i for i =
1, . . . , r. The cipher has a master key K of κ bits, and all round keys are derived
from K in a deterministic way. The computation of Ki from K can be linear
or non-linear. If the key schedule is linear, each bit in Ki is again just a linear
combination of the κ bits in K. If the key schedule is non-linear, the non-linear
part in computing Ki typically uses the same S-box as used in the rest of the
cipher.
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3.2 Variables

We introduce the following set of variables to model an encryption C = EK(P )
of an SPN cipher of block size n and key size κ:

– K = k0, k1, . . . , kκ−1, the bits of the unknown user-selected key
– P = p0, p1, . . . , pn−1, the bits of the plaintext
– C = c0, c1, . . . , cn−1, the bits of the ciphertext
– a0, a1, . . . , am−1, bits in the cipher state at the output of the S-box layer in

rounds 1, . . . , r − 1

For most ciphers m = n(r − 1), but if the S-box layer is incomplete, like for
LowMC, m = s(r − 1) where s is the number of bits passing through S-boxes
in each round. If the key schedule is linear these are all the variables that are
needed. If the key schedule is non-linear we introduce auxiliary ai-variables at
the output of the non-linear transformations of the key schedule as well. See
Figure 4 for an illustration of the setup of variables.

Fig. 4: Variables in a general SPN cipher. The round keys Ki depend on
k0, . . . , kκ−1.

The introduction of variables can be done in different ways. The important
point is that each bit in the cipher state at the input and output of the non-
linear transformations can be expressed as a linear combination of the variables
we have introduced. Note that it is not necessary to introduce new variables at
the output of the S-boxes in the last round, since these bits can be expressed as
linear combinations of the bits in Kr and the known ciphertext.

3.3 Constructing CRHS equations and the complete system

We construct the complete system representing the cipher by making one CRHS
equation for each S-box instance appearing during the encryption process. For
a b-bit S-box, let l0, . . . , lb−1 represent the input to the S-box and lb, . . . , l2b−1

the output. We then build a CRHS equation with 2b levels associated with
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l0, . . . , l2b−1. The CRHS equation will be constructed such that its associated
polynomial f(l0, . . . , l2b−1) evaluates to 1 for all values where l0, . . . , lb−1 and
lb, . . . , l2b−1 is a matching input/output pair of the S-box, and 0 otherwise.

We now explain how to construct such an CRHS equation, using the 3-bit
S-box from LowMC [2] as an example. First, assign the b linear combinations in
the cipher state at the input of the S-box to the top b levels. Create a complete
binary tree from the top node and down to level b − 1. Each path in this tree
will correspond to the first b − 1 bits of a particular input value. See Figure 5
for the resulting structure when b = 3.

Fig. 5: The three highest levels of the CRHS equation representing the LowMC
S-box. The input to the S-box is (l2, l1, l0) with l0 as least significant bit.

Second, construct a complete tree from the bottom node and upwards to
level b. Assign the linear combinations in the cipher state at the output of the
S-box to the b lowest levels. From each node on level b down to the bottom node
there is now a unique path, representing an output value of the S-box. See figure
6 for the 3-bit S-box example.

Fig. 6: All nodes and levels of the CHRS equation representing a 3-bit S-box.
The output of the S-box is (l5, l4, l3) with l3 as the least significant bit.

Finally, connect nodes on level b− 1 to level b according to the look-up table
defining the S-box. All complete paths in the CRHS equation will represent all



12 J.P Indrøy, N. Costes, H. Raddum

correct input/output values of the S-box. See Figure 7 for the complete CRHS
equation representing the 3-bit S-box used in LowMC [2].

We construct one CRHS equation for each application of the S-box in the
cipher. The complete set of equations makes up the CRHS equation system
representing the cipher.

Recall that each path in a CRHS equation gives a right-hand side to a system
of 2b linear equations. To solve the equation system representing the cipher, we
need to find one path in each CRHS equation such that the combined system
of linear equations from all CRHS equations is consistent. For a fixed plain-
text/ciphertext pair we only need to solve this system to find the values of
all variables, in particular finding the variables representing the unknown key.
We proceed to explain the techniques used in CryptaPath for solving a CRHS
equation system.

Fig. 7: The CRHS equation representing the LowMC S-box.

4 Solving a System of CRHS equations

A system of CRHS equations (SOC) is the set of CRHS equations which models
one instance of a primitive. The solution set to the SOC is the intersection of
the solution sets of each CRHS equation, the challenge is to find this set.

The solution set of the SOC is dependent on the paths in its CRHS equations.
Collectively, the number of combinations of paths in the SOC is exponential in
the number of CRHS equations. Yet we have only one associated system of linear
combinations, namely the set of all linear combinations from the CHRS equa-
tions. Only a few selections of the paths will yield a consistent linear equation
system when assigned to the associated linear combinations, resulting in a so-
lution to the SOC. We call these paths consistent and identifying these paths
will allow us to calculate the values of all the variables, including any key or
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pre-image variables. We see that the solution set of the SOC is given by all the
consistent paths. Solving a system of CRHS equation is therefore a matter of
identifying the consistent paths of the SOC, and removing the inconsistent ones.

4.1 Finding the Solution

Allowing arbitrary linear combinations to be associated with levels may give rise
to linear dependencies in the set of linear combinations in a CRHS equation.
For a well-defined cipher, a single CRHS equation in the initial system will not
have any dependencies among its linear combinations as it would imply a non-
invertible linear transformation in the cipher. We therefore need to join multiple
CRHS equations to give rise to linear dependencies.

Joining two CRHS equations E1 and E2 is a straightforward and memory ef-
ficient operation to execute. We simply replace E1’s terminal node with E2’s top
node. The resulting CRHS equation contains one fewer node than the combined
total of E1 and E2. It also contains all possible concatenations of paths from
E1 with paths from E2, thus preserving the space of possible right-hand side
vectors. This operation allows us to easily string together some, or all, CRHS
equations into fewer, or even only one, CRHS equation(s).

Identifying linear dependencies in a SOC is straightforward. We extract the
set of all linear combinations from all the CHRS equations in the SOC into one
matrix, and use normal linear algebra to identify linear combinations that are
linearly dependent. We keep track of where the linear combinations come from,
and can use this information to decide which CRHS equations to join, and in
what order. After joining, the resulting CRHS equation contains dependencies
among its linear combinations. We then use linear absorption to remove the
linear dependencies.

Linear absorption [28] is the process of resolving one linear dependency from
the SOC. Resolving one linear dependency will remove all paths that give right-
hand sides in the associated linear system (see Figure 3) that are inconsistent
with this particular dependency. The idea is simple: Adding the relevant levels
onto each other, as defined by the linear dependency, will result in a level whose
”linear combination” is the constant 0. Since this level now has a constant value,
we can remove the level using level extraction. Linear absorption is therefore the
repeated applications of swap and add, ending in a level extraction. Figure 8
shows a simple example of linear absorption.

Solving the SOC is an iterative process: when there are no linear dependencies
in any of the existing CRHS equations, join some CRHS equations together that
give rise to some linear dependencies. Then use linear absorption to remove
all these dependencies. In the end, when all CRHS equations have been joined
together and all linear dependencies have been absorbed, we are left with only a
single CRHS equation, containing only consistent paths. Any of these paths will
give us a consistent system of linear equations that can be solved.
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(a) Initial CRHS
equation

(b) After add op-
eration, creating
0-level

(c) Level extrac-
tion, part 1: re-
move 1-edges

(d) Level extrac-
tion, part 2: re-
move the level

Fig. 8: Linear Absorption

4.2 Supporting techniques

We have now seen the core techniques required in order to solve a SOC. However,
we also have two techniques which may aid in this process: the extraction and
injection of linear equations, and the dropping of variables.

Extracting and injecting linear equations Extracting a linear combination
is similar to level absorption. If at any given point all outgoing edges from all
nodes on a level with linear combination li are 0 (or 1), we know that the linear
equation li = 0 (or li = 1) must be true. This information is useful in two ways.
First, we may use this information to eliminate one variable from the system,
by choosing to eliminate any one variable xj that appears in li. This is done by
simply adding li (or li+1) to any linear combination in the system that contains
the variable xj . Note that here we mean ”add” in the simple sense of just xoring
li (or li + 1) onto any other linear combination without modifying the BDD at
all, not the add operation as described in Sec 2.3.

Second, for the level where we extracted this information, we will get 0 as the
linear combination for that particular level. This level should then be removed
in the same way as for level extraction. We note that the linear equation li = 0
(or li = 1) may be needed after all linear dependencies have been absorbed. It
should therefore be stored, so that it can be added back into the final consistent
linear system in the end.

We can similarly inject a constraint where we do not know the actual value
in order to make a guess. If the guess is wrong the system will have no solutions.
A system with no solutions is identified when a 0-level with only outgoing 1-
edges appears, showing the contradiction. Deleting all 1-edges will in this case
disconnect the top node from the bottom node, leaving no complete paths in the
CHRS equation.

Dropping variables We introduce a novel technique, dropping variables, which
has not been described before. Dropping a variable means to completely remove a
variable from the SOC. This should therefore only be used on auxiliary variables,
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whose values we do not really care about, and not on variables representing the
key of a cipher or a pre-image of a hash value.

We can remove any variable xv from the SOC as follows: First, find all CRHS
equations that have linear combinations containing xv, and join them together.
Now xv only exists in the joined CRHS equation. Second, pick one level where xv
occurs, and use the add and swap operations to add this level to all other levels
where xv occurs. Now xv only exists in the linear combination of one single level.
This level is then moved, using the swap operation, to the lowest level, just above
the terminal node. Finally, all incoming edges to the level with xv are redirected
directly to the bottom node and the xv-level is completely removed, eliminating
the last instance of xv from the system.

Dropping a variable does not disturb the solution space of the variables we
care about. This fact can be seen as follows: The consistent path that goes
through the level is still valid, since the linear combination containing the single
instance of xv can not be part of any dependency. Assume that a consistent
path will fix all other variables in the linear combination of the removed xv-
level. This path will then simply determine the value of xv, but as xv does
not appear elsewhere in the system no inconsistencies can arise. Note, however,
that we will never learn the actual value of dropped variables when solving the
remaining system.

The benefit of dropping is that the SOC will contain fewer variables, and the
CRHS equation may be simplified after removing a level and reducing. The cost
of dropping is the number of add and swap operations that must be performed,
possibly increasing the number of nodes. Note also that dropping variables does
not resolve any linear dependencies and does not bring us closer to a solution
in that sense. It just simplifies the system by eliminating a variable. In practice,
variable dropping should only be done when a particular variable is already only
contained in a single CRHS equation and the involved levels are already close
to the bottom.

4.3 Complexity

We now turn to the complexity of the procedures described above. Absorbing
one linear dependency is linear in the number of levels, and the number of
dependencies must be less than the number of levels. Hence solving a system is at
most quadratic in the number of levels, and the time complexity therefore mostly
depends on the number of nodes the levels contain. Solving a non-linear equation
system over GF (2) is NP-complete in general and solving systems representing
ciphers is still hard. For a cipher to be secure, the number of nodes in the SOC
must increase significantly during an attempted solving of the SOC. We will see
that all our operations are running in linear time in the number of nodes, and
that it is not the run time that is crucial, but rather the memory consumption
due to the increase in the number of nodes. We will therefore use the total
number of nodes seen during solving as the measure of complexity.
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Complexity of the operations Running the reduction on a CRHS equation
is linear in its number of nodes and will only affect memory by removing nodes,
so this operation has no cost in terms of memory. Adding and swapping levels
are local operations, in the sense that only two levels are involved, and it only
affects the number of nodes on the lower level. Nodes on the lower level may
be removed and added, and in the worst case the number of nodes may end up
being double that of the upper level.

Linear absorption of one linear dependency in a CRHS equation makes use
of repeated applications of the swapping and adding operations, but each level is
only involved once. The number of nodes can increase or decrease after resolving
a dependency, and in the worst case the number of nodes in the CRHS equation
may double when resolving a single linear dependency. This leads to the memory
complexity for solving a SOC being potentially exponential in the number of
initial dependencies.

As dropping a variable means moving the level to the bottom of the CRHS
equation before being removed, repeated use of the swap algorithm may be
needed. As with linear absorption, this is linear in terms of affected levels, but
may in the worst case double the number of nodes. Finally, the level extraction
and extracting linear equations (if any exist) are very quick to do and can only
reduce the number of nodes.

Order of operations influences effective complexity In [24] it is pointed
out that the process of solving a SOC can be summed up as three processes.

1. Joining CRHS equations.
2. Absorbing all linear dependencies.
3. Selecting a path from the remaining consistent paths and solving the linear

system.

Of these three processes, absorbing dependencies is the hard one. As noted above,
the number of nodes on a level may become the double of the number of nodes
on the level above when performing the add and swap operations. That in turn
means the number of add and swap operations, and the order of executing said
operations are the driving factors in the growth of the memory complexity. Solv-
ing a system of CRHS equations will see a growth of memory complexity until
a “tipping point” is reached, the point from where the memory usage will de-
crease towards a solution. Therefore, the order in which the dependencies are
absorbed should be considered when solving a SOC, in an attempt to minimize
the number of nodes at this tipping point.

Finding the best order for absorbing linear dependencies, and in turn the
best order to join CRHS equations, is still an open research question.

5 CryptaPath

CryptaPath is a tool both for those who only want to perform an algebraic
cryptanalytical attack on a primitive, and for those who wish to do research
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on CRHS equations. Only needing a reference implementation of a primitive
to begin an attack ensures accessibility for those coming from other areas than
algebraic cryptanalysis. For those who wish to go further, ways to specialize the
solving algorithm are provided. Finally, being open source means that anyone
can adapt the tool, changing it to their needs. An overview of how CryptaPath
is organized and used is given in Appendix A.

5.1 Example usage and results

The simplest way of using CryptaPath is for example by giving the following
command:

./cryptagraph cipher -c skinny64128 -r 4

This command will:

– Generate a random plaintext p and random key K for an instance of Skinny
reduced to 4 rounds with 64-bit block and 128-bit key.

– Use this instance to encrypt p to a ciphertext c with K.
– Discard K.
– Create a SOC and fix the appropriate values of the variables corresponding

to p and c.
– Run the default solver to remove all the dependencies in the system.
– Get the solution(s) from the solved SOC.
– Validate that the solution(s) correctly encrypt p to c, and output them.

Additional CLI parameters are available such as providing a known plain-
text/ciphertext pair or providing a partially known key.

In Table 1 we present several results of instances of round-reduced ciphers we
were able to break using CryptaPath, with both time and the memory complexity
given as number of nodes. We present both the maximal number of rounds
without guessing any bits that we were able to solve as well as some larger
instances that we were able to solve with several known key bits. In Table 2 we
give some results on finding pre-images for a few variants of the Keccak hash
function. The experiments were run on a laptop with an i7-4720HQ CPU @
2.60GHz processor and 16 GB of RAM, which limit the maximum complexity
to ≈ 228 nodes for this particular hardware.

A few remarks on the numbers and the instances in Table 1: Cryptanalytic
results using only one single plaintext/ciphertext pair is not very common, so
for some of the ciphers there is little to compare against. In [24] both DES and
a small version of AES, SR∗(r, 2, 2, 4), are attacked with a similar approach as
in this paper. For DES, 6 rounds can be broken with a dedicated strategy and
using 6 chosen plaintexts, while with a single plaintext/ciphertext pair only 4
rounds can be attacked. The complexities are lower than in our case, showing
that solving strategy plays a role. DES with a single plaintext/ciphertext pair is
also attacked algebraically in [7], where the authors break 6 rounds after guessing
more than 20 bits of the key.
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cipher number of rounds attacked number of known bits runtime # nodes

DES 3 of 16 0/56 0:0.143 214.644

DES 4 of 16 10/56 7:31.102 226.899

LOWMC 64-1-80 19 of 164 0/80 14:17.784 226.528

LOWMC 64-1-80 27 of 164 26/80 9:28.118 226.199

LOWMC 128-31-80 1 of 12 0/80 0:0.849 217.741

LOWMC 128-31-80 2 of 12 68/80 14:34.702 226.845

LOWMC 256-1-256 24 of 458 0/256 11:24.846 226.540

LOWMC 256-1-256 45 of 458 65/256 9:42.992 226.228

PRESENT 80 2 of 31 7/80 10:0.642 227.004

PRESENT 80 2 of 31 8/80 1:18.747 224.480

PRINCE 2 of 12 0/128 0:5.865 219.831

PRINCE 4 of 12 87/128 5:31.046 226.153

PRINCE-CORE 4 of 12 21/64 0:13.592 222.298

SKINNY 64-128 4 of 36 0/128 0:0.437 214.975

SKINNY 64-128 5 of 36 70/128 14:1.398 227.120

SKINNY 128-128 3 of 40 0/128 0:0.444 215.285

SKINNY 128-128 4 of 40 32/128 16:29.616 227.247

SKINNY 128-128 4 of 40 34/128 3:46.160 225.825

SR* 2-2-8 1 0/32 0:0.108 215.298

SR* 2-2-8 2 12/32 0:0.705 218.060

SR* 2-2-8 3 12/32 6:4.170 226.743

SR* 2-2-8 4 23/32 0:8.904 221.128

SR* 4-4-4 1 0/64 0:0.074 212.053

SR* 4-4-4 2 25/64 0:25.430 222.970

SR* 4-4-4 3 46/64 2:52.634 225.479

Table 1: Results on block ciphers (runtimes in min:sec.milliseconds)

6 Conclusions and further work

There are two purposes of this paper. The first is to have a thorough explanation
of the connection between CRHS equations and Boolean equations represented as
ANF polynomials, since this has not been described earlier. The second purpose
is to advertise an easy to use tool for doing algebraic cryptanalysis.

CRHS equations give a memory efficient representation of a Boolean equation
in several variables. Many Boolean polynomials that are too big to be represented
in ANF in practice can still be represented as CRHS equations. The size of a
CRHS equation does not depend so much on the degree of its associated Boolean
polynomial, but rather on how much ”regularity” there is in its paths. The
theory for solving CRHS equation systems is now better understood, and with
CryptaPath it has been compiled into a library that is available for anyone to use
and adapt to their own needs. The optimal solving strategy is cipher dependent,
and CryptaPath provides API’s to experiment with various strategies.

Another goal of CryptaPath is to provide a user interface for doing algebraic
cryptanalysis of a particular cipher, without needing knowledge of how CRHS
equations are constructed, and without needing to know how solving systems



CryptaPath 19

rounds rate capacity message-length hash-length number of known bits runtime # nodes

1 240 160 240 80 0/240 0:9.411 212.21

2 40 160 80 80 (39+32)/80∗ 5:33.516 225.64

2 80 120 80 80 49/80 2:20.401 224.37

Table 2: Results on Keccak variants (runtimes in min:sec.milliseconds)
∗39 fixed variables in first message block, and 32 in the second.

of CRHS equations work. This is inspired from the tool CryptaGraph, which
has an equally simple interface for applying a search for differential or linear
characteristics.

Further work: In a longer perspective, we hope there will be more tools
for analysing symmetric key primitives, that can be applied by only giving a
reference implementation of the cipher in question. Right now it is not possible
to simply copy the Rust source code of the ciphers in CryptaGraph’s portfo-
lio and apply them to CryptaPath, due to small differences in the Rust traits
used by the two tools. For that reason, a standardized way of coding reference
implementations needs to be agreed upon.

In our current work we have focused on attacks recovering the secret key in
SPN ciphers or finding pre-images for hash functions. There are several directions
further research can take for applying CRHS equations on other problems. In
[18] CRHS equations are applied on the cipher GOST [9], which uses addition
modulo 2n for including round keys. Checking whether CRHS equations gives
a good model for attacking ARX ciphers in general is one avenue to explore.
Another topic for further work is applying CRHS equations on a search for the
best linear hull or differential in a cipher. This is a hard problem in general and
involves keeping a large number of partial solutions in memory at the same time,
exactly the feature that a CRHS equation is suitable for.

Last, it is possible to generalize a BDD to a p-ary decision diagram, having p
edges out of each node for p > 2. To keep the compactness of the CRHS equation
p can not be too large. Apart from ciphers (like MiMC) that are defined over Fp
where p is large, we are only aware of the hash function Troika [19] that uses a
non-binary field at its base. Troika is defined over F3 and could be attacked using
CRHS equations containing ternary decision diagrams. In contrast, SAT-solvers
are inherently binary and can not be adapted as easily to solve problems defined
over non-binary fields.
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A Overview of the code and usage of CryptaPath

The code base of CryptaPath is broken into two parts:

– The Crush library which provides an implementation of the CRHS equations
and System of CRHS equations along with several APIs for the operations
that one can be performed on them (swap, add, absorb, drop and more). An
interface (a Rust trait) to construct solvers, with default implementation for
several methods is also provided.

– the CryptaPath tool uses the Crush library. The tool itself is composed of a
simple command line interface (CLI), a set of generic methods for building
specifications for a SOC from an implementation of a cipher, and several
example ciphers that we implemented for analysis. It also provides a generic
solver, built from the interface of the Crush library.

We decided to make this separation from the belief that the usage of CRHS
equations can be explored outside of cryptanalysis, and in that case the Crush
library as a standalone will be sufficient. However, when used in the case of
cryptanalysis, the main obstacle to usage for researchers would be to generate the
SOC for every cipher and variant they want to analyze. The goal of CryptaPath is
to simplify this task. By specifying an implementation that respects the provided
interface, the tool will generate the SOC from the Rust source code.

While we provide several implementations of primitives (reduced versions of
AES, LowMC, Skinny, Prince, Present, DES and Keccak) we encourage users to
add their own if they want to analyze it. To facilitate any future implementation
job we are providing several helper functions making it possible to run an imple-
mentation against test vectors to ensure its correctness. As already mentioned,
we provide a general good solving algorithm which will work out of the box for
any SPN cipher or sponge construction implemented in Rust. As a user gets
familiar with the tool, tailor made solvers can be created and tested.

A.1 Usage

Simple usage of the tool can be made by using the provided CLI. A user can
generate a SOC for any of the primitives implemented in CryptaPath for any
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number of rounds and run the solver on it. The user can provide a specific plain-
text/ciphertext pair and solve for the key. The user may also fix arbitrary bits of
the key to see how much easier solving becomes with a partially guessed key. If no
plaintext/ciphertext pair is provided CryptaPath will generate a random plain-
text and a random key respecting any fixed bits, and compute the corresponding
ciphertext at runtime. Any solution found will be validated by encrypting the
plaintext and ensuring the result matches the ciphertext. The system of CRHS
equations can be output in the form of a .bdd file for studying and fed back into
CryptaPath later.

As specified earlier, it is possible and encouraged to add new ciphers into
CryptaPath. We provide for that purpose a Cipher trait which a reference im-
plementation has to follow. Existing ciphers can be used as examples on how to
make an implementation.

We provide two similar solvers which we believe to be a good general fit for all
algorithms. The main difference between them is the use of the drop operation
which as noted earlier can either increase or decrease the complexity.

In the case of the solver which uses dropping of variables we consider variables
that can be dropped without any joining of CRHS equations, and compare the
cost of dropping them against the cost of absorbing the cheapest dependency
found. The cost of resolving a dependency or dropping a variable is estimated by
summing up the number of nodes in the levels that have to be swapped or added
to resolve it. There are a lot of heuristics which can be explored to improve the
solving, and in particular we expect a tailor made solver to outperform ours
when targeting a specific algorithm. A new solver can be implemented using the
traits we provide with a minimal amount of code to rewrite.

A specific part of the solver which we encourage users to tweak is the feedback
function. This function is called by the solver every time it completes an oper-
ation on the system and is used to provide feedback to the user. Its role is to
allow for gathering data from the SOC during the solving process. Our default
implementation prints several metrics on the terminal window such as the num-
ber of individual CRHS equations left in the system, the maximal number of
node reached and the number of absorbed dependencies.
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Abstract. Evaluating a block cipher’s strength against differential or linear crypt-
analysis can be a difficult task. Several approaches for finding the best differential
or linear trails in a cipher have been proposed, such as using mixed integer linear
programming or SAT solvers. Recently a different approach was suggested, modelling
the problem as a staged, acyclic graph and exploiting the large number of paths the
graph contains.
This paper follows up on the graph-based approach and models the problem via
compressed right-hand side equations. The graph we build contains paths which
represent differential or linear trails in a cipher with few active S-boxes. Our method
incorporates control over the memory usage, and the time complexity scales linearly
with the number of rounds of the cipher being analysed.
The proposed method is made available as a tool, and using it we are able to find
differential trails for the Klein and Prince ciphers with higher probabilities than
previously published.
Keywords: differential cryptanalysis · linear cryptanalysis · CRHS equations

1 Introduction
Block ciphers have been around for decades, with the 20-year old Advanced Encryption
Standard (AES) as the most prominent example. Still, there have been a number of
different new symmetric ciphers proposed over the years. Light-weight ciphers are designed
to be used in constrained devices and are designed to minimize the gate count, chip size or
energy consumption [BKL+07, SSA+07, DCDK09, BCG+12, GNL12, BSS+15]. Others
are designed to be used with other specific cryptographic constructions like FHE, MPC,
or SNARKs [ARS+15, CCF+16, MJSC16, DEG+18, AGR+16]. We can therefore expect
new designs to come up in the future as well, and these will need to be cryptanalyzed for
security.

Two of the oldest types of attacks on block ciphers are differential [BS91] and linear
attacks [Mat95]. Showing resistance to differential and linear attacks is important when
proposing a new design, but it may be hard to give an accurate estimate on the strength
of a cipher against these attacks. Lower bounds on the number of active S-boxes in a
differential or linear trail are sometimes proved over a few rounds [DR12, BCG+12, GNL12]
and used to show that the full cipher must be resistant to differential and linear attacks.
However, the true complexity of the attack is given by all trails in a differential or a
linear hull, and it is generally unknown how many low-weight trails they contain when the
number of rounds increases.

To simplify the analysis work for new designs there is and has been a need for algorithms
and tools that estimate a cipher’s strength against linear and differential attacks.

1.1 Previous Work
Several methods and tools for aiding in estimating a cipher’s strength against differential
and linear cryptanalysis have been proposed. As early as 1994 Matsui proposed his branch
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and bound algorithm [Mat95], which recursively searches through the whole search space
of trails with weight lower than a given bound. This method was successfully applied to
DES, but for most new ciphers this exhaustive search technique has too high complexity
to be applied in practice.

Another suggested method is to represent the problem as a mixed integer linear
programming (MILP) problem [MWGP12, SHW+14, FWG+16, YML+18, ZHWW20].
This turns the problem into an optimization problem one can attempt to solve using a
MILP solver. Converting the problem into a SAT- or SMT instance and run a SAT/SMT
solver on it has also been suggested [MP13, KLT15, AK19]. Both of these approaches have
have had some success in finding trails of low weights. Some of these works have been
made into tools that are supposed to simplify the job for the cryptanalyst to use these
methods.

The newest approach to the problem is to use a representation via a staged directed
acyclic graph (DAG). In [HAV18] the problem is attacked in this way, where each node
corresponds to a cipher state in a trail, and each path from start to end in the DAG
corresponds to a full trail. This approach has the benefit of being able to combine (even
exponentially) many trails in a linear hull or a differential and add up their weights for an
accurate attack complexity. The drawback of the approach is that one can only store a
limited number of nodes (i.e., cipher block states) at every stage, out of all 2n possible
states. It is difficult to tell beforehand which states to include in the node set of the
constructed graph, and in [HAV18] they simply choose the states with the lowest weights,
limited by available memory.

The method from [HAV18] has been implemented as a tool called CryptaGraph [Vej18].
This tool is arguably the easiest to use for a cryptanalyst among the published tools for
finding differential or linear trails. The user only needs to give a reference implementation
of a given cipher (but must be programmed in Rust), and does not need to understand
anything about how the underlying method works.

1.2 Our Contribution
In this paper we follow up on the work from [HAV18] and give a new method for searching
for linear and differential trails. We also take the approach of a staged graph, but use
it in a different way than in [HAV18]. Instead of having a 1-1 correspondence between
nodes and cipher states, we let partial paths in the graph represent the cipher states. It is
then not necessary to make a choice of which cipher states to include in the search space.
We can simply start with a graph containing n vertices and 2n paths, representing all
possible cipher states of n bits. From that starting point, we build on the theory of CRHS
equations [SR12, RK15] to construct the full graph.

We compare the results of our work to [HAV18], and improve on some of CryptaGraph’s
results for differential cryptanalysis. We find some new low-weight trails that CryptaGraph
misses, and we can explain why. We have also made a tool, called PathFinder, implementing
our proposed method. PathFinder is as easy to use as CryptaGraph; the cryptanalyst only
needs to provide the same reference implementation to PathFinder to use it. In fact, for
our tests we reused all implemented SPN ciphers in [Vej18].

We found one interesting result on the block cipher Prince that is worth mentioning
here. In [BCG+12] the designers of Prince prove that four rounds of the cipher must
contain at least 16 active S-boxes, and deduce that any trail in the full 12-round Prince
must have at least 48 active S-boxes. To our knowledge, it has not been previously known
how tight the bound is, i.e. whether it is actually possible to join three 4-round trails
with the minimum active S-boxes together to form a 12-round trail with 48 active S-boxes.
PathFinder finds a differential trail with 48 active S-boxes for Prince, showing that the
bound given by the designers is indeed tight and can not be improved.
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Finally, we highlight the strong and weak parts of our method and [HAV18], and sketch
an idea of how they can be combined to take advantage of each other’s strengths. A
combined tool will most likely outperform both CryptaGraph and PathFinder.

Outline: The paper is organized as follows. In Section 2 we recall the necessary basics
of linear and differential cryptanalysis and introduce notation. We give the basics of CRHS
equations in Section 3. Our proposed method for finding low-weight trails is explained
in Section 4, and in Section 5 we present the results, with comparisons to CryptaGraph.
Section 6 concludes the paper.

2 Differential and Linear Cryptanalysis
Differential [BS91] and linear [Mat94] cryptanalysis are some of the earliest attacks on
modern block ciphers. The attacks can be applied to ciphers which use S-boxes for
non-linear mappings. In this paper we only consider SPN ciphers, but the techniques we
describe can be applied to Feistel ciphers, ciphers with incomplete S-box layers, or other
constructions that only use S-boxes for non-linearity.

2.1 Cipher model
We now describe the model we use for a general SPN cipher ε(P,K) that encrypts plaintexts
P using the secret key K. The plaintext block consists of n bits, which is transformed
by applying a key-dependent round function r times. The round function in round i
is denoted Ri and starts with the application of an S-box layer called S, followed by a
(possibly round-dependent) linear transformation Li, an addition of a round constant, and
a key addition:

Ri(x) = Li(S(x))⊕ zi ⊕ ki,

where ki is an n-bit round key and zi is the round constant for round i. The S-box layer
S consists of the parallel application of m S-boxes, each substituting one b-bit chunk of
the cipher state with another one according to a given table, where n = bm. The complete
cipher starts with an initial key addition on the plaintext P , followed by applying the
round function r times. The output is the ciphertext C:

C = ε(P,K) = Rr ◦ . . . ◦ R1(P ⊕ k0).

When searching for differential or linear trails we disregard the additions of the round
keys and round constants. We are therefore not concerned with modelling the key schedule
in this work.

2.2 Differential distribution table and linear approximation table
The basis for both differential and linear attacks are the imbalances that exist in the S-box
S that is used. For differential attacks, we exploit that some input/output differences in
the S-box are more likely than others. For given b-bit differences α and β we define the
differential count DC(α, β) to be

DC(α, β) = |{x ∈ GF (2)b|S(x)⊕ S(x⊕ α) = β}|.

By varying α and β we can build a differential distribution table (DDT) of size 2b × 2b
containing all possible differential counts of an S-box:

DDT[α][β] = DC(α, β).
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The entries in the DDT that are 0 indicate impossible differentials, i.e. input/output
differences that can not occur. These differences can not be used when constructing a
differential trail through an SPN cipher. More generally, DDT[α][β] indicate the probability
for getting the specific output difference β for a given input difference α.

The imbalance that is exploited in a linear attack is the fact that some linear combi-
nations of input/output bits are more correlated than others. For two masks γ and δ we
define the linear correlation LC(γ, δ) of S to be

LC(γ, δ) = |{x ∈ GF (2)b|〈γ, x〉 = 〈δ, S(x)〉}|,

where 〈·, ·〉 denote the bit-wise inner product between two bit-strings of equal length. By
running through all combinations of γ, δ we can construct the linear approximation table
(LAT) of size 2b × 2b in a similar fashion as the DDT:

LAT[γ][δ] = |2LC(γ, δ)− 2b|.

By defining the LAT in this way, the input/output masks that give no bias in the correlation
get the value 0 in the LAT. These input/output masks can not be used when making a
linear trail through a cipher. In the same way higher numbers in a DDT indicate higher
probabilities of a differential to occur, higher numbers in the LAT indicate stronger bias
for a correlation. Finally, we also have DDT[0][0] = LAT[0][0] = 2b.

Since the DDT and the LAT share the properties that only non-zero values in the table
can be used for constructing trails and that higher numbers mean better trails (from an
attacker’s point of view), we will treat them at the same time in the text that follows, and
use the term base table (BT) for referring to either one of them.

2.3 Trails
Given a base table for an S-box, we are interested in expanding the differential counts or
linear correlations to cover the whole cipher ε. In other words, we are interested in finding
(α, β) ∈ GF (2)n × GF (2)n such that Pr[ε(P,K) ⊕ ε(P ⊕ α,K) = β] is high, or finding
(γ, δ) ∈ GF (2)n×GF (2)n such that 〈γ, P 〉 = 〈δ, ε(P,K)〉 with a probability bounded away
from 1/2.

In the following we will use the term input to an S-box to mean either an input
difference or an input mask to the S-box. Similarly, the term output can refer to both
output difference for a differential or output mask for a linear approximation. Furthermore,
an S-box whose input and output are both 0 is called a passive S-box, while an S-box with
non-zero input/output is called an active S-box.

The input and output for the whole S-box layer S is constructed in the natural way,
by concatenating the inputs and outputs of individual S-boxes to n-bit strings. Given the
output ui from S in round i, the input to S in round i+ 1 is given as Li(ui). In contrast,
for a given input to S there are in general many different possible outputs. All passive
S-boxes must have the output 0, but each active S-box in S can have a number of possible
outputs. For a given input αi to S-box i, any βi such that BT[αi][βi] 6= 0 is possible. A
trail through ε is defined as a sequence of n-bit strings

u = (u0, u1, . . . , ur)

where u0 is the difference or mask for the plaintext block P and ui is the output of S in
round i for i = 1, . . . , r. We furthermore split each ui into ui = (ui,1, . . . , ui,m), where
each ui,j is the substring that aligns with S-box j in S. For a trail to be valid the following
conditions must be met: The input/output u0/u1 of S in R1 must satisfy BT[u0,j ][u1,j ] 6= 0
for 1 ≤ j ≤ m, and the input/output Li(ui)j/ui+1,j for S-box j in round i + 1 satisfies
BT[L(ui)j ][ui+1,j ] 6= 0 for all i = 1, . . . , r − 1 and 1 ≤ j ≤ m. Note that ur does not
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represent the ciphertext state, but the ciphertext difference or mask is uniquely determined
by ur as Lr(ur).

The trails through ε determine the complexity for a differential or linear attack on the
cipher. The numbers in the base table for all S-boxes give what we call the trail weight
w(u), which is given as

w(u) =
m∑
j=1
− log2

(
BT[u0,j ][u1,j ]

2b

)
+
r−1∑
i=1

m∑
j=1
− log2

(
BT[Li(ui)j ][ui+1,j ]

2b

)
. (1)

Lower weight means lower complexity of mounting an attack, and we see that passive
S-boxes do not add anything to the trail weight since BT[0][0] is always equal to 2b. For
the security analysis of a particular cipher we are therefore interested in finding trails that
give the lowest trail weight. This is a difficult task in itself, since there is a very large
search space of all possible trails.

For fixed u0, ur there are many valid trails that start with u0 and end with ur. We
call the set of all valid trails that start with u0 and ends with ur for a hull, and denote
the set with u0 ♦ ur.

The weight of all the paths in a hull gives a good approximation for the complexity
of a differential or linear attack on ε. The exact complexity is dependent on the actual
key used in the cipher, and the weights of all S-boxes in ε are not independent from
each other. However, disregarding the effect of the key and the dependencies that exist
between different S-boxes still gives a good approximation of the complexity of a linear or
differential attack. In the literature one often considers the expected differential probability
(EDP) and the expected linear potential (ELP) to estimate the complexity of an attack
using a chosen hull. With our notation, we have

EDP ≈
∑

u∈(u0 ♦ur)

2−w(u),

and
ELP ≈

∑
u∈(u0 ♦ur)

2−2w(u).

Some ciphers may have many trails that contribute approximately equally to the weight
of a hull, while others may have only a few dominating trails that make up most of the
weight of a hull. Either way, a good strategy for finding a hull with a low weight is to
search for trails with the least number of active S-boxes. We therefore define the number
of active S-boxes in a trail u as

a(u) = |{ui,j |ui,j 6= 0, 1 ≤ i ≤ r, 1 ≤ j ≤ m}|.

In the following sections we describe an efficient algorithm that searches for valid trails
with the lowest number of active S-boxes, and use them to give a lower bound on the EDP
or ELP for ε.

3 CRHS Equations
The algorithm searching for low-weight trails uses Compressed Right-Hand Side (CRHS)
equations [SR12] as its building block. A CRHS equation is a data structure which may be
understood as a compressed representation of a large number of linear equation systems
over some variable set.
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Figure 1: CRHS equation example. Path p in the CRHS equation gives a linear system
with the solution set Ap.

3.1 Basics of a CRHS equations
A Compressed Right-Hand Side Equation (CRHS equation) is a special kind of a Directed
Acyclic Graph (DAG). The DAG of a CRHS equation has exactly one source and one sink
node. Each node may have at most two outgoing edges, called the 0-edge and the 1-edge.
This particular class of DAG’s is also known as a Binary Decision Diagram (BDD). The
nodes in the BDD are divided into levels. We draw the DAG in a top-down fashion with
the source node on the top, the sink node on the bottom, and all intermediate nodes on
horizontal levels. All edges go from a node on one level to a node on the level below. If we
talk about level l for some number l, we always mean level number l counted from the top,
where the counting starts at 0.

Each level, except for the one containing the sink, have linear combinations of variables
associated with them. These linear combinations are referred to as the Left-Hand Side
(LHS) of the CRHS equation, while the paths in the DAG are referred to as the Right-Hand
Side (RHS) of the CRHS equation. A complete path in a CRHS equation is a path which
starts in the source node and ends in the sink. One such path will consist of as many edges
as there are levels in the DAG, minus one.

Each node in the DAG can have at most two outgoing edges, the 0-edge and the 1-edge.
As the names suggest, each edge has a value associated with it: 0 or 1. Choosing an
outgoing edge from a node is viewed as assigning that value to the linear combination
associated with that edge’s level. Thus, choosing a complete path through the DAG is the
same as assigning a value to all the linear combinations in the CRHS equation. By doing
so, the LHS and the now assigned right-hand side becomes a system of linear equations.

Let p(E) denote the set of all paths in a CRHS equation E, and let Ap be the solution
space to the linear system given by a path p in p(E). The solution set of E is then given
as ∪p∈p(E)Ap. See Figure 1 for an example of a CRHS equation, the associated linear
equation system for one of its paths p, and the solution set Ap.

3.1.1 Operations on CRHS equations

If some linear combinations of a CRHS equation’s LHS are linearly dependent there will
in general exist paths in the RHS which give inconsistent linear systems, having Ap = ∅.
As will become clear later, we want to remove these paths in order to find the solutions we
are looking for. We remove these paths using linear absorption, whose operations we now
explain.
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Swap levels: This operation swaps the linear combinations of two adjacent levels,
and updates the nodes and edges on these levels such that the solution set of the CRHS
equation remains unchanged. The purpose of this operation is to move linear combinations
up or down in the LHS of the CRHS equation.

Adding levels: As the name says, the linear combinations of two adjacent levels are
added (xor’ed) together. When doing so, the linear combination of the lower level becomes
the sum of the two, while the linear combination of the upper level stays the same. The
nodes and edges in the RHS of these levels are updated accordingly so the solution set of
the CRHS equation remains unchanged.

Linear Absorption: By using add and swap iteratively, we can do the same operations
on the LHS of a CRHS equation as we can do on a binary matrix. In particular, if some
linear combinations in the LHS are linearly dependent we can add them together and
create a level in the CRHS equation that has 0 as its linear combination. We call such a
level for a 0-level.

The paths that would give inconsistent linear systems (i.e., Ap = ∅) due to a linear
dependency can be readily identified after creating a 0-level from the dependency. All
paths with a 1-edge going out from a 0-level give the "equation" 0 = 1 in the linear system,
and hence an inconsistency. All these paths are removed by simply deleting all outgoing
1-edges from nodes on the 0-level. The last stage is to remove the whole 0-level itself. To
do so, all incoming edges to nodes on the 0-level are redirected to point directly to the
node at the end of the node’s 0-edge (if it exists). After redirecting all incoming edges, all
nodes on the 0-level are deleted. We say that the linear dependency we started with has
been absorbed, and the CRHS equation now has one level less.

If there are several linear dependencies in the LHS of a CRHS equation, we can remove
them one at a time using linear absorption. When all linear dependencies in the LHS
of a CRHS equation are absorbed, all remaining paths will give non-empty Ap’s, and
thus the only paths left are the ones which actually contribute to the solution set of the
CRHS equation. The drawback of linear absorption is that add and swap may increase the
number of nodes on the affected levels, increasing the memory consumption of the CRHS
equation.

Executing one linear absorption will in general leave the BDD of the CRHS equation
in an unreduced state. Some nodes close to the 0-level may have no incoming or outgoing
edges; these nodes are deleted from the DAG. Moreover, some nodes may be merged,
following the reduction procedure for producing a reduced ordered BDD [Bry86]. Reduction
is always performed after doing one linear absorption, to keep the number of nodes in the
CRHS equation low.

3.2 Systems of CRHS equations
A system of CRHS equations (SoC) is a set of CRHS equations, all defined over the same
variable set. Individual CRHS equations have their own solution set, where each path will
yield a number of valid solutions to the corresponding system of linear equations. Similarly,
the SoC has a solution set. The solution set to a SoC is the intersection of the solution
sets of each of its individual CRHS equations.

3.2.1 Solving a System of CRHS Equations

In order to find the solution set to a SoC, we need to absorb all the linear dependencies
which exist across all the CRHS equations in the system. To enable us to identify the
linear dependencies in the SoC, we use an important operation on the SoC:

Joining two CRHS equations is an operation where the sink node of one CRHS equation
is replaced with the source node of another CRHS equation, effectively merging them into
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one CHRS equation. This new CHRS equation will contain all combinations of paths from
the two CRHS equations.

New linear dependencies may arise in the new CRHS equation, even though the two
individual CRHS equations before the join had all their dependencies resolved prior to
joining. When linear dependencies appear in a joined CRHS equation, we use linear
absorption to remove them. Iteratively joining two CRHS equations into one, and then
absorbing all linear dependencies which arise will result in two things:

1. The SoC will eventually consist of only one CRHS equation.

2. The solution set to this CRHS equation is the solution set to the SoC.

All paths left in the final CRHS equation will give a system of linear equations with
non-empty solution sets, and the union of all solution sets give the complete solution set
to the SoC. Iteratively joining CRHS equations and absorbing all linear dependencies that
arise is therefore a general algorithm for solving a SoC.

4 New Method for Finding Differential and Linear Trails
Our new method uses the theory of SoCs at its core. As will become clear, a path from
the source node to the sink node in the single CRHS equation remaining in a solved SoC
will represent a complete trail (u0, . . . , ur), and we sometimes use the terms path and trail
interchangeably. For instance, we may talk about the number of active S-boxes in a path.

The cipher is represented by the SoC, and each path in its solution space corresponds
to a trail, as given by the base tables and specified linear layers in ε. Finding the solution
space in practice for full-scale ciphers will most often result in CRHS equations that are too
large to handle, so we introduce a pruning technique as part of the solving process. Finding
the part of the solution space we are interested in is done by the repeated applications of
joining, linear absorption, and pruning.

When the solution space is found, we could calculate the weight of each path, and use
this to find the the hull(s) with the lowest weight. In practice, the number of paths will
be exponential in the number of nodes, and we need to estimate which input/output pair
u0, ur is most likely to yield the hull of lowest weight. The way our cipher is modelled
allows for a linear time algorithm for counting the number of active S-boxes in all paths,
and we use these counts to find our estimated pair u0, ur. The last step is then to calculate
the actual weight of the hull u0 ♦ ur.

It is important to note that the pruning process will also remove valid paths from the
SoC, meaning that we reduce the solution space. We can therefore only give an estimate of
the weight for the best hull. The rest of this section will look at each part of this process
in more detail.

4.1 Constructing CRHS equation from base table
We start by explaining how an individual CRHS equation is constructed from a given b-bit
S-box with corresponding base table BT. Let the input to the S-box be represented with
α = (αb−1, . . . , α0) ∈ GF (2)b and the output by β = (βb−1, . . . , β0).

We start by initializing a CRHS equation with 2b+ 1 levels and a DAG that initially
contains only the source and sink nodes. Let the linear combinations of the levels, from
top to bottom, be α0, α1, . . . , αb−1, β0, . . . , βb−1. Next, build a complete binary tree from
the source node to level β0. Each path from the source node to a node on level β0 then
corresponds to a fixed input a, and there is a unique path leading to each of these nodes.
We can therefore identify a node on level β0 with the path leading to it, so the path leading
to na represents the value a. For each node na on level β0, look up the corresponding row
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Figure 2: DDT of a 3-bit S-box with its corresponding CRHS equation.

BT[a] in the base table. For each non-zero entry BT[a][b], build the path representing b
from na to the sink node.

The paths in the resulting CRHS equation then encodes exactly all input/output pairs
that have non-zero values in the base table. See Figure 2 for an example of a CRHS
equation representing the DDT of a 3-bit S-box.

4.2 Constructing the SoC
For constructing a SoC representing a whole SPN cipher we first need to introduce variables
at various points in the encryption function. The variables we introduce will not represent
actual cipher states during encryption, but rather differences or masks used for differential
or linear cryptanalysis, i.e. the bits that a trail is made from. We follow the cipher model
described in Section 2.1.

The bits in the input to S in R1 are labelled u0 = (x0, . . . , xn−1). The bits in the
output of S in Ri for i = 1, . . . , r are given as ui = (xni, . . . , xni+n−1). The input state
to S in round i + 1, namely Li(ui), will then be given as n linear combinations in the
variables xni, . . . , xni+n−1, for i = 1, . . . , r − 1. See Figure 3 for the set-up of variables.
The variable set for the SoC will be x0, . . . , xnr+n−1.

There are mr S-boxes used in total in ε. We construct one CRHS equation for each of
them, following the description given in Section 4.1. The input bits of each S-box can be
written as linear combinations in the variables we have introduced, and the output bits
are single variables. The linear combinations of the input are inserted as the left-hand
sides on the b highest levels in each CRHS equation, while the variables in the output are
inserted on the b lowest levels. All of these CRHS equations are included in the SoC.

This way of modelling a crypto primitive as a SoC is not limited to SPN ciphers, ciphers
with complete S-box layers, or S-boxes with same input and output size. With simple
modifications, CRHS equations can be used to model any symmetric cipher using S-boxes
for non-linearity.

In addition to the mr CRHS equations constructed from the S-boxes used in ε, we
include one more CRHS equation in the SoC. We call this for the Master CRHS equation,
and it is constructed as follows: It consists of n+ 1 levels, with x0, . . . , xn−1 as the LHS
on each level, from top to bottom. There is only one node on each level, with both the 0-
and 1-edges pointing to the node on the level below, see Figure 4a.
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Figure 3: Variables in the SoC, and where they appear in ε

The Master CRHS equation initially contains 2n paths, representing all possible inputs
to S in R1.

4.3 Solving the SoC - finding valid trails

With the SoC representation, we are free to join CRHS equations in whichever order we
want when running the generic solving algorithm. In our particular case we will always
join CRHS equations from the S-boxes to the bottom of the Master CRHS equation, and
absorb the dependencies that arises. To ensure an orderly solving process, CRHS equations
will only be joined to Master if it respects Invariant 1:

Invariant 1. A CRHS equation E can only be joined with Master if all variables in the
linear combinations on the b highest levels in E are already present in the LHS of Master.
The b linear dependencies that arises after a join operation are immediately absorbed.

Invariant 1 ensures that all linear combinations on the b highest levels of any new CRHS
equation joined to Master are included in a linear dependency and can be absorbed. In the
solving process we always absorb all of these dependencies after a join. Each absorption is
done by taking a linear combination lc from the top of the newly joined CRHS equation,
and moving it upwards in Master using the swap operation. Every time lc is adjacent
to a level in Master that contains a variable appearing in lc, the add operation is used
to eliminate it from lc. Eventually lc = 0, and is absorbed. Note that only the linear
combinations are moved, so the order of all other levels with single variables are kept
unchanged. When the b linear combinations have been absorbed, only the single variables
from the bottom of the joined CRHS equation remain on the b lowest levels of Master.

Initially, Master contains all variables present in the top levels of all CRHS equations
from the first round, so all of those can be joined to Master and uphold Invariant 1. After
all of these have been joined and all dependencies absorbed, Master will have 2n levels
with the single variables x0, . . . , x2n−1 as linear combinations on each of them, see Figure
4b. It is then possible to join CRHS equations from R2. Invariant 1 ensures we always
join CRHS equations onto Master from one round Ri at a time.

We join the CRHS equations to Master in the natural order within each round. That
is, the first CRHS equation to be joined is the one representing the first S-box in Ri, the
next one is the CRHS equation representing the second S-box in Ri, etc., for i = 1, . . . , r.
This order keeps the direct association between a path and a (partial) trail; any path from
the top node to level n directly sets a value for u0, any path from level n to 2n gives u1,
etc. So every complete path from the source node to the bottom node gives a full trail
u = (u0, u1, . . . , ur). Figure 4c shows a sketch of the Master CRHS equation after all joins
and linear absorptions have been done.
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(a) Initial Master CRHS
equation

(b) Master after join-
ing and absorbing CRHS
equations from the first
round

(c) Master after solving
the SoC. Every path cor-
responds to a valid trail
(u0, . . . , ur).

Figure 4: Master CRHS equation at various stages.

4.4 Counting active S-boxes
Counting the number of active S-boxes, a(u), for a given path u is fundamental both to
the pruning algorithm, as well as the estimation of the input/output pair u0, ur giving the
hull u0 ♦ ur with lowest weight. In both cases, finding the weights of each path would solve
this task. However, as the number of paths is exponential in the block size n, searching
through all of them is infeasible. On the other hand, with a bit of preparation we can
count the number of active S-boxes for all paths, with a complexity that is linear in the
number of nodes. We now explain this process.

We have already laid the ground work for a simple counting method with the introduc-
tion of Invariant 1. We follow up with another invariant, that always holds when joining
CRHS equations and absorbing as explained above:

Invariant 2. The levels in Master with variables from the same S-box are adjacent.

Invariant 2 ensures that the output of every S-box corresponds to a path of length b in
Master. Each of these paths start in a node on some level l where l mod b = 0 and l ≥ n,
and extends to a node on level l + b. An S-box is counted as active iff at least one of the
edges in such a path is a 1-edge. Because of Invariant 1, every CRHS equation joined into
Master will add b levels to the DAG which satisfy Invariant 2 after the dependencies have
been absorbed.

Algorithm 1 counts the number of active S-boxes in all trails in Master, and we elaborate
on it here. We first introduce the activity distribution d for a given node N , defined as a
vector of length rm+ 1 of integers:

dN = (dN [0], dN [1], . . . , dN [rm]) where dN [i] = |{paths u below N |a(u) = i}|.

In other words, the activity distribution counts how many sub-trails there are among the
paths starting in a particular node, with a given number of active S-boxes. The activity
distribution is defined for nodes on levels l where l is a multiple of b and l ≥ n, but can be
extended to other levels by splitting a path of length b in two.

Let the sink node be T , and initialize dT = (1, 0, 0, . . . , 0) (that is, there is only the
empty path going from T to T , and it has no active S-boxes). The algorithm for computing
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Figure 5: Counting the number of active 3-bit S-boxes in all sub-trails involving two
S-boxes, with all activity distributions shown.

the activity distributions fills the dN recursively, level by level, starting from the bottom
of the DAG.

Assume that the activity distributions for every node on level l have been computed
with their correct numbers. Let N be a node on level l − b. Then dN is computed as
follows:

• Let p1, . . . , pk be the paths of length b from N down to nodes on level l. Let Ni
be the node on level l where pi ends. As each node in the DAG has at most two
outgoing edges, the number of paths of length b from N is at most 2b, so k ≤ 2b.

• For each pi, let wi = dNi
if pi is the all-zero path (indicating a passive S-box), and

let wi = (0, dNi
[0], dNi

[1], . . . , dNi
[rm− 1]) if pi is not the all-zero path. When pi is

non-zero, the vector dNi is shifted by one position because the non-zero pi adds one
active S-box to the partial trails. So if there are j paths with a active S-boxes from
Ni to T , there will be j paths with a + 1 active S-boxes from N to T that starts
with pi.

• Let dN =
∑k
i=1 wi. Adding up all the wi gives the number of paths below N , and

how many active S-boxes there are in each of them.

See Figure 5 for a small example of how the number of active S-boxes in a partial trail
is counted.

This process is repeated for every node on level l− b, before continuing with the nodes
on level l − 2b, etc. We stop after computing dN for all nodes on level n. A path from
any node A on level n to T gives a trail (u1, . . . , ur), and dA[i] gives the number of such
trails having a(u1, . . . , ur) = i. By traversing the nodes on level n and looking at their
dN -vectors it is then easy to find what the minimum number of active S-boxes in any trail
is. Moreover, given the vectors on all levels it is easy to backtrack from a node on level n
down to T to extract any of the trails with minimum a(u).
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Algorithm 1: Computing number of active S-boxes in all trails in master CRHS
equation

Result: Distribution of number of active S-boxes in all trails.
T ← sink node on level t
dT ← (1, 0, 0, . . . , 0)
l← t− b
while l ≥ n do

for all nodes N on level l do
for all paths pi of length b from N do
Ni ← node on level l + b where pi ends
if pi only has 0-edges then
wi = dNi

else
wi = (0, dNi [0], dNi [1], . . . , dNi [mr − 1])

end if
end for
dN =

∑
wi

end for
l← l − b

end while

4.5 Pruning - setting soft limit σ
The solving algorithm explained in Section 4.3 will give the complete picture of all possible
trails in ε, assuming we have unlimited memory. When joining CRHS equations to Master
and absorbing all the linear dependencies, the number of nodes in Master will grow. In
practice there will be an upper limit on how many nodes our hardware is able to handle.
When the number of nodes in Master starts to approach this limit we need to prune nodes
from the DAG in order to continue extending the partial trails by joining and absorbing
new CRHS equations.

The algorithm therefore uses a parameter we call soft limit, denoted by σ. The user
must set σ according to the memory available on the machine running the solving algorithm.
Let N be the number of nodes in Master at any given point. If µ is the maximum N the
machine can reasonably handle (a hard limit), then σ should be set to σ ≤ µ/2b. Whenever
N > σ, pruning will delete nodes until N ≤ σ before the next join and absorb will be
done.

It is known that absorbing one linear dependency in a CRHS equation may in the worst
case double the number of nodes in the DAG, so after joining one new CRHS equation and
absorbing the b dependencies that arise, N will in the worst case be 2bσ before pruning.
This is still below the hard limit µ, so by introducing pruning and correctly setting σ we
are guaranteed that the solving algorithm will never consume too much memory when run
in practice.

4.5.1 Pruning strategy

When doing the pruning we wish to retain as many solutions in the SoC’s solution space
as possible. The first goal of the pruning strategy is therefore to remove as few valid trails
from Master as possible. We also want the partial trails we remove to be the ones that
have the most active S-boxes, since these are the least likely to turn into complete trails
with few active S-boxes and low weight. While we cannot guarantee that the remaining
trails will be those of minimum weight, we believe the pruning strategy explained below
achieves this to a large degree and keeps the trails with the smallest number of active
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S-boxes, independently of which cipher is used. This is evidenced by the results from
Section 5. The second goal of the pruning strategy is therefore to only delete paths with
the highest number of active S-boxes.

The pruning is described in Algorithm 2, where the notation N (l) is used for the
number of nodes on level l.

Algorithm 2: Pruning nodes from Master CRHS equation with t+ 1 levels
Result: Master CRHS equation with N ≤ σ

while N > σ do
w ← level index such that N (w) ≥ N (l) for 0 ≤ l ≤ t
sw ← level index such that N (sw) ≥ N (l) for 0 ≤ l ≤ t, l 6= w
compute dN for all nodes N on level w
for all nodes N on level w do
aN = min{i|dN [i] > 0}

end for
A← max{aN}
while N (w) > 0.9 · N (sw) and ∃N with aN = A do
delete nodes N from level w with aN = A

end while
end while

The pruning algorithm starts by finding the level with the most number of nodes on it,
which we call the widest level. We choose to always delete nodes from the widest level as
this yields the best “memory to paths-lost ratio” of all the levels: All paths go through
every level, so the total number of paths going through a level is constant and the same
for any level. This in turn means that the average number of paths passing through a
node on the widest level of Master will be the lowest for all levels. Deleting one node will
thus, on the average, delete the fewest number of paths with it, which achieves our first
goal of the pruning strategy.

Next we compute the weight distribution dN for every node N on the widest level, and
record aN = min{i|dN [i] > 0} for each node. Let A = max{aN}. The nodes on the widest
level which have aN = A are the ones with only high-weight trails below them, and are
eligible for deletion.

When deleting nodes from the widest level, some care has to be taken. First, deleting
one node may trigger other deletions on adjacent levels, in order to keep the CRHS equation
reduced. Hence we need to periodically check what N is, especially when N is getting close
to σ, and abort as soon as N ≤ σ. Second, there might be many nodes on the widest level
with aN = A, and deleting all of them could lead to N � σ. Third, the second-widest level
in Master may only have slightly fewer nodes than the widest one, and may quickly become
the widest once a few deletions have occurred. Ideally we would like to always delete nodes
from the widest level. However, if two levels have approximately equally many nodes then
we need to switch the level to delete from very often, with a re-computation of all the
dN every time. This would increase the computational complexity from O(N ) towards
O(N 2), which quickly becomes very inefficient. Instead, we compromise by checking for
widest level and recalculating the dN -vectors once the widest level is reduced to 90% of
the initial size of the second-widest level. The 90% has been decided somewhat arbitrarily,
but works well in practice.

Combined, these choices dynamically try to keep as many trails as possible, and saves
trails with a low count of active S-boxes. Moreover, always deleting from the widest level
ensures that the number of nodes on different levels are somewhat balanced. Unless σ is
set very low (like, allowing only one node on every level), we do not risk emptying a level
for nodes and therefore lose all the trails. Overall, we are therefore guaranteed to find
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trails with a relatively low number of active S-boxes, regardless of the number of rounds
in ε.

This feature is in contrast to CryptaGraph, which has the number of S-box patterns as
its guiding parameter for memory usage. If the number of S-box patterns is set too low,
CryptaGraph will not return any trails at all, where "low" depends both on the cipher and
the number of rounds.

4.6 Estimating Hull of Lowest Weight
Given one path p in Master, it is easy to calculate the weight of the trail u that p represents.
Starting from level n in Master, where the block u1 starts, all sub-paths of p of length b
will give all ui,j , the outputs of all S-boxes in ε. From each ui it is possible to compute
Li(ui), and then to compute w(u) as given by (1).

We are interested in finding the hull(s) u0 ♦ ur with the lowest weight, but searching
through all paths in Master will be infeasible as the number of paths is typically exponential
in the block size n. We therefore need a more efficient algorithm for finding good
input/output pairs u0/ur, for which we calculate the exact w(u0 ♦ ur) for all trails
remaining in Master that start with u0 and end in ur. We will again use the activity
distributions as our foundation, as the complexity for computing a(u) is linear in the
number of nodes.

An added benefit from adhering to Invariants 1 and 2 when we solve the SoC is that
every n levels come from the same round, and every round is added in increasing order.
This means that any path starting in node A on level n and ending in the sink T is a trail
on the form (u1, . . . , ur), which gives all the output states from all the Si in ε.

We begin the search for the best hull u0 ♦ ur by calculating the activity distributions
dA for all nodes A on level n, as level n is the beginning of u1 in Master.

Let aA = min{i|dA[i] > 0 and i > 0}. Then B = min{aA} is the fewest number of
active S-boxes any trail in Master can have. Let D be the set of all nodes A which have
aA = B. Then all trails starting in the source and ending in a node in D are input
differences or masks for the plaintext block P yielding path(s) with the lowest possible
number of active S-boxes, and any one of these trails are candidates as the u0 in our final
best hull u0 ♦ ur.

Calculating the activity distributions from the sink T to level n has allowed us to
identify the lowest number of active S-boxes any trail may have, as well as which inputs to
ε may yield such a trail. However, we still do not know what the corresponding ur is. To
do so, we need to know which input u0 in D is connected to which output ur.

We do this by by making two adaptations to our algorithm for counting active S-boxes.
The first one changes it such that we are able to start and end in arbitrary levels l, where
l = 0 mod b. This is done by initializing every node N on the level where the count starts
with dN = (1, 0, 0, . . . , 0). The algorithm continues recursively as normal from there on.

The second change is to make the activity distributions remember which nodes on
the starting level they came from. We call these activity distributions for node-to-node
distributions, as they give the activity distribution for the paths between two fixed nodes
in the DAG.

We start counting node-to-node distributions on level rn, the level where the block ur
starts, and end on level n. We can then go through each node in D and see which nodes
on level rn they are connected to. For every pair of nodes Nα on level n and Nβ on level
rn we have the node-to-node activity distribution for all paths starting in Nα and ending
in Nβ . We first filter the (Nα, Nβ)-pairs and only keep the pairs that have paths with the
least number of active S-boxes between them. As every Nα specifies some u0 and every
Nβ specifies some ur, these pairs form a set of (u0, ur) candidates for the hull with the
lowest weight.
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Having found our set of (u0, ur) candidates that give low w(u0 ♦ ur), we need to
estimate which of the pairs are most likely to yield the hull with the lowest weight. Ideally,
we would like to calculate the weights for each hull generated by each pair, but for larger
SoC’s with many nodes and trails, this would be infeasible. Instead, we calculate the
average weight, k, the non-zero entries in the base table BT contribute to the weight of a
path (excluding BT[0][0] = 2b, which indicates a passive S-box). Finally, we use k to make
an estimate of w(u) for each trail u between Nα and Nβ as

w(u) ≈ a(u1, . . . , ur)k,

and sum up these estimates to find an estimate on w(u0 ♦ ur).
We fix (Nα, Nβ) as the pair of nodes that gives the lowest estimated w(u0 ♦ ur). Finally,

the actual weight of every path, or as many paths we can afford in the case this number is
very big, between Nα and Nβ is calculated and summed up to give a lower bound on the
true w(u0 ♦ ur).

5 Results and Discussion
We have implemented the algorithm described in the previous sections, and made an
easy-to-use tool that searches for hulls of differential or linear trails with the largest EDP
or ELP. We have named the tool PathFinder, and it can be found at link-withheld-for-
anonymity. PathFinder is written in Rust, and reuses implementations of the various block
ciphers made for CryptaGraph [Vej18].

5.1 Results and Comparison with CryptaGraph
We have run PathFinder on most of the same instances as tabled in [HAV18] for comparison.
The results are listed in Tables 1 and 2.

For about half of the ciphers in Table 1 we get slightly worse ELP than CryptaGraph,
and for the rest we get significantly lower ELP. Some of these can be explained by the fact
that CryptaGraph can calculate over the complete hull, while PathFinder has to compute
the weight of one trail at the time, and add them up. We have currently set an upper limit
on 226 trails in the sum, in order for the program to complete in a reasonable time. In
other cases, like for Mantis or Midori, PathFinder finds more trails than CryptaGraph,
but of higher weight.

For differential trails the situation is different for some ciphers, where we get a higher
EDP than CryptaGraph finds. There are in general fewer valid differential trails in a
cipher than linear trails, and for Klein and Prince PathFinder is able to find some of of low
weight that CryptaGraph misses. By investigating some example trails that PathFinder
finds, we see that these are cases where there exists a round in the trails that have rather
many active S-boxes, but still have few active S-boxes in total for the whole trail. For
Klein with 5 and 6 rounds, the number of active S-boxes in each round of the example
trails are (1, 4, 7, 4, 1) and (2, 3, 7, 4, 2, 3), respectively. As CryptaGraph will include all
cipher states with 6 or fewer active S-boxes before including any with 7 active S-boxes,
the number of S-box patterns must be set very high for CryptaGraph to incorporate these
trails in its search space. The complete example trails for Klein are listed in Appendix A.

For Prince with 6 rounds, we see the same phenomenon. The trails PathFinder finds
with the lowest weight overall have rounds containing 6 active S-boxes. These have probably
been missed by CryptaPath since the number of S-box patterns must be set very high to
include states with 6 active S-boxes. The number of active S-boxes in every round of the
example trail provided is (2, 2, 6, 6, 2, 2) and can be found in Appendix B. In [BCG+12],
the designers of Prince give a theorem saying that four consecutive rounds in a trail must
contain at least 16 active S-boxes. We see that the 6-round trail PathFinder found meets
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Table 1: Details on hulls and ELP found by PathFinder for various ciphers. Hull size
indicates both the total number of trails found in the hull, and the number of trails used
for calculating the ELP.

Cipher
(Total Rounds, Rounds Soft Lim Hull Size ELP

block size) (Used, Found)
AES 3 216 2, 2 2−136.77

(10, 128) 4 216 1, 1 2−243.26

EPCBC-48 15 218 226, 227.83 2−46.57

(32, 48) 16 218 226, 229.63 2−49.71

EPCBC-96 31 218 226, 232.83 2−100.50

(32, 96) 32 218 226, 231.67 2−102.48

FLY 8 216 5, 9 2−82.99

(20, 64) 9 216 1, 6 2−86.00

GIFT-64 11 218 2, 2 2−59.00

(28, 64) 12 218 2, 2 2−69.00

KHAZAD 2 216 1, 1 2−44.21

(8, 64) 3 216 1, 1 2−90.00

KLEIN 5 218 6, 6 2−52.25

(12, 64) 6 218 44, 50 2−70.16

LED 4 218 4, 8 2−72.91

(32, 64)
MANTIS7 2 · 4 218 217.45, 218.64 2−109.61

(2 · 8, 64)
MIDORI64 6 218 221.62, 223.89 2−85.03

(16, 64) 7 218 226, 229.66 2−108.42

PRESENT 23 218 226, 237.03 2−69.23

(31, 64) 24 218 226, 238.60 2−73.23

25 218 226, 239.65 2−76.54

PRIDE 15 218 1, 1 2−58.00

(20, 64) 16 218 7, 7 2−65.99

PRINCE 2 · 3 218 19, 19 2−55.57

(2 · 6, 64) 2 · 4 218 214, 214 2−92.90

PUFFIN 32 218 226, 252.55 2−83.69

(32, 64)
QARMA 2 · 3 218 612, 1433 2−95.75

(2 · 8, 64)
RECTANGLE 12 218 216.66, 216.66 2−56.75

(25, 64) 13 218 217.16, 217.16 2−64.22

14 218 216.51, 216.51 2−68.48

SKINNY-64 8 218 226, 227.51 2−113.81

(32, 64) 9 218 226, 237.55 2−143.15

this bound with equality; the number of active S-boxes in any four consecutive rounds
is 16. The Prince designers use this bound to deduce that any trail of the full 12-round
Prince must have at least 48 active S-boxes, and hence be secure against differential and
linear attacks. We ran PathFinder on the full 12-round Prince cipher, and interestingly
enough it turns out that there indeed do exist differential trails in the full cipher with
exactly 48 active S-boxes. So we find that the lower bound for full Prince is met with
equality (example trail given in Appendix B). The EDP PathFinder gives for 12-round
Prince, which has a 128-bit key, is 2−124.06. While this does not lead to a valid differential
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Table 2: Details on hulls and EDP found by PathFinder for various ciphers. Hull size
indicates both the total number of trails found in the hull, and the number of trails used
for calculating the EDP. An asterisk indicates an improvement over CryptaGraph

Cipher
(Total Rounds, Rounds Soft Lim Hull Size EDP

block size) (Used, Found)
AES 3 216 1, 1 2−130.00

(10, 128) 4 216 1, 1 2−179.00

EPCBC-48 13 218 356, 356 2−48.84

(32, 48) 14 218 531, 531 2−53.46

EPCBC-96 20 218 21, 21 2−94.62

(32, 96) 21 218 20, 20 2−102.90

FLY 8 220 180, 104 2−59.0

(20, 64) 9 220 76, 76 2−82.63

GIFT-64 12 218 10, 10 2−57.81

(28, 64) 13 218 5, 15 2−63.19

KHAZAD 2 216 1, 1 2−47.49

(8, 64) 3 220 1, 1 2−79.66*
KLEIN 5 218 8, 8 2−44.39*
(12, 64) 6 222 4, 4 2−55.25*
LED 4 222 6, 18 2−55.61

(32, 64)
MANTIS7 2 · 4 222 224.94, 226.64 2−100.87

(2 · 8, 64)
MIDORI64 6 222 220.28, 221.50 2−63.60

(16, 64) 7 222 223.82, 225.49 2−71.75

PRESENT 15 218 215.42, 215.42 2−65.69

(31, 64) 16 218 224.65, 225.49 2−44.21

17 218 217,76, 217,76 2−74.87

PRIDE 15 222 1, 1 2−58.00

(20, 64) 16 222 1, 1 2−64.00

PRINCE 2 · 3 222 16, 20 2−49.45*
(2 · 6, 64) 2 · 4 222 36, 36 2−80.67

PUFFIN 32 218 226, 237.25 2−79.71

(32, 64)
QARMA 2 · 3 218 5, 5 2−97.48

(2 · 8, 64)
RECTANGLE 13 218 166, 166 2−58.37

(25, 64) 14 218 57, 171 2−62.60

15 218 388, 388 2−70.63

SKINNY-64 8 218 218.74, 220.14 2−113.70

(32, 64) 9 218 222.50, 223.74 2−126.91

attack since Prince only has a 64-bit block, it does give a differential probability that is
higher than 2−128.

5.2 Combining PathFinder and CryptaGraph
PathFinder has several similarities to CryptaGraph. Both are tools with a simple command
line interface. In either of them the user specifies cipher, number of rounds and memory
limits, and the tool returns good differential or linear trails with an estimate on the
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probability or the bias of the hull they belong to. Both of them exploit the fact that a
DAG with a relatively small number of nodes may contain exponentially (in the number of
nodes) many paths. Hence encoding information as paths in the DAG lets us handle very
large data sets. Both CryptaGraph and PathFinder encodes trails of a cipher as paths in
a DAG.

The difference between them comes from the underlying graphs used in the two tools.
Each node in CryptaGraph represents a particular cipher state (of n bits), and an edge
is the transition from one state to a possible next state, as given by the base table. In
PathFinder we make the full step and let the cipher states themselves also be encoded as
paths (of length n). This means PathFinder can handle many more states at a particular
point in a cipher than CryptaGraph can. This is maybe best illustrated in Figure 4a,
where PathFinder’s initial DAG of n nodes contains all 2n possible plaintext states while
CryptaGraph would need 2n nodes to do the same.

This difference leads to the tools having different features which complement each
other. The strength of CryptaGraph is its ability to calculate the weight of a hull. Even if
CryptaGraph’s DAG contains an exponential number of paths representing trails belonging
to the same hull, CryptaGraph can efficiently compute the sum of weights of each trail.
PathFinder can not do this in a similar way, since an edge in PathFinder’s DAG does
not represent a transition between two individual states. Hence PathFinder computes the
weight of each trail in a hull individually, and can not efficiently sum up the weights of an
exponential number of trails in a hull.

The weakness of CryptaGraph is the limited set of states it can handle in each round
of a cipher. There are few ways of telling beforehand which states that will be present in
the best trails, except that they will probably have few active S-boxes. So CryptaGraph’s
strategy for selecting states (i.e. nodes) for its DAG is simply to take the ones with
the highest probabilities or biases for going from one state to the next. In practice this
resolves to the states with the least number of active S-boxes. But this means that
every state in a trail that CryptaGraph returns must come from this limited set of states,
otherwise CryptaGraph finds nothing. This problem is partially resolved by the technique
of anchoring, which is to greatly expand the set of states for the first and last round in a
cipher. However, this does not help if the state with many active S-boxes occur in the
middle of the cipher, like for Klein and Prince.

PathFinder on the other hand has no such limitations, and starts with the complete
set of 2n states. Eventually the pruning of nodes will delete states in PathFinder as well,
but we do not need to define which states to keep and which to discard. Instead this is
done dynamically at run-time, guided by keeping the states with the lowest number of
active S-boxes. The pruning strategy ensures that there will always be many valid trails
encoded in PathFinder’s DAG, and that it will never return empty-handed.

For further work in this direction we therefore propose to combine the two tools in a
way that plays to each others strengths. This is beyond the scope of the current work, but
the idea is as follows:

1. Run PathFinder to find a set of states that actually occur in the best trails.

2. Run CryptaGraph, where the set of nodes in CryptaGraph’s DAG represents this
particular set of states.

Letting PathFinder guide CryptaGraph’s set of states in this way will ensure that
CryptaGraph will find the same trails as PathFinder, but we can then exploit CryptaGraph’s
better calculation of hull weights.



20 Trail Search with CRHS Equations

6 Conclusion
Using graphs for finding linear and differential trails in ciphers is a new direction in
cryptanalysis. The strength of directed acyclic graphs is that they can contain exponentially
(in the number of nodes) many paths. Hence representing the data we are interested in as
paths in a DAG may allow us to efficiently search an exponentially big search space. The
work done in [HAV18] started this with CryptaGraph, and in this paper we have followed
up with complementary work in the same direction.

Our work complements that in [HAV18] and uses the paths in the DAG in a different
way. By representing the DDT or LAT of an S-box as a CRHS equation, we can use existing
methodology for solving a system of CRHS equations to construct a DAG containing trails
we are interested in. One general problem with solving systems of CRHS equations is its
memory complexity. We overcome this problem by pruning the graph when it grows too
big, thus controlling the memory consumption. We have presented a pruning strategy that
keeps the most promising trails contained the graph while discarding the rest. This allows
us to find other good trails than CryptaGraph finds, and do the search for an arbitrary
number of rounds.

Both methods have been implemented as easy-to-use and compatible tools, where only
a reference implementation of a cipher is needed in order to do the trail search. The same
reference implementation made for CryptaGraph can be used on PathFinder, and in fact
PathFinder already reuses Cryptagraph’s portfolio of cipher implementations. It has been
well understood for two decades how to make ciphers secure against differential or linear
cryptanalysis, but designers always need to take these types of attacks into account when
proposing a new cipher. These tools can help in the design process.

We have compared CryptaGraph and PathFinder, and looked at strengths and limita-
tions of both. For further work, we suggest to combine the two into one, in a way that
exploits the strong parts of both.

References
[AGR+16] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and

Tyge Tiessen. Mimc: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – ASIACRYPT 2016, pages 191–219, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[AK19] Ralph Ankele and Stefan Kölbl. Mind the gap - a closer look at the security of
block ciphers against differential cryptanalysis. In Carlos Cid and Michael J.
Jacobson Jr., editors, Selected Areas in Cryptography – SAC 2018, pages
163–190. Springer International Publishing, 2019.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen,
and Michael Zohner. Ciphers for mpc and fhe. In Elisabeth Oswald and
Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages
430–454, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçın.
Prince – a low-latency block cipher for pervasive computing applications. In Xi-
aoyun Wang and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT
2012, pages 208–225, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.



John Petter Indrøy and Håvard Raddum 21

[BKL+07] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B.
Robshaw, Y. Seurin, and C. Vikkelsoe. Present: An ultra-lightweight block
cipher. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, pages 450–466, Berlin, Hei-
delberg, 2007. Springer Berlin Heidelberg.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Comput., 35(8):677—-691, 1986.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of des-like cryptosystems.
J. Cryptol., 4(1):3—-72, 1991.

[BSS+15] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan
Weeks, and Louis Wingers. The simon and speck lightweight block ciphers.
In Proceedings of the 52nd Annual Design Automation Conference, DAC ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

[CCF+16] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A prac-
tical solution for efficient homomorphic-ciphertext compression. In Revised
Selected Papers of the 23rd International Conference on Fast Software En-
cryption - Volume 9783, FSE 2016, pages 313—-333. Springer-Verlag, 2016.

[DCDK09] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. Katan and
ktantan — a family of small and efficient hardware-oriented block ciphers.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, pages 272–288, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand,
Gregor Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta:
A cipher with low anddepth and few ands per bit. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, pages
662–692. Springer International Publishing, 2018.

[DR12] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag
Berlin Heidelberg, 2012.

[FWG+16] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. Milp-based
automatic search algorithms for differential and linear trails for speck. In
Thomas Peyrin, editor, Fast Software Encryption - 23rd International Con-
ference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected
Papers, volume 9783 of Lecture Notes in Computer Science, pages 268–288.
Springer, 2016.

[GNL12] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: A new family of
lightweight block ciphers. In Ari Juels and Christof Paar, editors, RFID.
Security and Privacy, pages 1–18, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[HAV18] Mathias Hall-Andersen and Philip S. Vejre. Generating graphs packed with
paths estimation of linear approximations and differentials. IACR Transactions
on Symmetric Cryptology, 2018(3):265–289, Sep. 2018.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the simon
block cipher family. In Rosario Gennaro and Matthew Robshaw, editors,
Advances in Cryptology – CRYPTO 2015, pages 161–185, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.



22 Trail Search with CRHS Equations

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for des cipher. In Tor Helleseth,
editor, Advances in Cryptology — EUROCRYPT ’93, pages 386–397, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

[Mat95] Mitsuru Matsui. On correlation between the order of s-boxes and the strength
of des. In Alfredo De Santis, editor, Advances in Cryptology — EURO-
CRYPT’94, pages 366–375, Berlin, Heidelberg, 1995. Springer Berlin Heidel-
berg.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude
Carlet. Towards stream ciphers for efficient fhe with low-noise ciphertexts. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, pages 311–343, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[MP13] Nicky Mouha and Bart Preneel. Towards finding optimal differential charac-
teristics for arx: Application to salsa20. Cryptology ePrint Archive, Report
2013/328, 2013. https://eprint.iacr.org/2013/328.

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and
linear cryptanalysis using mixed-integer linear programming. In Chuan-
Kun Wu, Moti Yung, and Dongdai Lin, editors, Information Security and
Cryptology, pages 57–76, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[RK15] Håvard Raddum and Oleksandr Kazymyrov. Algebraic attacks using binary
decision diagrams. In Berna Ors and Bart Preneel, editors, Cryptography
and Information Security in the Balkans, pages 40–54. Springer International
Publishing, 2015.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
Automatic security evaluation and (related-key) differential characteristic
search: Application to simon, present, lblock, des(l) and other bit-oriented
block ciphers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryp-
tology – ASIACRYPT 2014, pages 158–178, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

[SR12] Thorsten Ernst Schilling and Håvard Raddum. Solving compressed right
hand side equation systems with linear absorption. In Tor Helleseth and
Jonathan Jedwab, editors, Sequences and Their Applications – SETA 2012,
pages 291–302, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
The 128-bit blockcipher clefia (extended abstract). In Alex Biryukov, editor,
Fast Software Encryption, pages 181–195, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[Vej18] Philip Vejre. Cryptagraph, 2018. https://gitlab.com/psve/cryptagraph.

[YML+18] Jun Yin, Chuyan Ma, Lijun Lyu, Jian Song, Guang Zeng, Chuangui Ma, and
Fushan Wei. Improved cryptanalysis of an iso standard lightweight block
cipher with refined milp modelling. In Xiaofeng Chen, Dongdai Lin, and Moti
Yung, editors, Information Security and Cryptology, pages 404–426. Springer
International Publishing, 2018.

[ZHWW20] Hongluan Zhao, Guoyong Han, Letian Wang, and Wen Wang. Milp-based
differential cryptanalysis on round-reduced midori64. IEEE Access, 8:95888–
95896, 2020.



John Petter Indrøy and Håvard Raddum 23

A Low-weight differential trails for Klein
The following differential trail for 5-round Klein has probability 2−51:

Example trail (in hex):
MSB LSB
000000000000000b Alpha
S-box Layer
0000000000000004
Linear Layer
000000000c080404
S-box Layer
0000000007060603
Linear Layer
010f040b09000509
S-box Layer
080c040404000a0e
Linear Layer
0000080c02020000
S-box Layer
0000090d0b0e0000
Linear Layer
0000000100000000
S-box Layer
0000000800000000 Beta

The following differential trail for 6-round Klein has probability 2−57:

Example trail (in hex):
MSB LSB
0000050000050000 Alpha
S-box Layer
0000020000020000
Linear Layer
0600040200000000
S-box Layer
0100030500000000
Linear Layer
0909060001030201
S-box Layer
080e040004040a0e
Linear Layer
080c000000000604
S-box Layer
0b0d000000000809
Linear Layer
000000000d0a0000
S-box Layer
0000000002060000
Linear Layer
04000e0e00000000
S-box Layer
0100030300000000 Beta
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B Trails for Prince
The following differential trail for 6-round Prince has probability 2−53:

Example trail (in hex):
MSB LSB
0000000000000101 Alpha
S-box Layer
0000000000000808
Linear Layer
0008000008000000
S-box Layer
0008000004000000
Linear Layer
8040040840800000
S-box Layer
8080040450500000
Middle involution
8080040450500000
S-box Layer
8040040840800000
Linear Layer
0008000004000000
S-box Layer
0008000008000000
Linear Layer
0000000000000808
S-box Layer
0000000000000101 Beta

The following 12-round differential trail for Prince has 48 active S-boxes:

Example trail (in hex):
MSB LSB
0004000008000000 Alpha
S-box Layer
0004000002000000
Linear Layer
4020020400000402
S-box Layer
8080010100000808
Linear Layer
8108000008810000
S-box Layer
8808000004440000
Linear Layer
0000000040800000
S-box Layer
0000000080800000
Linear Layer
0000080000000008
S-box Layer
0000040000000008
Linear Layer
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0408408000008040
S-box Layer
0808404000008080
Middle involution
0808404000008080
S-box Layer
0408408000008040
Linear Layer
0000040000000008
S-box Layer
0000080000000008
Linear Layer
0000000080800000
S-box Layer
0000000040800000
Linear Layer
8808000004440000
S-box Layer
8408000008840000
Linear Layer
8080040400000808
S-box Layer
8010010800000801
Linear Layer
0080000000100000
S-box Layer
0080000000400000 Beta
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Abstract. In this paper we propose Fasta, a stream cipher design optimised for
implementation over popular fully homomorphic encryption schemes. A number of
symmetric encryption ciphers have been recently proposed for FHE applications, e.g.
the block cipher LowMC, and the stream ciphers Rasta, FLIP and Kreyvium. The
main design criterion employed in these ciphers has been typically to minimise the
multiplicative complexity of the algorithm. However, other aspects affecting their
efficient evaluation over common FHE libraries are often overlooked, compromising
their real-world performance. Fasta may be considered as a variant of Rasta, but
has its parameters and linear layer especially chosen to allow efficient implementation
over the BGV scheme, particularly as implemented in the HElib library. This results
in an improvement in performance of a factor of more than 7 compared to the most
efficient implementation of Rasta. While Fasta’s target is BGV, and thus the HElib
(and PALISADE) library, we also discuss how the design ideas introduced in the
cipher may be employed to achieve improvements in the homomorphic evaluation in
other popular FHE libraries.
Keywords: Stream Ciphers · Homomorphic Encryption · Hybrid Encryption

1 Introduction
Fully homomorphic encryption (FHE) is a relatively new and active research area in
cryptography. FHE schemes allow arbitrary operations to be performed on ciphertexts,
to produce some encrypted result, which when decrypted results in data that would be
obtained if we had decrypted the ciphertexts first and then performed the operations on
the plaintexts.

FHE opens up for new and exciting secure applications, in particular in cloud computing.
The party doing the operations on the ciphertexts does not need to have the decryption
key. One can therefore upload FHE-encrypted ciphertexts to the cloud and have the cloud
provider do the necessary operations on the ciphertexts. Since the cloud does not need
the decryption key, there is no need to place any trust in the cloud provider. This gives a
higher level of security as the cloud provider does not have the ability to read the plaintext
information.

The main drawback of FHE is that it is very computationally demanding. Since Gentry
demonstrated the first FHE scheme [Gen09] in 2009 many improvements in efficiency have
been made [CIM16, DM15, CHK20], but the most useful applications still struggle with
being practical. This impracticality comes not least because clients of a cloud need to
perform FHE encryptions themselves. One notices however that the computing power of a
cloud is much higher than that of a typical client, so research has gone into finding ways
to transfer most of the burden of doing FHE encryptions from the clients to the cloud.

A good solution that moves the FHE operations from the client to the cloud is to let
the client encrypt its data using a symmetric cipher, which is computationally very cheap,
and upload the symmetrically encrypted ciphertexts to the cloud. The cloud also receives
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the secret key used for the symmetric encryption, but only as a ciphertext encrypted
under the FHE scheme. The cloud is then in a position to homomorphically remove the
symmetric encryption to end up with the FHE encryption of the client’s data.

A number of symmetric ciphers designed for use together with FHE have been proposed,
e.g. the block cipher LowMC [ARS+15], and the stream ciphers Kreyvium [CCF+16], FLIP
[MJSC16], and Rasta [DEG+18]. Their main design criterion has been to minimise the
multiplicative complexity of the algorithms since homomorphic multiplications are the most
expensive operations in FHE. However, as a rule they have mostly overlooked an important
aspect for their application target: how suitable they are for their homomorphic evaluation
over existing FHE schemes, as implemented in the main FHE libraries. For example, the
HElib and PALISADE libraries [HS20, PAL] implement the BGV scheme [BGV12], which
offers a good degree of parallelism by utilising slots in BGV ciphertexts. The BFV scheme,
implemented in PALISADE and SEAL [SEA20], also offer the same kind of parallelism.
Since these are some of the most popular FHE implementations, one may argue that a
symmetric encryption design should – in addition to minimising multiplicative complexity
– also select its components to take advantage of the libraries’ features to allow a more
efficient homomorphic evaluation over FHE.

In this paper we propose Fasta, a stream cipher design optimised for implementation
over the HElib library. Fasta may be considered as a variant of Rasta, but has its
parameters and linear layer especially chosen to allow efficient implementation over the
BGV scheme (as implemented in the library). The selected parameters utilise the parallelism
offered by the BGV scheme, where the slots in BGV ciphertexts are packed to achieve full
parallelisation when evaluating the non-linear layer. We noticed however that the packing
is inefficient when the linear layer consists of random matrices (as is the case with Rasta).
Thus Fasta also features a new BGV-friendly family of linear layers. These changes result
in Fasta running more than 7 times faster than its corresponding Rasta variant when
evaluated homomorphically. While Fasta’s target is BGV, as implemented in the HElib
library, we also look into the BFV scheme implemented in PALISADE and SEAL, and
the variant of BGV called BGVrns that is implemented in PALISADE. We consider the
implementation features in these libraries and explain why it is difficult to make good use
of their parallelism in a Rasta-like stream cipher design.

The paper is organised as follows. In Section 2 we give an overview of the main concepts
and schemes discussed in the paper. Section 3 focuses on the design of symmetric key
linear layers for efficient FHE evaluation. We specify the Fasta stream cipher in Section 4,
and provide a security analysis in Section 5. We describe the homomorphic implementation
of Fasta in Section 6, and close with our conclusions in Section 7.

2 Preliminaries
In this section we briefly recall a main use case for using symmetric ciphers with homo-
morphic encryption schemes. We also review the Rasta stream cipher, and the BGV FHE
scheme, in particular how it is implemented in popular FHE libraries.

2.1 FHE Hybrid Encryption: Combining Symmetric Ciphers with FHE
The concept of Fully Homomorphic Encryption (FHE) was first described in [RAD78]
in 1978. However no actual FHE schemes were found before Craig Gentry proposed a
construction in 2009 [Gen09]. Since then much work has been invested in this field, not least
because FHE gives strong solutions to privacy problems related to cloud computing. The
problem that FHE faces today concerns computational efficiency. Significant improvements
have been made in the last years, but efficiency is still a bottleneck for deploying practical
and useful FHE applications.
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Client Cloud

K = k1, . . . , kr HE

pk

K∗ = k∗1 , . . . , k∗r k∗1 , . . . , k∗r c∗1, . . . , c∗n

P = p1, . . . , pn E

K

C = c1, . . . , cn c1, . . . , cn HE

pk

Homomorphic
evaluation of E−1

P ∗ = HE(P, pk)

Figure 1: The client only needs to encrypt the key K with an FHE scheme HE once; the
plaintext P is encrypted using the symmetric algorithm E . The cloud gets the bits of K
encrypted under HE, it encrypts the ciphertext bits ci with HE, and homomorphically
evaluates the decryption circuit of E to obtain HE(P, pk).

One approach to address the efficiency issue is to combine FHE schemes with symmetric
ciphers as shown in Figure 1. This is often referred to as FHE hybrid encryption. The
idea is that clients in a system, who typically have much less computational power than a
cloud provider, rather than homomorphically encrypting a (potentially large) plaintext
P , will instead encrypt P using a symmetric cipher E under a secret key K, and then
only homomorphically encrypt K under the FHE scheme HE using a public key pk.
Both the ciphertext C = EK(P ) and the FHE-encrypted key K∗ are uploaded to the
cloud.1 The cloud will now encrypt the bits in C using HE under the public key pk,
and homomorphically run the decryption circuit of E on the inputs C∗ = HE(C, pk) and
K∗ = HE(K, pk). The homomorphic properties of HE ensure that the output from doing
this is HE(P, pk).2 In other words, the effect of the symmetric cipher can be removed,
and the cloud is now left with a pure FHE encryption of P , which may then be used for
further processing. The benefit of this construction is that the client side only needs to
encrypt K using HE – in fact it needs not be the same device that encrypts the plaintext
P with E , and K with HE. All other homomorphic encryptions and evaluations are done
by the cloud.

The basic homomorphic operations performed in a circuit are additions and multiplica-
tions, corresponding to the bit-wise XOR and AND operations when the plaintext space is
F2. Both of these operations have a cost in terms of the growth of noise, and multiplication
is by far the most expensive. Thus, to support such FHE hybrid encryption construction,
there has been much research activity in designing symmetric ciphers that minimise the
multiplicative complexity – the number of bit-wise AND-gates, both in the total number
and in a critical path (the AND-depth) – of their decryption circuit. Examples include
LowMC, FLIP, Kreyvium and Rasta [ARS+15, ARS+16, MJSC16, CCF+16, DEG+18].

1To avoid confusion between symmetric and FHE ciphertexts, we will normally use an asterisk "*" as a
superscript on any letter denoting a FHE ciphertext.

2Strictly speaking, the result will be in fact a ciphertext which will decrypt to P under the FHE private
key sk.
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Figure 2: The r-round Rasta keystream generator construction (from [DEG+18]).

2.2 The Rasta stream cipher
Rasta is a family of stream ciphers proposed by Dobraunig et al. in 2018 [DEG+18]. The
target application for the ciphers is use as a component in secure computation constructions
based on MPC and FHE schemes, particularly the latter. In these applications, symmetric
key algorithm designs will seek to minimise multiplications as much as possible. In the
Rasta construction, the designers aimed to minimise two multiplicative metrics of interest:
AND-depth and ANDs per encrypted bit.

Rasta uses a cryptographic permutation based on the ASASA framework, with a
public and fixed substitution layer, and variable affine layers (which are derived from
public information), iterated for d rounds. The construction achieves AND-depth d, while
requiring only d ANDs per encrypted bit.

In more detail, the Rasta keystream generator is based on a n-bit permutation fea-
turing the A(SA)d structure, where S is the χ-transformation (prominently also used in
Keccak [BDPA11]), and the jth-round affine layers Aj,N,i are generated pseudorandomly
based on a nonce N and a counter i. To produce the keystream, it applies the permutation
in feed-forward mode, with the n-bit secret key K as input. Figure 2 shows a diagrammatic
representation of the Rasta keystream generator.

The generation procedure for the affine layers Aj,N,i results on pseudorandomly gen-
erated n× n invertible binary matrices and n-bit round constants, which since they are
based on unique (N, i), are unlikely to be re-used during encryption under the same key.
To ensure S is invertible, we require n to be odd. If the permutation has d rounds, it is
straightforward to show that the Rasta construction achieves AND-depth d and requires d
ANDs per encrypted bit.

In [DEG+18], the authors suggest several parameter sets for 80-, 128- and 256-bit
security. For example, Rasta with a 6-round permutation with block/key size 219 bits
should provide 80 bits of security. Same for a 4-round permutation with 327-bit block/key.
On the other hand, Rasta based on a 6-round permutation with block/key size 351 bits
is expected to provide 128 bits of security (see Table 1 of [DEG+18] for other proposed
parameters). In general, the authors suggest the number of rounds to be between 4 and
6, while the key size will typically be at least three times larger than the security level.
However they also propose a more “aggressive” version of the cipher (Agrasta), for which
the block size coincides with the security level (plus one, to ensure n is odd). For example,
Agrasta based on a 81-bit, 4-round permutation, claims 80 bits of security.

The authors provide a detailed security analysis of the construction in [DEG+18], in
order to derive and justify the ciphers’ parameter choices. To our best knowledge, the only
other publicly available cryptanalysis3 of Rasta and its variants is the recent work [LIM21],
proposing algebraic attacks that contradict some of the security claims in [DEG+18].

Rasta’s designers also discuss a few areas for future work, in particular how to improve
the cipher’s affine layer. They state in [DEG+18] that “[n]ew ideas for linear-layer design

3The Rasta designers also mention in [DEG+18] the technical report “Algebraic cryptanalysis of
RASTA”, by Bile, Perret and Faugére. However we were unable to publicly locate this work.
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are needed which impose structure in one way or another which on one hand allows for
significantly more efficient implementations while at the same time still resist attacks
and allows for arguments against such attacks." A variant of Rasta, called Dasta [HL20]
was later proposed, considering a particular efficiency aspect: it features a more efficient
generation procedure for the linear layer, which does not make use of a XOF algorithm.
In this paper we consider another implementation efficiency aspect: the evaluation of
Rasta-like ciphers over popular FHE schemes and libraries.

In [DEG+18], the designers did describe a few experiments for the main use case for
Rasta – namely, the homomorphic evaluation of the cipher in a hybrid symmetric/FHE
construction. However these experiments, using BGV as implemented in HElib, appeared
to have been done mainly to “validate” the Rasta design approach, as well as a means to
compare it with other prominent ciphers, e.g. FLIP, Kreyvium and LowMC. In particular,
there appeared to be no efforts to take advantage of features of BGV/HElib in a more
efficient implementation, which in turn might have fed into more efficient design choices for
the cipher (beyond simply minimising AND-depth and AND per bit). This is in contrast
to the approach we take in this paper, where we carefully consider the features of BGV in
the design of the keystream generator in Fasta.

2.3 The BGV scheme
The BGV homomorphic encryption scheme [BGV12] was proposed by Brakerski, Gentry
and Vaikuntanathan in 2012 and is implemented in the HElib and PALISADE libraries.
BGV is a levelled FHE scheme, which means that the multiplicative depth of the circuit
one wants to evaluate must be known at the time the parameters of the cipher are chosen.

The starting point for the BGV scheme is the m-th cyclotomic polynomial over
the integers Φm(X). Plaintexts in BGV can be seen as elements of the quotient ring
Zpr [X]/(Φm(X)), where Φm(X) is the image of Φm(X) in Zpr [X]. In this paper we are
only interested in encrypting bits as plaintext, i.e. p = 2 and r = 1, and so in fact our
plaintexts can be seen as polynomials over F2 of degree less than φ(m), where φ(·) is
Euler’s totient function. A very useful feature of BGV is that one ciphertext may encrypt
several plaintext bits. The notion is that one ciphertext contains multiple slots. The
number of slots in a ciphertext is denoted by s, which is understood differently in HElib
and PALISADE. In HElib the number of slots is given as s = φ(m)/d, where d is the
multiplicative order of the size of the plaintext space (in our case, 2) modulo m. In
PALISADE the number of slots is given as s = φ(m). In both cases we use the notation

c∗ = {(b1, b2, . . . , bs)}
to indicate that the ciphertext c∗ encrypts the plaintext bits b1, . . . , bs.

The homomorphic properties of BGV apply slot-wise. If c∗a = {(a1, . . . , as)} and
c∗b = {(b1, . . . , bs)} are two ciphertexts, then

c∗a + c∗b = {(a1 ⊕ b1, . . . , as ⊕ bs)},
c∗a × c∗b = {(a1 · b1, . . . , as · bs)},

where ⊕ and · are the XOR and AND operations.

2.3.1 BGV in HElib

If we have φ(m) = s · d as above, it follows from the structure of the ring F2[X]/(Φm(X))
that the plaintext space in HElib can be understood to be instead in F2d , and multiplications
and additions work homomorphically in this field (see [HS20]). As F2 ⊂ F2d , we can use
HElib for our purpose, and ciphertexts will encrypt s plaintext bits.

HElib contains functions to manipulate the slots in a ciphertext, and two of these will
be important to us. The first is mul(c∗,M), where c∗ is a ciphertext and M is a binary
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s× s matrix. The function returns a ciphertext that encrypts the slots in c∗ multiplied
with M , and so when c∗ = {(b1, . . . , bs)}, we have

mul(c∗,M) = {((b1, . . . , bs) ·M)}.

The mul function was optimized in HElib in March 2018, the earlier name for the same
function was matMul [HS18].

The second function we would like to highlight is rotate(c∗, a). This function returns a
ciphertext that encrypts the slots of c∗ cyclically rotated by a positions to the right. We
also use the notation (c∗ >> a) for the rotate operation, so for c∗ = {(b1, . . . , bs)} we have

rotate(c∗, a) = (c∗ >> a) = {(bs−a+1, . . . , bs, b1, . . . , bs−a)}.

We note that both rotate and additions of ciphertexts are computationally very cheap to
do in the BGV scheme.

2.3.2 BGV in PALISADE

PALISADE implements the BGV scheme using residue number system, and works in a
different fashion to HElib. This particular scheme is denoted by BGVrns (see [HPS18]
for a discussion on the very similar BFVrns). As noted above, the number of slots in
PALISADE is s = φ(m), and will therefore always be an even number. In Palisade v.1.11.1
(the latest version at the time of writing [PRRC21]) the plaintext space of BGVrns can
only be integers modulo a chosen plaintext modulus p. Addition and multiplication in the
slots will be performed as integer additions and multiplications modulo p. As we are only
interested in doing operations in F2 and not in any extension field, this is sufficient for
our purpose. In BGVrns the plaintext modulus needs to be odd, but by selecting p to
be high enough that our computation never reaches it, the computations will simply be
done over the integers. After decryption we only need to reduce the plaintext returned by
PALISADE modulo 2 to get the desired result.

PALISADE does not yet implement a function similar to HElib’s mul. PALISADE does
however have a function that cyclically rotates a ciphertext by a given number of positions,
called evalAtIndex. Like HElib, both evalAtIndex and additions are computationally cheap
to do in BGVrns, but the number of slots in PALISADE’s BGVrns is much higher.

3 Linear layers in symmetric ciphers for FHE hybrid en-
cryption

The purpose of the linear layer in a symmetric cipher is to provide “diffusion”. The concept
of diffusion is often not very precisely formalised, but intuitively we’d like a linear layer
to provide an avalanche effect, e.g. that any single bit of the cipher state at a particular
point of the encryption process quickly “influences” as many bits in the cipher state as
possible after a few rounds. Deploying linear layers with good diffusion – together with
good non-linear layers – in iterated constructions should ensure that, for the entire cipher,
the output bits are described via complex expressions between all input bits.

The notion of optimal diffusion for linear layers was introduced in [Dae95, RDP+96],
together with a metric to quantify the diffusion of a linear layer L. The branch number
of L is defined as the minimum of the sums of the weights of inputs and corresponding
outputs of L. For matrices of dimension n over F2r (r > 1), it was shown how maximal
distance separable (MDS) codes of length 2n and dimension n can be used to construct
invertible linear transformations providing optimal diffusion.

In this work we are interested in large, invertible linear transformations over F2,
which offer a good amount of diffusion. Given our parameters, the use of the MDS
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construction is not possible, and measuring the branch number of individual matrices
seems infeasible. Similar to the approach in [ARS+15, DEG+18], we will instead define a
family of linear transformations which we’ll argue offer good diffusion properties. Fasta’s
iterated construction will then use linear layers that are pseudorandomly generated from
this family. We claim that the construction should provide strong diffusion after just a few
rounds.

To support our argument, we introduce an informal notion of “good diffusion” which
we will use in our constructions. Let L be a family of invertible n× n matrices over F2.
For simplicity, assume |L| is a large even number. Let e0, . . . , en−1 be the canonical basis
of (F2)n. Then we say that L offers ideal diffusion if, for all 0 ≤ i, j ≤ n− 1, we have

Pr
L∈L

[〈L(ei), ej〉 = 1] = 1/2.

Intuitively it means that for members of a family of matrices offering ideal diffusion, we
expect that every input bit influences every output bit with probability 1/2. We expect
that the iteration of randomly generated members of L should maximise the diffusion of
the entire construction.

Some designers of FHE-friendly symmetric ciphers, e.g. [ARS+15, DEG+18], deployed
a similar approach, using L = GL(n,F2) the family of all invertible n× n binary matrices.
The ciphers’ round linear transformations are then randomly generated from L. This
seems in principle to make sense: designers mainly focused on minimising the number
of AND gates and the AND-depth of the decryption circuit, under the argument that
linear operations on FHE ciphertexts are “almost” for free compared to multiplications.
Moreover, with no particular structure that a cryptanalyst can exploit in an attack, this
approach also simplifies the arguments during the security analysis of the cipher. However
this approach seems also to indicate that little attention was paid to how the structure of
the ciphers’ linear layer may affect the performance of their homomorphic evaluation in
practice.

However, while it is true that addition of homomorphic ciphertexts is cheap compared
to multiplication, a tacit assumption is that ciphertexts only encrypt a single bit each. As
discussed in Section 2.3, popular FHE libraries have the ability to pack multiple plaintext
bits into a single FHE ciphertext, and operate on all bits encrypted into each ciphertext
in parallel. Packing the full state of a symmetric cipher into a few, or perhaps only
one, FHE ciphertext can give big speed-ups when processing the non-linear layer of a
symmetric cipher. For example, an S-box layer of LowMC that covers 3/4 of the state
can be processed with only three FHE multiplications, while the χ transformation used in
Rasta (Section 2.2) and Keccak [BDPA11] can be performed with only one homomorphic
multiplication.

However, when packing the state of a symmetric cipher into few FHE ciphertexts, the
additions carried out in a linear layer will now fall into two categories:

1. additions of elements from two FHE ciphertetxs in the same slot;

2. addition of elements from different slots inside a single FHE ciphertext.

The first type of addition is quick and easy to perform, as it follows the paradigm that
additions of two FHE ciphertexts are almost for free. The second type is however slower
and more involved, as it mixes elements inside a single FHE ciphertext, and is thus not
a homomorphic addition per se. For a randomly generated linear layer, we expect that
most additions will be of type 2; that in turn will outweigh much of the gains that packed
ciphertexts give in the non-linear layer. A natural question is then to investigate whether
we can use another family of linear transformations, which only use additions of type 1,
and yet that we can still expect to offer ideal diffusion.
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w0 w1 . . . . . . wb−1

⊕
⊕

...

...

...
⊕

⊕
. . .

Θ
. . .

w′0 w′1 . . . . . . w′b−1

Figure 3: One iteration in a rotation-based linear layer.

In this section we describe the design of a family of linear layers that only use rotations
and additions (of type 1), and which we employ in Fasta. Of course, linear transformations
drawn from this family are no longer random, and some structure can be found in them.
Nevertheless, we aim to construct linear transformations that still provide good diffusion,
according to the notion introduced above, and which in respect to the diffusion at least,
behave as randomly generated binary matrices.

3.1 Rotation-based linear layers
In Fasta, we follow the principle introduced in Rasta to (pseudorandomly) draw linear
transformations from a large family L, which will be used only once in a particular
instantiation. We describe this family of linear transformations below.

Let the cipher state consist of bs bits, split into b words w0, . . . , wb−1 of s bits each.
Let Θ be a linear mapping whose input and output are single words of s bits, with the
following properties.

1. Θ only uses rotations and xor of s-bit words; these correspond to the rotate() operation
(Section 2.3) and type 1 addition, respectively.

2. The bit in position 0 of the input influences any bit in positions 0, . . . , a− 1 of the
output probability greater than 0, for some a < s.

The idea is that Θ will spread one bit of the input into a neighbourhood of a bits of the
output, where a may be quite small compared to s.

One iteration of the linear layer acting on the input state w0, . . . , wb−1 will consist of
the following operations. First, add the b input words together to form v = w0⊕ . . .⊕wb−1.
Then compute u = Θ(v). The output of the iteration is given as w0 ⊕ u, . . . , wb−1 ⊕ u.
One iteration of the linear layer follows the strategy of a column parity mixer introduced
in [SD18], and is shown in Figure 3.

We say that a part of a word wi is affected if it has a non-zero probability of depending
on the bit in position 0 of w0. Thus, after the first iteration the a least significant bits of
each wi are affected. More generally, if the A least significant bits of the input to Θ are
affected, the A+ a− 1 least significant bits of the output of Θ will be affected.

Now assume that in the output of one iteration, the A least significant bits of each wi
are affected. Before the next iteration, the words wi for 1 ≤ i < b are rotated as follows:
the word wi is rotated by i ·A/2 + ri positions, where 0 ≤ ri < A/2. See Figure 4 for an
illustration of how each word is rotated.

These rotation amounts ensure three properties. First, the affected parts of wi−1
and wi will overlap in at least one bit when added together in the next iteration, for
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A/2 A/2

wi 0 ≤ i ≤ 3

w′0 = w0

w′1 = w1 << (A/2 + r1)

w′2 = w2 << (A + r2)

w′3 = w3 << (3A/2 + r3)

⊕
w′i 0 ≤ i ≤ 3

≥ 5A/2

Figure 4: Rotations between two iterations in the linear layer with b = 4 words in the
state. The A least significant bits in each word are affected in the output from the previous
iteration, leading to at least 5A/2 affected bits in the input to the next call of Θ. The
block of affected bits can be anywhere in the light grey areas, depending on the values of
the ri.

i = 1, . . . , b− 1. So there will not be any "gaps" where we know some bit is not affected.
Second, after rotations the least significant bit of the affected part of wi−1 will not overlap
with the affected part of wi, for i = 1, . . . , b− 1. In other words, the affected parts of wi
and wj may not overlap exactly when i 6= j, and two neighboring w-words may not cancel
each other out when added together in the input to the next iteration. Third, the input to
Θ in the next iteration will be affected in (at least) all bits in positions 0, . . . , (b+ 1)A/2,
and the output will be affected in the block of the (b + 1)A/2 + a least significant bits.
That is, the size of the block of affected bits has increased by a factor of at least (b+ 1)/2.

The number of affected bits in w0, . . . , wb−1 therefore grows exponentially with the
number of iterations, and after dlog(b+1)/2(s)e iterations we are guaranteed the whole
cipher state will be affected. Therefore we expect a family of linear transformations
generated in this manner to provide ideal diffusion.

3.2 The structure in rotation-based linear layers
One can imagine many ways of designing a linear transformation of a state consisting
of b words of s bits each, using only rotations of the words and xor additions of whole
words. We will now show that any linear transformation within these constraints will have
a particular structure.

Assume that the state consists of w0, . . . , wb−1, where each wi is a word of s bits. We
let the state block w be a binary vector of length bs, given as the concatenation of the
words: w = (w0, . . . , wb−1). Let M be the bs × bs matrix over GF (2) that realises a
rotation-based linear transformation L, such that the output of L is given as L(w) = wM .

Proposition 1. The matrix M can be decomposed into b2 sub-matrices Mi,j for 0 ≤
i, j ≤ b − 1 of size s × s each. Let Mi,j [r] be row r in Mi,j, for 0 ≤ r ≤ s − 1. Then
Mi,j [r] = Mi,j [0] << r.

Proof. Let the state ei be given as the state where bit number i in ei is 1, and all others
are 0, for 0 ≤ i ≤ bs− 1. Then the top row of M , and the top row of each M0,j , is given
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Figure 5: High-level description of Fasta.

as L(e0). Whatever bits are set in L(e0), they are all a result of the single bit in e0 being
added multiple times onto the words, with rotations of the words in between.

The second row of M (and each M0,j) is given as L(e1). The exact same additions and
rotations that produced L(e0) from the single set input bit will also produce L(e1), except
everything happens shifted by one position to the left, modulo s. Hence every word in
L(e1) will be equal to the same word in L(e0), but shifted by one position. This repeats
for every row r of M for 0 ≤ r ≤ s− 1, so M0,j [r] = M0,j [r − 1] << 1.

Row s of M is produced as L(es). The single set bit in the input then jumps from
appearing in w0 of the state to w1. The word w1 is rotated independently of w0, so the
cancellations and additions from the single set bit in es that occurs when producing L(es)
are different from those that produced L(es−1). Hence row s of M , and the top row of
each M1,j , will be unrelated to row s−1 of M . However, each row M1,j [r] will be rotations
of M1,j [0] by the same reason given above. This argument repeats every time the single
set bit in ei jumps from one word to the next, and the result follows.

Another way to interpret Proposition 1, is to notice that M could be considered as the
binary representation of a linear transformation over the module Rb, where R is the ring
F2[X]/(Xs + 1). Figure 9 in Appendix A shows a matrix M for a rotation-based linear
layer with b = 5 and s = 329, where the block structure is clearly visible.

4 Specification of Fasta
In this section we define Fasta, a stream cipher whose circuit for generating the keystream
has been designed to be efficiently evaluated homomorphically. As the name suggests,
Fasta is based on Rasta and is fast to execute when implemented in HElib using the
BGV levelled homomorphic encryption scheme (see Section 2.3). The parameters in Fasta
have been selected to give 128-bit security, both as a stand-alone symmetric cipher and
when used in tandem with the specific instantiation of the BGV scheme it is designed for.
We follow Rasta’s approach for setting the data limit, and require that 264/1645 calls to
Fasta with the same key is the maximum that can be made.
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Figure 6: Θ-function used in the linear layer. The values of r1 and r2 are specified based
on the nonce N .

4.1 High-level overview
Fasta takes a 329-bit secret key K and produces 1645 bits of keystream at each call. The
cipher state consists of five words w0, . . . , w4 of 329 bits each that are initially loaded with
the key K in every word. Each application of Fasta takes in 7 · (64 + 1645) = 11963
pseudo-random bits for specifying the particular permutation that produces a keystream
block. These bits are labelled α = (α0, . . . , α6), where each αj is a 1709-bit value. In the
same way as Rasta, the contents of α are pseudorandomly generated based on a counter
and a nonce N which are fed into a XOF (refer to Figure 2).

The keystream generation starts by rotating wi by i positions before a round function
is applied 6 times. The round function consists of an affine layer Aαj , indexed by αj for
0 ≤ j ≤ 6, followed by a non-linear transformation of the cipher state. The keystream
generation ends with a final affine layer and a feed-forward of the secret key onto each of
the words. The resulting output is taken as 1645 bits of keystream. The cipher is shown
in Figure 5.

4.2 The non-linear layer
The non-linear layer uses the χ-function proposed in [Dae95], which is also used in Rasta
and Keccak. It is applied on each of the five words of the state in parallel as shown in
Figure 5. If we label the input bits to χ as x0, . . . , x328, the output bits yi are given as

yi = xi+1xi+2 + xi + xi+2,

where all indices are computed modulo 329.

4.3 The affine layer
Affine layers in Fasta consist of a rotation-based F2-linear transformation, followed by
the addition of a round constant. The linear transformation is constructed as defined
in Section 3.1, with b = 5 and s = 329, and will consist of four iterations. A guiding
principle in Rasta, which we also follow in Fasta, is that every linear transformation is
pseudorandomly generated from a large family of transformations and is used only once in
an instantiation of Fasta. The affine transformation we use is parameterised by a 1709-bit
value αj , which will select instances from the class of linear mappings from Section 3.1 as
well as selecting the constant to be added after the linear transformation.

The Θ-function in each iteration is shown in Figure 6. It ensures that the number of
affected bits in the output is increased by at least 9 from the number of affected bits in
the input.

Recall that the affected part of each word at any point is defined as the bits that may
depend on the bit in position 0 of w0 at the input of the linear transformation. After the
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w0 w1 w2 w3 w4

Θ-iteration

Θ-iteration

Θ-iteration

Θ-iteration

<< 5 + i1 << 10 + i2 << 15 + i3 << 20 + i40 ≤ i∗ ≤ 4

<< 19 + j1 << 38 + j2 << 57 + j3 << 76 + j40 ≤ j∗ ≤ 4

<< 62 + k1 << 124 + k2 << 186 + k3 << 248 + k40 ≤ k∗ ≤ 4

Figure 7: The linear transformation of Fasta. The exact rotation amounts i∗, j∗, k∗ and
in the Θ-iterations are determined by αj .

first iteration, the number of affected bits in each word will be at least 10. The rotations
before the next iteration are therefore given as:

w1 = (w1 << 5 + i1)
w2 = (w2 << 10 + i2)
w3 = (w3 << 15 + i3)
w4 = (w4 << 20 + i4)

, where 0 ≤ ij ≤ 4.

The number of affected bits in the block going into the second Θ will therefore be at least
20 + 10 = 30, and the number of affected bits in each word after the second iteration will
be at least 39. The words w1, . . . , w4 are then rotated by

w1 = (w1 << 19 + j1)
w2 = (w2 << 38 + j2)
w3 = (w3 << 57 + j3)
w4 = (w4 << 76 + j4)

, where 0 ≤ jj ≤ 18.

The affected part of the word going into Θ in the third iteration will then cover at least
the 39 + 76 = 115 least significant bits, and the output will have at least 124 affected bits.
The output is added onto every word, so the 124 least significant bits of every wi will be
affected. The words w1, . . . , w4 are then rotated by the following amounts before going
into the fourth and last iteration:

w1 = (w1 << 62 + k1)
w2 = (w2 << 124 + k2)
w3 = (w3 << 186 + k3)
w4 = (w4 << 248 + k4)

, where 0 ≤ kj ≤ 61.

Note that the most significant bits of the affected part of w4 (located in positions
123, 122, . . .) will wrap around when rotated by 248 positions, since the words have
length 329. This means that the whole input block to Θ in the last iteration will be
affected, and after adding the output of Θ onto each wi the whole cipher state will be
affected. The complete linear transformation is depicted in Figure 7.

4.3.1 Mapping αj to rotation values and round constant

Let r(t)
1 and r(t)

2 be the rotation amounts used in Θ in iteration t, for 1 ≤ t ≤ 4. There
are then 20 rotation amounts that need to be decided from αj . The r(t)

1 can take 2 values
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each, the r(t)
2 can take 5 different values each, and each of the four i∗, j∗, k∗ can take 5, 19

and 62 values each, respectively. There are therefore T = 24 · 54 · 54 · 194 · 624 ≈ 263.4

different instances in the class of rotation-based linear transformations we have defined.
We split αj into αj = (αrj , αcj), where αrj is 64 bits and αcj is 1645 bits. The 20 rotation

values are computed from αrj , as given in Algorithm 1. In essence, what we are doing
is first computing B = αrj mod T , and then writing B in a mixed base: the four least
significant digits in base 2, the next eight digits in base 5, the next four digits in base 19,
and the four most significant digits in base 62. Keeping in mind that r(t)

1 and r(t)
2 will

have 1 and 3 added to them, the rotation amounts can then be read out as the digits of B,
written in this mixed base:

B = k3 · 623 · 194 · 58 · 24 + k2 · 622 · 194 · 58 · 24 + . . .

+r(2)
2 · 5 · 24 + r

(1)
2 · 24 + r

(4)
1 · 23 + r

(3)
1 · 22 + r

(2)
1 · 2 + r

(1)
1 .

Algorithm 1: Determining rotation amounts from αrj .
Result: Rotation amounts for linear transformation set.
B ← αrj mod T
for t = 1 to 4 do
r

(t)
1 ← 1 + (B mod 2)
B ← bB/2c

end for
for t = 1 to 4 do
r

(t)
2 ← 3 + (B mod 5)
B ← bB/5c

end for
for t = 1 to 4 do
it ← B mod 5
B ← bB/5c

end for
for t = 1 to 4 do
jt ← B mod 19
B ← bB/19c

end for
for t = 1 to 4 do
kt ← B mod 62
B ← bB/62c

end for

After applying the linear transformation, the 1645-bit value αcj is xor’ed onto the words
w0, . . . , w4.

Figure 5 shows that we could see Fasta as five parallel calls of Rasta with block size
n = 329, but with one main difference. In the 5-parallel Rasta calls the combined affine
transformations Ai would be represented by a block diagonal matrix, with each 329× 329
block being generated pseudorandomly. On the other hand, in Fasta the AN,i’s are
1645× 1645 rotation-based transformations, generated from α as described above. The
choices for n and Ai were motivated by the fact that, as shown in Section 6, Fasta can
be homomorphically evaluated much more efficiently in BGV/HElib, compared to five
parallel calls of Rasta.
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Figure 8: Distribution of the percentage of set bits in the matrices representing 10000
linear transformations used in Fasta.

5 Security Analysis
Fasta is a Rasta variant, which introduces a new idea for a FHE-friendly linear-layer design.
Like Rasta, Fasta also uses the A(SA)d structure, with the non-linear layer S based
on the χ-transformation used in Keccak [BDPA11], and affine round transformations
drawn pseudo-randomly from a large family of affine mappings. As such, most of the
analysis originally performed for Rasta in [DEG+18] could be lifted – for the one specific
parameter choice used for Fasta – without much change. For example, like Rasta we
also disallow related-key attacks, and thus differential-type attacks should likewise not
apply to Fasta. In this section we focus on a subset of attacks considered in [DEG+18],
adapting the original discussion to Fasta’s setting. As the structure observed in its
linear transformations deserves its own investigation, we consider the properties of the
rotation-based linear transformations introduced earlier. We also discuss the feasibility of
attacks based on the algebraic structure of the cipher, and on linear approximations.

5.1 On the structure of Fasta’s linear transformation
5.1.1 Random-like behavior of Fasta’s linear transformations

The Θ function used in the linear transformations of Fasta has the property that every
input bit in position i for 0 ≤ i ≤ 328 will “affect” five of the output bits in positions
i, . . . , i + 10 mod 329. As explained in Section 4.3, the influence of bit in position 0 of
w0 will spread to the whole cipher state after applying the linear transformation once.
By rotational symmetry, this applies to every bit in the input words, so every bit in the
output of the linear transformation may depend on all input bits.

When adding words together at the start of every iteration, some of the affected parts
of the input words will overlap. As an input bit to Θ is spread to approximately half of
the bits in its neighbourhood of the output, this makes approximately half of the affected
part of the cipher state depend on approximately half of the input bits it depends on. In
total, we therefore expect ideal diffusion for the linear layers in our family.

To verify this we have generated 10000 matrices appearing as linear transformations in
Fasta, and considered their density. Figure 8 shows the distribution of the percentage of
set bits in these matrices. The distribution appears to be well approximated by a normal
distribution with mean 50%, a behaviour we would expect for random matrices.
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5.1.2 Pairwise dependence/independence of entries in the linear transformation

The Fasta state consists of 5 words with 329 bits in each. Proposition 1 decomposes
the linear transformation matrix M into 25 submatrices, each of size 329× 329. Each of
these 25 submatrices are defined in terms of their respective top row. Looking at each
submatrix in isolation, each of its rows is a cyclic rotation by 1 of the row above. Let D be
a submatrix of M , and Di,j be an entry in D. It follows from the row rotation property
that Di+1,j+1 = Di,j , which generalizes to D0,j = Da,j+a, for 0 ≤ a, j ≤ 328 and where
indices are computed modulo 329.

AsM displays random behaviour and provides ideal diffusion, we will make a reasonable
assumption that pairwise entries be independent, for any of the 25 submatrices in M .
Furthermore, two entries from different submatrices are also treated as independent.

5.2 Algebraic attacks
As it is the case for Rasta, we also consider algebraic attacks to be the most promising
cryptanalytic technique against Fasta. Every call to the cipher’s keystream generator will
generate a number of equations on the unknown key bits, a feature that is not affected by
the ever-changing affine transformations.

5.2.1 Standard linearization-based attack

Given the keystream Z = (z0, . . . , z1644) produced on a call to the keystream generator
for an unknown key K = (k0, . . . , k328), it is possible to express the keystream bits as
polynomials in k0, . . . , k328 to get a set of equations:

f0(k0, . . . , k328) + z0 = 0
f1(k0, . . . , k328) + z1 = 0

...
f1644(k0, . . . , k328) + zn−1 = 0

(1)

The attacker may repeat calls to the keystream generator gather more such equations;
the fact that new linear layers will be applied for each repetition does not affect the
collection of equations. For Fasta, the algebraic degree of fi is upper bounded by 26 = 64,
since the degree doubles with every application of χ and Fasta has six rounds. Unless
any data restrictions are imposed, the attackers may collect an arbitrary number of these
equations.

Equation (1) forms the foundation of the standard linearization attack. In such an
attack, given a system of non-linear multivariate polynomial equations, all monomials are
substituted with a new “variable”, and the resulting set is considered as a system of linear
equations over these variables. To fully solve this system, an attacker needs to collect as
many equations as there are variables, which then allows for a unique solution to be found
through Gaussian elimination. Thus, the complexity of solving such a system based on
this method is directly dependent on the number of monomials in the original system.

The maximum number of different monomials we can get is dependent on the algebraic
degree of each fi, which is 64 for Fasta. Thus the size of the linearised system will be at
most

∑64
i=0
(329
i

)
≈ 2535.

This value is computed by only considering χ in the forward direction. It is well known
that the inverse of χ has high degree, but through careful study of the relationships between
input and output bits to the χ operation, the authors of [LSMI21] have derived equations
that can be exploited in the last round of either Rasta, Dasta or Fasta. There are two
important consequences of this find. Firstly, 3× 1645 = 4935 equations can be derived per
application of Fasta, instead of only 1645. Secondly, the last round can effectively be
peeled off since the equations describing the χ in the last round do not multiply inputs
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together, only inputs and outputs. The outputs of χ in the last round can be described as
linear polynomials in k0, . . . , k328, and the inputs will be polynomials of degree 32. So the
number of monomials in the generated equations is reduced to

U =
33∑
i=0

(
329
i

)
≈ 32933 ≈ 2276. (2)

So, under the assumption that all U monomials of degree up to 32 over the 329 variables
are present in the system of equations, the complexity of such attack (solving a system of
linear equations of size ≈ 2276) is way higher than the security level claimed for Fasta.
This is the behaviour we may expect for large random systems. However, for Fasta (and
Rasta) we are not guaranteed that U is the number of monomials which will actually occur
in the system. We examine this question below for Fasta, following a similar discussion
from [DEG+18].

Let M be the matrix over GF (2) which realizes one of Fasta’s rotation-based linear
transformations, let x = (x0 . . . x1644) be the input state and A(x) = M · x+ c. From the
description of χ in the non-linear layer S, one round S ◦A(x) of Fasta can be described
by the following equations (from [DEG+18]):

S ◦A(x)i =
k−1∑
j=0

k−1∑
l=j+1

aij,l · xj · xl +
k−1∑
j=0

bij · xj + gi, (3)

where i denotes the polynomial representing the i-th bit in the cipher block after S ◦A(x).
As the word size is 329, i+ 1 and i+ 2 “wrap around”, i.e. they are calculated as i− 328
and i− 327 when i mod 329 = 328 and 327. The coefficients of S ◦A(x)i are given by

aij,l = Mi+1,j ·Mi+2,l +Mi+2,j ·Mi+1,l,

bij = Mi,j + ci+2 ·Mi+1,j + (1 + ci+1) ·Mi+2,j ,

gi = ci + ci+2 + ci+1 · ci+2.

We can see that the term containing the coefficient aij,l contains the only multiplication,
meaning it is the only place where the algebraic degree may increase. We only need aij,l = 1
for at least one i for the corresponding monomial to be present in the output. We first
find the probability that each coefficient aij,l is 0. From the above equations we get

P [aij,l = 0] = P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 0]+P [Mi+1,jMi+2,l = Mi+2,jMi+1,l = 1]
(4)

In Section 5.1.2, we found when two entries in M are equal with certainty, due to the
rotational structure in M , and when they are considered independent. Put into context of
Equation 4, we have that two entries Mi+1,j and Mi+2,l are equal when

l =
{

j + 1 for j 6= 328 mod 329
j − 328 for j = 328 mod 329

Otherwise, Mi+1,j and Mi+2,l are considered as independent in our analysis.
The equal entries are split into two cases, depending on whether j or l are crossing

from one sub matrix to another or not, i.e., to handle “wrap-around” of sub-matrices.
We expect each entry in M to be present with probability one half, following the

discussion in Section 5.1.1. This allows us to calculate P [aij,l = 0]. We begin with the case
where the two entries from M are equal, i.e, in general when l = j + 1:

P [aij,j+1 = 0] = P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 0]
+ P [Mi+1,jMi+2,j+1 = Mi+2,jMi+1,j+1 = 1]

= 1
2 ·

3
4 + 1

2 ·
1
4 = 1

2 .
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For all independent entries, we get instead:

P [aij,l = 0] =
(

3
4

)2
+
(

1
4

)2
= 5

8 .

This last result is the same as expected for any two entries in a random matrix. It follows
that the probability that all the coefficients for the product xj · xl are equal to 0 can be
estimated as

P [aij,l = 0, ∀i = 0, . . . , 328] ≤
(

5
8

)329
.

In other words, at least one of these coefficients are 1 with probability at least 1−
( 5

8
)329.

If we consider the monomials of degree 2 we get that we can expect an average number
of monomials in each word wi of degree 2 to be at least(

329
2

)
·

(
1−

(
5
8

)329
)
'
(

329
2

)
.

We can use the same reasoning we used for monomials of degree 1, resulting in an
expected number of these monomials to be 329 · (1 − 2−329) ≈ 329. This argument
can also be applied for monomials of higher degrees. We therefore conclude that the
expected number of monomials appearing in the algebraic equations linking the unknowns
k0, . . . , k328 to the keystream bits is approximated by U , the maximum possible number
of monomials.

5.2.2 Other algebraic approaches

The maximum number U of monomials could be reduced by guessing g key bits, at the
cost of increasing the complexity of the linearization attack by a factor of 2g. This implies
a cut-off for guessing bits at g = 128, where the complexity increase alone will equal the
complexity of brute-force.

Even when guessing 128 of the bits in K, we are still left with U =
∑33
i=0
(201
i

)
≈ 2252

monomials to linearize. As the data complexity is limited to 264/1645 ≈ 254 bits for a
given key K, the maximum number of equations we can generate, taking [LSMI21] into
account, is 3 · 1645 · 264/1645 < 266. We can therefore conclude that an attacker never will
be able to generate enough equations for a linearization attack to succeed.

A more advanced form of algebraic attacks is based on Gröbner basis algorithms. In
this case, the cipher’s non-linear system is considered in its original form, and attempted
to be solved using, e.g. Faugère’s F5 algorithm [Fau02]. The complexity of Gröbner basis
algorithms is not fully understood for systems arising from cryptographic algorithms.
Although they have been applied successfully in cryptanalysis, given the sizes involved in
the Fasta system, we do not consider GB-based attacks a threat to the cipher.

5.3 Attacks based on linear approximations
To assess the feasibility of attacks based on linear approximations against Fasta, we follow
the discussion in [DEG+18, Section 3.2]. They produce upper bounds for the correlation of
linear approximations after d = 2r rounds based on the properties of the χ transformation.
This is done by estimating the number of active bits in the input/output of applications
of χ, under the assumption the linear layers are randomly generated. For example, they
conclude that Rasta with block n = 351 and d = 6 rounds is not susceptible to attacks
based on linear approximations.

For Fasta, the transformations in the linear layer are not random, but rather pseudo-
randomly generated among the rotation-based matrices defined in Section 3. More
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importantly however, the non-linear layer in Fasta consists of five parallel applications of
the χ transformation. Given the diffusion properties that the linear layer is expected to
feature, we expect that any linear trail over two rounds of Fasta will have a correlation of
much lower magnitude than for Rasta. We therefore conclude that attacks based on linear
approximations are not feasible against the parameters chosen for Fasta.

5.4 Other classical attacks

Differential attacks, higher-order differential attacks, cube attacks, and integral attacks all
try to exploit the structure of a cipher in one way or another. A differential attack looks
for advantageous characteristics present in the structure, before attempting to find pairs
of plaintexts which satisfy these characteristics. Higher-order attacks and cube attacks
exploit the algebraic degree of the output bits of a primitive, while integral attacks make
use of curated sets of plaintexts. As discussed in [DEG+18], these attacks do not apply to
Rasta. Likewise, in Fasta the circuit generating a block of keystream is only used once.
Moreover, the attacker does not get to choose the input to Fasta, as it is always the secret
key. We therefore conclude that these attacks are infeasible to execute against Fasta.

6 Homomorphic implementation of Fasta and Rasta

Libraries implementing FHE or levelled homomorphic encryption (LHE) have gone through
extensive development over the last years. They now appear as quite robust, well doc-
umented, and user friendly. The libraries and schemes we have considered were HElib
and PALISADE with their implementations of the BGV scheme, SEAL and PALISADE
with the BFV scheme, TFHE with the torus-based FHE scheme, and PALISADE’s FHEW
scheme. HElib, PALISADE, and SEAL also implement the CKKS scheme, but as CKKS
is an approximate LHE scheme with real numbers as the plaintext space, it is not suitable
for implementing a Boolean circuit in our applications.

We have designed Fasta to be fast when evaluated homomorphically, while also being
based on a dedicated symmetric cipher for FHE, namely Rasta. In order to ensure fast
evaluation, the parallelism offered by multiple slots in the FHE scheme is used to pack
many bits of the cipher state into one FHE ciphertext. The TFHE library does not yet
support such parallelism, and has therefore not been a target for the design of Fasta.

Both the BFV and BGV schemes provide ciphertexts with multiple slots, but BFV
needs the number of slots to be a power of 2. Also, the BGVrns scheme will always have
an even number of slots. As we use the χ-transformation in Fasta’s non-linear layer, this
makes BFV and BGVrns less suitable since χ is only invertible when the cipher state
words going through χ have an odd number of bits. Implementing Fasta (or Rasta for
that matter) in BFV using packing will then have to use dummy slots, i.e. slots in the
FHE ciphertext that are not used, but still need to be accounted for when doing rotations,
as explained below.

As the number of slots in BFV and BGVrns is much bigger than 329, typically in the
range 213 to 216 for parameters giving 128-bit security, we will only use the 329 first slots
of a ciphertext c∗ = {(c1, c2, . . . , c329, 0, 0, . . . , 0)}, and need to do cyclic rotations over
only these slots. A natural way to rotate c by a positions in the 329 first slots is to first
rotate c by a positions to the right, c∗r = (c∗ >> a), then by 329− a positions to the left,
c∗l = (c∗ << 329− a), and add the two ciphertexts:
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c∗r = {(
329 first slots︷ ︸︸ ︷

0, . . . , 0, c1, c2, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0)}

c∗l = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, 0, . . . , 0, 0, . . . , 0, c1, . . . , c329−a)}

c∗l + c∗r = {(
329 first slots︷ ︸︸ ︷

c329−a+1, . . . , c329, c1, . . . , c329−a, c329−a+1, . . . , c329, 0, . . . , 0, c1, . . . , c329−a)}

This effectively does a cyclic rotation of the first 329 slots, but leaves non-zero plaintext
values in the dummy slots, which need to be zeroed out to prevent them from being
shifted back in on subsequent rotations. This can be done by masking, multiplying
with a plaintext that is 1 in the 329 first slots and zero elsewhere. Unfortunately, a
plaintext-ciphertext multiplication is only somewhat cheaper in terms of noise growth
than a ciphertext-ciphertext multiplication, so making a customized rotation in BFV or
BGVrns to accommodate for dummy slots is simply too costly.

On the other hand, the BGV scheme as implemented in HElib have instances with
an odd number of slots in each ciphertext. We have therefore designed Fasta to take
advantage of these features, and thus enable particularly efficient homomorphic evaluation
with BGV in HElib. A basis for the BGV scheme is the cyclotomic polynomial Φm, where
m is chosen by the user. The parameter m decides the number of slots, and together with
the noise budget in fresh ciphertexts, a parameter denoted by bits in HElib, also decides
the estimated security level for the instance of BGV. Searching for suitable values of m we
found that m = 30269 gives 329 slots in HElib and a security level of just over 128 bits
when bits = 500 (if bits is lower, the security level increases). Hence we designed Fasta to
give 128-bit security in itself, and to be used with the particular instance of BGV where
m = 30269. Running Fasta in HElib with m = 30269 consumes approximately 250 bits ,
leaving up to 250 bits more for further computations in an actual use case.

Implementing Fasta in HElib starts by encrypting the 329-bit key K five times into
five different HElib ciphertexts w∗0 , . . . , w∗4 with 329 slots each. Five copies of w∗i are
then made for the feed-forward of the key at the end of Fasta. The initial rotations
are done by setting w∗i = (w∗i << i), before the first affine layer is executed using only
rotations and additions of the five ciphertexts. The χ-transformation works on each w∗i
individually, and starts by making two copies of w∗i that are rotated by 1 and 2 positions
respectively: u∗1 = (w∗i << 1) and u∗2 = (w∗i << 2). The output of χ is then computed
as u∗1 × u∗2 + w∗i + u∗2, using only a single ciphertext-ciphertext multiplication. The rest
of Fasta is executed homomorphically in the same way, using only rotations, additions
and a single multiplication in the non-linear layer of each round. Finally the initial copies
of w∗i are added to the five ciphertexts in the end to produce a block of 1645 bits of key
stream encrypted under FHE.

6.1 Timings of implementations
We have produced packed implementations of Fasta and Rasta in HElib, and timed the
execution times. The packed version of Rasta used mul when multiplying with random
matrices in the linear transformations, and the block size was modified from 351 to 329 to
make the block fit exactly in the BGV ciphertext. In addition we also produced bit-sliced
implementations of Rasta in HElib, PALISADE and TFHE. The implementations were
done on a MacBook Pro with a 2.3 GHz Intel Core i5 processor and 16 GB RAM. The
results are given in Table 1.

Unsurprisingly, the packed implementations are significantly faster than the ones
encrypting only a single bit in each ciphertext. The bit-sliced implementations were all
optimized with "the method of the four russians" in the matrix multiplication. In the user
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Table 1: Amortized time (in seconds) to produce one bit of key stream when executing
homomorphic implementations of Rasta and Fasta. ∗ Rasta with 329-bit block.

Library(Scheme) Cipher FHE time χ time time
encoding lin. trans. total

PALISADE (FHEW) Rasta (6 r.) bit-sliced 15.73 1197.8 1213.6
TFHE [CGGI16] Rasta (6 r.) bit-sliced 0.2296 11.331 11.56
HElib(BGV) Rasta (6 r.) bit-sliced 1.394 0.335 1.729
HElib(BGV) Rasta∗ (6 r.) packed 0.0111 0.1782 0.1893
HElib(BGV) Fasta (6 r.) packed 0.0113 0.0142 0.0255

manual of PALISADE [PRRC21, Sec. 9.3] it is noted that both the XOR and AND gates
take the same amount of time in that library’s implementation of FHEW. Hence the very
large number of XOR gates in the matrix multiplication of Rasta explains the extremely
high execution time.

For the packed versions, we found that Fasta is more than 7 times faster than Rasta,
using only 42 seconds to produce 1645 bits of keystream. The difference in runtimes for
Rasta and Fasta is entirely due to the linear layer of Fasta having been designed for fast
execution in HElib.

7 Conclusions
The design of symmetric ciphers for use with FHE has so far focused primarily on minimising
multiplicative complexity. However the libraries implementing various FHE schemes have
matured over the last years, with some attractive implementation features, and are now
more robust and user friendly than the early versions. This motivated us to study the
implementation and homomorphic evaluation of a prominent family of FHE-friendly ciphers,
Rasta, on the most well known FHE libraries.

We found that the parameters of Rasta make it difficult to efficiently use the parallelism
offered by some of the FHE schemes, namely BGV and BFV. The reason for this is that
these schemes are quite inflexible when it comes to the number of slots available in a single
FHE ciphertext. In the case of BFV and BGVrns, the number of slots becomes much
larger than we need when these schemes are instantiated with parameters giving 128-bit
security. On the other hand, for BGV in HElib the number of slots in a single ciphertext
is more in line with the block size of a symmetric cipher, but it is still determined by the
m-parameter and cannot be chosen freely by the user. This led us to propose Fasta.

Our research showed that when packing the bits of the symmetric cipher state into single
FHE ciphertexts, only two operations are cheap to do: additions of full FHE ciphertexts,
and cyclic rotations. Multiplications, both between two ciphertexts and between plaintext
and ciphertext, are expensive and should be kept to a minimum. Moreover we also found
that for efficient implementations, it is important to fit the cipher block exactly into FHE
ciphertexts. Otherwise, excessive slots need to be zeroed out after rotations, which invokes
multiplications with a plaintext mask.

Typical FHE-friendly symmetric designs, focusing primarily on low multiplicative
complexity, appear to assume bit-sliced implementations of the cipher, where we only
encrypt a single bit into each FHE ciphertext and do not need to worry about slots. They
are indeed easy to implement, but these choices lead to a high run-time when evaluated
homomorphically. As computational complexity is the major bottleneck for FHE it is
crucial that implementations can take advantage of packing features in the main FHE
libraries. Our proposal Fasta demonstrates that, by taking into account the features of
FHE libraries and schemes in the design process, we may achieve a secure and efficient
FHE-friendly symmetric cipher.
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A Image of rotation-based linear transformation matrix
Figure 9 shows the matrix for a rotation-based linear transformation with s = 329 and
b = 5. In every of the b× b blocks, all rows are rotations of each other.

Figure 9: Matrix realizing a rotation-based linear transformation with 5 words of length
329. Black pixels indicate 1-bits and blue pixels are 0-bits.
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