
Martha Norberg Hovd

Studies on the Security of
Selected Advanced Asymmetric
Cryptographic Primitives

2022

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway

at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d)

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Martha Norberg Hovd

Studies on the Security of Selected
Advanced Asymmetric Cryptographic

Primitives

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 11.03.2022

The material in this publication is covered by the provisions of the Copyright Act.

Print:	 Skipnes Kommunikasjon / University of Bergen

© Copyright Martha Norberg Hovd

Name: Martha Norberg Hovd

Title: Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

Year: 2022

Scientific environment

I have been employed by the University of Bergen for the entire duration of my doctoral

studies, and been enrolled as a PhD student at the Department of Informatics. I have

been supervised by H̊avard Raddum, Martijn Stam, and Øyvind Ytrehus at the research

lab Simula UiB, which has also been my workplace. I have also been enrolled in the

Research School of Computer and Information Security (COINS).

ii Scientific environment

Acknowledgements

I cannot adequately express the acknowledgement that is due to anyone mentioned herein

due to the shortcoming of language, and I cannot mention everyone to be acknowledged

due to restraints of space. Nevertheless, I shall try.

I thank my supervisors H̊avard, Martijn, and Øyvind for their guidance, challenges,

encouragements, advice, discussions, and knowledge they have so generously shared with

me.

I thank Prastudy, for his insights, enthusiasm, and laser sharp attention to details in our

collaborations. I thank Mohsen, for his initial suggestion of working on the IND-CCA1

security of fully homomorphic encryption schemes, and for being my co-supervisor as I

started my PhD.

I thank all the people I have worked with at Simula UiB, for making the whole endeavour

so much more enjoyable than I had ever thought possible.

I thank my friends, both at and outside of work, for keeping me grounded, seeing me as

a multifaceted human being, and for reminding (and sometimes lovingly forcing) me to

make room and take time for the enjoyable aspects of life which exist outside of research;

including, but not limited to, conversations (brief, lengthy, and in between), laughter,

tea, excellent jokes, chocolate truffles, wine, terrible jokes, books, gin, karaoke, films,

and dancing. I thank Marta in particular, my colleague in spirit, among everything else.

Finally, I thank my family, for their unconditional love and support.

iv Acknowledgements

Abstract

The main goal of asymmetric cryptography is to provide confidential communication,

which allows two parties to communicate securely even in the presence of adversaries.

Ever since its invention in the seventies, asymmetric cryptography has been improved

and developed further, and a formal security framework has been established around it.

This framework includes different security goals, attack models, and security notions.

As progress was made in the field, more advanced asymmetric cryptographic primitives

were proposed, with other properties in addition to confidentiality. These new primitives

also have their own definitions and notions of security.

This thesis consists of two parts, where the first relates to the security of fully homomor-

phic encryption and related primitives. The second part presents a novel cryptographic

primitive, and defines what security goals the primitive should achieve.

The first part of the thesis consists of Article I, II, and III, which all pertain to the security

of homomorphic encryption schemes in one respect or another. Article I demonstrates

that a particular fully homomorphic encryption scheme is insecure in the sense that

an adversary with access only to the public material can recover the secret key. It is

also shown that this insecurity mainly stems from the operations necessary to make the

scheme fully homomorphic. Article II presents an adaptive key recovery attack on a

leveled homomorphic encryption scheme. The scheme in question claimed to withstand

precisely such attacks, and was the only scheme of its kind to do so at the time. This part

of the thesis culminates with Article III, which is an overview article on the IND-CCA1

security of all acknowledged homomorphic encryption schemes.

The second part of the thesis consists of Article IV, which presents Vetted Encryption

(VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a

recipient to vet who may send them messages, by setting up a public filter with a public

verification key, and providing each vetted sender with their own encryption key. There

are three different variants of VE, based on whether the sender is identifiable to the

filter and/or the recipient. Security definitions, general constructions and comparisons

to already existing cryptographic primitives are provided for all three variants.

vi Abstract

List of publications

1. Martha Norberg Hovd: A Successful Subfield Lattice Attack on a Fully Homo-

morphic Encryption Scheme. In Stig Frode Mjølsnes and Ragnar Soleng, editors,

Proceedings of the 11th Norwegian Information Security Conference, September

2018.

2. Prastudy Fauzi, Martha Norberg Hovd and H̊avard Raddum. A Practical Adaptive

Key Recovery Attack on the LGM (GSW-like) Cryptosystem. In Jung Hee Cheon

and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 12th International

Conference, PQCrypto 2021, pages 483-498, Springer, Cham, July 2021.

3. Prastudy Fauzi, Martha Norberg Hovd and H̊avard Raddum. On the IND-CCA1

Security of FHE Schemes. Cryptology ePrint Archive, Report 2021/1624, 2021.

https://eprint.iacr.org/2021/1624.

4. Martha Norberg Hovd and Martijn Stam. Vetted Encryption. In Karthikeyan

Bhargavan, Elisabeth Oswald and Manoj Prabhakaran, editors, INDOCRYPT

2020, volume 12578 of LNCS, pages 488-507. Springer, Heidelberg, December

2020.

Versions of articles reproduced here are taken from the Cryptology ePrint Archive with

permission from the respective publishers.

viii List of publications

Contents

Scientific environment i

Acknowledgements iii

Abstract v

List of publications vii

1 Introduction 1

1.1 The Ancient Art of Selectively Sharing Secret Messages 1

1.2 The Gradual Shift from Art to Science 4

1.3 Security, Security Proofs, and Security Notions 8

1.4 Introduction to Advanced Asymmetric Cryptographic Primitives and

Their Security . 15

1.5 Contribution . 21

2 Articles 29

2.1 A Successful Subfield Lattice Attack on a Fully Homomorphic Encryption

Scheme . 31

2.2 A Practical Adaptive Key Recovery Attack on the LGM (GSW-like) Cryp-

tosystem . 47

2.3 On the IND-CCA1 Security of FHE Schemes 65

x CONTENTS

2.4 Vetted Encryption . 99

Chapter 1

Introduction

1.1 The Ancient Art of Selectively Sharing Secret

Messages

Cryptology is, like most terms, derived from Greek: ‘kryptós’ meaning hidden, and ‘logia’

meaning study. Though this small lesson in etymology might lead the mind of the reader

to archaeologists studying the long-hidden crypts in ancient Egypt, studying cryptology

rarely requires a digging kit. What is hidden is not tombs or treasures covered by the

dust of time, but rather text hidden by other text.

The art of creating such hidden texts is known as cryptography, where the new postfix

is derived from the Greek word ‘graphein’: ‘to write’. Cryptography is used to rewrite

a message, or plaintext, as a ciphertext. A particular method for creating a ciphertext

given a plaintext is known as a cipher, a cryptosystem, or an encryption scheme, where

the two latter are more modern terms.

The earliest known example of cryptography is actually in an ancient Egyptian crypt,

where non-standard hieroglyphs were written on the wall of a tomb roughly 4000 years

ago. Although this is the earliest example, it is far from the only one, as we know of sev-

eral other ancient cultures that also used cryptography for various reasons ranging from

planning and executing military strategies, preventing corporate espionage, concealing

tax records, avoiding persecution, to communicating with secret lovers. Then, as now,

there are many types of secrets people have wanted to keep from prying eyes.

There are two basic principles that underlie all ciphers: transposition and substitution.

In transposition ciphers, the letters the plaintext consists of are simply shuffled around

2 Introduction

for the ciphertext construction, meaning the two texts consist of the same letters, but in

a different order. The most primitive cryptographic technologies, a scytale, implements

a transposition cipher. A scytale is a cylinder of a certain dimension used by the ancient

Greeks for military communication. The sender would wrap a piece of parchment around

the cylinder, then write the message along the length of the cylinder. When this was

unwound from the scytale, the letters were shifted along the parchment, and in order to

read the intended message the receiver would wrap the parchment around a cylinder of

the same dimension as the sender’s scytale.

In substitution ciphers, on the other hand, a letter in the plaintext is mapped to another

letter in the alphabet when constructing the ciphertext. The simplest of these ciphers

is the shift cipher, where the mapping of a letter is simply shifting it a set number of

positions in the alphabet. For the classic Caesar cipher, the number of shifts is three,

meaning an ‘a’ in the plaintext is written as a ‘d ’ in the ciphertext, ‘b’ is ‘e’ and so on.

In a more general substitution cipher, there is no dependency between the mappings of

letters, other than the restriction that two distinct plaintext letters cannot be substituted

by the same letter. For the English alphabet, there are therefore a total of 26! possible

ways to set up a general substitution cipher.

However, where there are those that hide, there are typically also those who seek. Cryp-

tography, the art of hiding, is only one part of cryptology; the natural counterpart, that

of seeking to uncover the text which has been hidden, is known as cryptanalysis.

The most naive form of cryptanalysis when presented with a ciphertext is to simply try

all the possible ways a plaintext might be revealed. For example, for the ciphertext n

mfyj fsi n qtaj. bmd n it ymnx ujwmfux dtz fxp. n pstb sty, gzy n kjjq ny mfuujsnsl, fsi

n fr ytwyzwji encrypted by the shift cipher, the cryptanalyst could simply try shifting

the letters back one, two, and so on times before being able to read i hate and i love.

why i do this perhaps you ask. i know not, but i feel it happening, and i am

tortured after the fifth shift. For the shift cipher, this brute force method was feasible

for anyone, but for the more general substitution cipher, with more than 4×1026 possible
ways of mapping a letter of the plaintext alphabet to a letter in the ciphertext alphabet,

this task was much too daunting for anyone. For this cipher, and indeed most others,

a cryptanalyst must have a different strategy than using brute force, a strategy which

exploits a weakness in the cipher itself.

The weakness of the substitution cipher is that although a letter of the plaintext is

mapped to a different letter for the ciphertext, it is always mapped to the same letter,

thus preserving the letter frequency: if there are 10 as in the plaintext, and a is mapped

to t, there will be 10 ts in the ciphertext. This property makes the cipher susceptible

1.1 The Ancient Art of Selectively Sharing Secret Messages 3

to frequency analysis, which exploits the fact that the various letters of a language

appear at different frequencies in texts. In English, for example, ‘e’ is the letter which

occurs the most often, with ‘j’ being on the other side of the spectrum. A cryptanalyst

being presented with a ciphertext may thus count how many times a letter occurs in the

ciphertext before her, attempt to replace the most frequent ones with those letters that

occur most frequently in English, and thus attempt to recover the plaintext. Frequency

analysis effectively makes certain ‘letter mappings’ more probable than others and allows

the attacker to start the attack with one of the most likely mappings.

Frequency analysis was discovered in the Middle East around the ninth century by Mus-

lim scholars, who also used it in cryptanalysis. The consequences for this particular

breakthrough were numerous and include Mary, Queen of Scots being executed, and

Edgar Allan Poe rising to fame [31].

And so the history of cryptology goes: a cipher is broken by cryptanalysts, making

it insecure, forcing cryptographers to develop new ciphers. Of course, the history is

not quite so linear, as new ciphers were, and are still, being developed constantly, and

insecure ciphers are used despite them being susceptible to attacks.

Throughout millennia of progress and development the main principles of transposition

and substitution remained the same. Even the famous Enigma machine implements, in

essence, a substitution cipher, and the two principles are cornerstones in the modern

AES cryptosystem, though not the only ones.

An aspect which did evolve throughout history is the concept of a cipher, and how it

was regarded. Of course, it is difficult to pinpoint exactly how something has been

perceived historically, for example what the ancient Greeks thoughts on cryptography

were as they wrapped a piece of parchment around a scytale. But what we do know is

that Auguste Kerckhoff was the first to formulate the notion of a secret key in his articles

on La Cryptographie Militaire in 1883 [23, 31], which does indicate a shift in perception.

Kerckhoff stated six principles, the most important of which is that the cipher should

remain indecipherable even if everything about it is known except for the key. This is

a separation between the encryption procedure, the algorithm, and the secret key that

determines the encryption. The secret key of the scytale is its diameter, the secret key

of the shift cipher is the number of shifts, the secret key of the substitution cipher is

the letter mapping being used, and the secret key of the Enigma machine is the starting

positions of the rotors.

The advantage of separating the key from the algorithm is that it is far easier to change

the key than the algorithm, so that even if the machinery or encryption algorithm falls

into enemy hands, it is still safe to use for encryption so long as the key is kept secret. It is

4 Introduction

the knowledge of the secret key that separates an intended recipient and a cryptanalyst,

not the knowledge of the cipher being used. The fact that the cryptanalyst, or adversary,

does not know the secret key is what forces her to use cryptanalysis to recover the message

or the secret key.

For all the cryptography discussed so far, the setup is the same: two parties agree on

a cipher and share a secret key. This secret key is used both to encrypt messages and

decrypt ciphertexts: the setting is symmetric, both in the sense that the same secret key

is shared, and also that the process of encrypting and decrypting are mirror images of

each other. This is the very basic setting of cryptography, but other and broader settings

were found in the middle of the 20th century.

1.2 The Gradual Shift from Art to Science

A central issue with symmetric cryptography is that the two parties have to agree on a

secret key. This is all well and good if it is possible to agree in person in advance what

the key is going to be, or they have a system for creating such keys. There are myriads

of examples of these agreements, ranging from minuscule books with secret keys printed

in them to memorising long texts such as poems to use as a key. But what if setting up

such an agreement in person is impossible? How do you agree on a secret key that only

you and the other person know, when you cannot meet?

This problem is known as key distribution, and was solved by Diffie, Hellman and Merkle

in the seventies, and published in an article aptly titled ‘New Directions in Cryptography’

in 1976 [11]. The solution is a key exchange protocol known as Diffie-Hellman, which

allows two users to agree on a common secret key known only to them, even though

their entire communication is over a public channel. Just as with regular cryptography,

an adversary has to rely on cryptanalysis if she is to recover the secret key, as she only

possesses the public material.

With a viable solution to the key distribution problem, cryptography became substan-

tially easier to use, seeing as there was no longer a need for either meeting someone in

person to exchange secret keys, or trust in third parties or other lines of communica-

tion. The seventies therefore saw a surge of cryptography used in practice, outside of

the military and larger corporations. Another important factor to this increase was the

standardisation of cryptography, as the Data Encryption Standard (DES) was published

in 1975 and became a standard in 1977. The standard made it substantially easier for

cryptography to be used across fields, and also inspired cryptanalysts to band together

1.2 The Gradual Shift from Art to Science 5

in scrutiny. The DES was prodded and poked for years in search of weaknesses, and

many were found, due to both technological and theoretical advances. Due to these ad-

vances it was eventually deemed to no longer provide sufficient security, as the key size

was too small to prevent brute-force attacks. The key is a 64-bit string, of which eight

are used for parity checks, so the system has 256 possible keys, and by the mid-nineties

technology was sufficiently fast for an adversary to simply try decrypting with all the

keys until she found the correct one in a not unreasonable amount of time. The DES

was therefore replaced by the Advanced Encryption Standard (AES) in 2001, once again

repeating the history of cryptographers creating new ciphers after cryptanalysts have

demonstrated that a cipher no longer is secure. The AES is still the standard today, and

cryptanalysts are still studying it and looking for possible attacks. What has been will

be again, what has been done will be done again; there is nothing new under the sun.

Except, sometimes, new things do appear under the sun. So far, we have been in the

symmetric cryptographic setting, where the sender and recipient share the same key,

and decryption is essentially the reversal of encryption. This was the default setting

of cryptology ever since its beginning, and it was taken as the only setting. In 1975,

however, the horizon broadened in a spectacular fashion, as Diffie introduced the concept

of asymmetric cryptography [11, 31].

As already mentioned, the two communicating parties share the same secret key in

the symmetric setting. This key is used for both encryption and decryption, and it is

therefore essential that it is kept away from prying eyes. Even though this was the

default scenario for millennia, there is no natural law of cryptology stating that it must

be thus. In the asymmetric setting there are two different keys: one separate key for

encryption and another, different, key for decryption. The key used for encryption is

made public and is at the complete disposal of senders and adversaries alike, but the

key used for decryption is kept secret. For this reason, asymmetric cryptography is also

known as public key cryptography.

Although Diffie introduced the concept of asymmetric cryptography in 1975, and pub-

lished it with Hellman in ‘New Directions in Cryptography’ [11] the year after, it was

only the idea that this was theoretically possible, no encryption scheme was suggested.

The first asymmetric cryptosystem, RSA, was published by Rivest, Shamir, and Adle-

man in 1977, something truly new under the sun [27]. As a side note, their article also

introduced the most famous couple in cryptographic history: Alice and Bob, the two

characters who want to send confidential messages to each other. The couple’s eaves-

dropper and assumed ever-present adversary was also in the article, but she was not

named Eve until almost 10 years later [1, 6].

6 Introduction

However, it is worth mentioning that there are corners the sun does not reach, such as

the corners of the Government Communication Headquarters (GCHQ) in Cheltenham,

UK. Away from public eyes, researchers of this British facility discovered both a public

key cryptosystem resembling RSA and the solution to the key distribution problem in

1973 and 1974, respectively. The fact that these discoveries had taken place were a

well-kept secret until the reveal to the public in 1997, in a lecture by Clifford Cocks,

the researcher who had invented the RSA-like cryptosystem four years before Rivest,

Shamir, and Adleman [31].

As is clear from this brief history lesson, there was an enormous development in cryp-

tography in the 20th century, with several new cryptosystems being developed, and even

a new form of cryptography. This was not the only aspect where progress was large

though. As cryptography became more rigorous, so did the concept of how to judge the

security of a scheme.

But what does it even mean for a cryptosystem to be secure? Not even Kerckhoff [23],

with his six principles, formulated this explicitly, only that the cryptosystem should

remain ‘indecipherable’ even if everything except the secret key is known about the

system. What precisely ‘indecipherable’ entails, however, is not discussed explicitly. This

must be inferred from what a cryptosystem was meant to achieve: encrypt a message into

a ciphertext so that it is nonsensical to eavesdroppers, but the ciphertext is decryptable

for those in possession of the secret key, allowing them to read the original message. A

cryptosystem is deemed secure as long as it achieves this. In other words: a system is

secure as long as an adversary is unable to recover the message when she has access to

the ciphertext which encrypts it. In the vast majority of cases, recovering the message

indirectly requires recovering the secret key. A system which does not achieve the security

it strives for is informally referred to as a ‘broken’ system.

With this, albeit ad hoc, definition of security, security of schemes may also be measured

by how long it takes an adversary to find the message. In this sense, a substitution cipher

is more secure than a shift cipher, because it takes an adversary more time to recover a

message encrypted by substitution rather than just shifting the letters. This difference is

related to how many possible secret keys there are for the adversary to try, as the brute

force attack of simply trying every single key is always an option for any adversary.

There are 26 possibilities for the shift cipher, but 26! possibilities for the substitution

cipher. Although a large number of possible keys is necessary for the security of a

cryptosystem, it is not a sufficient condition, as demonstrated by the substitution cipher

being insecure. Furthermore, as technology improves and becomes faster, cryptosystems

previously considered secure may become vulnerable to attacks, as was the case for DES.

Having 256 possible keys was sufficient to protect against brute-force attacks at the time

1.2 The Gradual Shift from Art to Science 7

DES was proposed, but this is no longer the case.

After the Second World War, the somewhat ad hoc understandings were replaced with

mathematical rigour, as cryptology became less of an art and more of a science. The main

pioneer in this era was Claude Shannon, who published the seminal paper ‘Communica-

tion Theory of Secrecy Systems’ in 1949 [30]. The paper presents a more mathematical

approach to cryptosystems, regarding them as sets of transformations. In Shannon’s

presentation, the secret key determines a unique and reversible transformation between

a message space and a ciphertext space. Encrypting a message is simply applying the

transformation determined by the key, and decryption is applying the inverse of the

transformation to the ciphertext. The cryptosystem is then defined as the family of

these possible transformations, and the security of the system is derived from the fact

that the transformation which will decrypt a ciphertext exists alongside a collection of

other transformations.

A critical point for Shannon in his security theory is that each key, or transformation, is

chosen with a particular a priori probability, and similarly each possible message in the

message space is associated with an a priori probability of being encrypted. Furthermore,

it is assumed that the adversary knows all these probabilities, that is, the only difference

between the adversary and decrypter is that the latter knows the transformation to be

performed. Once the adversary observes a ciphertext, she calculates the a posteriori

probabilities of the various keys and messages: given the observed ciphertext, what is

the probability that a particular message has been encrypted, or that a particular key

has been used for encryption. This calculation is a generalisation of cryptanalysis.

Shannon defines perfect secrecy with respect to these a posteriori probabilities, which is

the highest security a cryptosystem can achieve. Perfect secrecy is defined by requiring

that the a posteriori probability that the message being sent is m, given the ciphertext c,

is identical to the a priori probability that the message is m. A necessary and sufficient

condition for perfect secrecy is that the conditional probability of the ciphertext c being

an encryption of the message m is the same as the ciphertext being an encryption of

any message. For any message m, and any ciphertext c, there must be at least one key

defining a transformation which maps m to c. In particular, this implies that there are

at least as many possible keys as possible messages.

The most famous example of a cipher with perfect secrecy is the one-time pad. The

key is simply a string of random and independent numbers, as long as the message to

be encrypted, and encryption is shifting the plaintext letter in position i by the num-

ber in position i in the key. Because it achieves perfect secrecy, the one-time pad is an

unconditionally secure encryption scheme, meaning that it can resist any cryptanalytic

8 Introduction

attack, no matter how much computational power and time the adversary has, so long

as she only has access to the ciphertext and the key is only used once (hence the name

one-time pad). This property is because every single key is chosen with uniform prob-

ability, meaning that, mathematically speaking, the ciphertext c tlls is just as likely to

encrypt i hate as i love. It is therefore impossible for an adversary with a ciphertext to

determine what the plaintext is, as every conceivable plaintext may be transformed into

the ciphertext in question under a particular key. The only way for an adversary to be

able to recover the plaintext from the ciphertext is if she already knows the plaintext.

Most cryptosystems are not unconditionally secure, as some keys may be more likely to

be chosen than others, or the ciphertexts they produce are more likely to be encryptions

of some messages than others. For example, it is impossible that the ciphertext cat ul

lus encrypts odi et amo in a shift or substitution cipher, simply due to the way these

cryptosystems are defined. The encryption procedure for both ciphers is restricted,

so a message is not mapped to the entire ciphertext space under the possible keyed

transformations. This property means that a ciphertext contains sufficient information

for an adversary to find the underlying plaintext and the key which was used to encrypt

it. The only protection the encryption procedure offers is that it will take time to

calculate the plaintext or key.

Cryptosystems whose security is due to the computational cost of cryptanalysis, but

which would succumb to an adversary with unlimited time are computationally secure,

and the absolute vast majority of systems fall into this category. The security of com-

putationally secure schemes is not proven in the same way as unconditionally secure

schemes, in fact, it is not known if they can be proven at all. The security of such a

scheme is first and foremost demonstrated by the inability of adversaries to break the

scheme, like the history of cryptology shows. However, there is a more formal way of

demonstrating security as well: by proving that for an adversary to be able to recover

either the secret key or the plaintext, she has to solve a particular mathematical prob-

lem. If this problem is hard to solve, then so is recovering the secret key or plaintext.

Computationally secure schemes may therefore be regarded as conditionally secure, as

they are secure under the condition that a particular hardness assumption holds.

1.3 Security, Security Proofs, and Security Notions

It is valuable to have some sort of notion of just how secure a computationally secure

system actually is, how resilient they are against various attacks. The resilience is

obviously going to depend on the problems they are based on, and the computational

1.3 Security, Security Proofs, and Security Notions 9

cost of solving them. However, a scheme may be broken by a brute-force attack unless

the scheme is unconditionally secure. It is therefore this common attack that is the

benchmark of the ‘quantifying security’ process of computationally secure schemes.

If an encryption scheme has an n-bit secret key, there are 2n possible keys for an adversary

to try in a brute-force attack. As n increases, so does the cost of a brute-force attack,

and n is therefore referred to as the security parameter of the scheme. The cost of other

attacks also increases as n does, though the rate of the increase will depend on the attack.

It is common to require that the cost of the attack should increase rapidly as the security

parameter increases. In the best case the increase is exponential, and one of the worst is

a polynomial growth, i.e., by a small power of n. Polynomial running time is often taken

to mean efficient when it comes to algorithms. An algorithm which runs in polynomial

time may still be wildly inefficient in practice, but in general there is sufficient overlap

between polynomial run time and efficiency. For a scheme to be deemed secure, it is

therefore common to require that there should not exist an attack whose cost scales

polynomially against it. In other words: a scheme is considered secure if there does not

exist an efficient attack that can break it.

In addition to looking at the cost of an attack, we may also examine how likely it is that

an attack will succeed. Just as for the cost, the probability of the attack being successful

will depend on the security parameter. Ideally, the probability of an adversary with a

polynomial amount of time on her hands succeeding in her attack will get substantially

smaller the more the security parameter n is increased. This concept is more formally

captured in the notion of negligibility: a function f is negligible if, for every polynomial

p, limn→∞ p(n)f(n) = 0 [29]. When the probability of a successful attack is expressed as

a function f of the security parameter, this function should be negligible.

Negligibility is also central for defining computational indistinguishability, which is an

important concept in security. Let {Xn}n∈N and {Yn}n∈N be two probability distribution

ensembles, and let D be a distinguishing algorithm running in polynomial time, which

takes an element sampled from either probability distribution as input, and guesses which

distribution the element was sampled from. Without loss of generality, assume that D

outputs 0 to guess that the element is drawn from an X distribution, and 1 to guess a

Y distribution. If

|Pr[s← Xn : D(s) = 1]− Pr[s← Yn : D(s) = 1]| ≤ ϵ(n)

for a negligible function ϵ for any distinguisher D running in polynomial, the two

probability distribution ensembles are said to be computationally indistinguishable [15].

Here, Pr[Code : Event] denotes probabilities where Code induces a probability dis-

10 Introduction

tribution over which Event is defined. The expression |Pr[s← Xn : D(s) = 1] −
Pr[s← Yn : D(s) = 1]| is the advantage of the algorithm D: the probability that it

will guess wrong, minus the probability that it will be correct. In other words: two

probability distributions are computationally indistinguishable if no efficient algorithm

may tell them apart with any reasonable success.

An example of computational indistinguishability is the decisional Diffie-Hellman (DDH)

assumption [8]. It should come as no surprise that the assumption is closely related the

Diffie-Hellman key exchange protocol mentioned in the previous section. The DDH

assumption is that the following two probability distributions are computationally indis-

tinguishable. Let G be a multiplicative group of order p with a generator g, where G de-

pends on the security parameter n. The first distribution is of tuples (gx, gy, gz) for x, y, z

sampled uniformly from Zp, whereas the second distribution is tuples (gx, gy, gxy) for x, y

sampled uniformly from Zp. The advantage of a distinguisher given (p, g, gx, gy, gz) try-

ing to guess if z = xy is assumed to be negligible in the security parameter [7].

The actual Diffie-Hellman key exchange works as follows: Alice and Bob publicly agree

on a multiplicative group of order p with a generator g. Alice chooses a random integer x,

computes gx and sends it to Bob. Similarly, Bob chooses a random integer y, computes

gy and sends it to Alice. Once they have exchanged group elements, Alice computes

(gy)x = gxy and Bob computes (gx)y = gxy, and they use gxy as their shared secret

key [27]. The adversary Eve only knows the group Alice and Bob have decided on, as

well as the elements gx and gy they have sent to each other.

At first glance, it might seem that Eve will break the scheme if she is able to calculate

the secret key gxy given only this public information. However, this phrasing is not quite

strict enough: if Eve is able to calculate 80% of the secret key, she is technically not

breaking the scheme according to this naive definition, but she may still pose a threat to

Alice and Bob. A more precise definition is that Eve will break the scheme if she is able

to deduce any information about the secret key. A minimum criterion for this deduction

is that given an element of the group, Eve is able to determine if this element is the

secret key. Another way to phrase this is that if Eve is given the public information of

the key exchange protocol and (gx, gy, gz), she is able to determine if z = xy [7].

So, we now have a problem and a scheme that seem very related, the question is then how

to show that an adversary attacking the scheme essentially has to solve the problem in

order to break the scheme? This may be proven by a reduction from solving the actual

problem to the problem of ‘breaking the scheme’. Such a reduction is performed by

constructing an adversary A trying to solve the actual problem, and give A access to an

oracle. The oracle models an adversary with success probability 1 against the scheme:

1.3 Security, Security Proofs, and Security Notions 11

she is always able to break it. If A is able to solve her problem with non-negligible

probability in polynomial time as long as she gets help from the oracle, it demonstrates

that an adversary B with a non-negligible probability of breaking the scheme may be

‘transformed’ into an adversary with a non-negligible probability of solving the problem.

For the DDH problem and Diffie-Hellman key exchange, the reduction is fairly straight-

forward. An adversary against the DDH problem is given (gx, gy, gz) in addition to

some information on the group g is a generator of, and essentially has to decide whether

z = xy. An oracle against the Diffie-Hellman key exchange, though, will output pre-

cisely this answer when given the input (p, g, gx, gy, gz). The adversary therefore feeds

the oracle the information it requires, and simply copies the oracle’s answer. With the

help of the oracle, the adversary will guess correctly every single time.

This reduction demonstrates that if it is possible for Eve to recognize the secret key gxy if

she sees it after being given the public information, gx and gy, then she would also be able

to solve the decisional Diffie-Hellman problem. However, the DDH problem is assumed

to be hard to solve for certain families of groups. The natural conclusion is therefore

that if the assumption that the DDH problem is hard holds for the chosen group, then

Eve cannot even recognize the secret key gxy of Alice and Bob after they have performed

the Diffie-Hellman key exchange if she sees it, much less actually compute any part of

the secret key.

However, it is important to emphasize that this security proof rests on the assumption

that Eve only eavesdrops. If Eve is assumed to be an active adversary, the situation is

very different: Eve may simply intercept Alice’s and Bob’s transmission of gx and gy

respectively, and send them both her own element gz. By doing this, Eve has agreed on

the secret key gxz with Alice, and another secret key gyz with Bob, all whilst Alice and

Bob believe they have agreed on a secret key with each other. This sets Eve up as a

(wo)man in the middle, and she may therefore lean back and read any messages Alice

and Bob send to each other, as long as she can intercept them. Note that Eve managed to

do this without having to solve the DDH problem, or any other computational problem

for that matter.

Although the example used so far is not an encryption scheme, the idea of reduction is

the same, as is the fact that we can have different attack models based on how active

the adversary is. Before we get into more details on security for public key encryption

schemes, though, we give a formal definition of what it actually is.

Definition 1 (Public Key Encryption Scheme [5]) A public key encryption scheme

is given by a triple of algorithms PKE = (Pke.Kg,Pke.Enc,Pke.Dec) where

12 Introduction

� Pke.Kg, the key generating algorithm, is a probabilistic algorithm that takes a se-

curity parameter n ∈ N and returns a pair (pk, sk) of matching public and secret

keys.

� Pke.Enc, the encryption algorithm, is a probabilistic algorithm that takes a public

key pk and a message m in the message spaceM and returns a ciphertext c.

� Pke.Dec, the decryption algorithm, is a deterministic algorithm that takes a secret

key sk and a ciphertext c and returns either a message m in the message space or

a special symbol ⊥ to indicate that the ciphertext is invalid.

All these algorithms should be computable in polynomial time. We also require that the

scheme is correct: for all pairs (sk, pk) output by Pke.Kg, all messagges m ∈M and all

ciphertext c output by Pke.Enc(pk,m), we have that Pke.Dec(sk, c) = m.

How do we judge the security of an asymmetric encryption scheme? Although perfect

secrecy and unconditional security is known not to be achievable for asymmetric schemes,

the security captured in the notion is still relevant for these schemes. Recall that perfect

secrecy states that a ciphertext does not give the adversary any information about the

corresponding plaintext. For computationally secure schemes, this goal may be eased so

that a polynomial time adversary should only be able to deduce a negligible amount of

information about a plaintext given a ciphertext which encrypts it.

This is a security goal known as semantic security (SS) and was introduced by Gold-

wasser and Micali in 1984 [17], as they pointed out that the contemporary security re-

quirements for asymmetric encryption schemes did not rule out that an adversary could

compute some partial information about, or in fact the entirety of, the message m given

an encryption c of it. Goldwasser and Micali, in the tradition of Shannon, originally

formulated the security goal with respect to the a priori probabilities of messages and

the a posteriori probabilities of observed ciphertext encrypting certain messages, and

required that these probabilities should be the same for a polynomial time adversary.

Goldreich [16] later defined the security goal in terms of whether an adversary with a

ciphertext was better at computing information about the corresponding message than

someone without the ciphertext. We give a somewhat simplified version of Golreich’s

presentation of semantic security here.

The notion of security is captured by comparing the probability of two algorithms win-

ning a game. One is an adversary A attacking the encryption scheme PKE, the other is

a simulator A′, and they both win the game if they are able to compute some information

f(m) about a message. For the adversary, the procedure is as follows: first the encryp-

tion scheme is set up and a random message m is sampled from the message spaceM,

1.3 Security, Security Proofs, and Security Notions 13

which is then encrypted Pke.Enc(pk,m)→ c. The public key pk, the length of the mes-

sage m, and the challenge ciphertext c are sent to the adversary A, who tries to extract

some partial information f(m) about the message. For the simulator A′, the procedure

is the same, with the important difference that whilst A′ gets the public key pk and

length of m she does not get the ciphertext c. In other words: the simulator is tasked

with calculating the same partial information as A, but without the actual ciphertext.

After a polynomial time, both the adversary and simulator output ν, and they win the

game if ν = f(m). It stands to reason that if the success rate of the adversary and of

the simulation are only negligibly different, no matter the choice of distribution over the

message space M or function f , the adversary cannot deduce any partial information

from the ciphertext [16].

Just as in the case of the Diffie-Hellman key exchange, there is an assumption here that

the adversary is passive and only listens in. This attack is known as a Chosen Plaintext

Attack (CPA) and is unavoidable in the asymmetric setting, seeing as the adversary

has access to the public information and key. She may therefore encrypt whichever

messages she likes. There are two other types of attacks, however, where the adversary

has the power to decrypt certain ciphertexts of her own choosing. The two attacks are

non-adaptive and adaptive Chosen Ciphertext Attacks (CCA1 and CCA2), and gives

the adversary either temporary or full access to a decryption oracle O. The adversary

may send ciphertext queries to the oracle, and the oracle will return the decryption

results of these ciphertexts. A non-adaptive attack captures the notion of an adversary

with temporary access to decryption services, and is sometimes referred to as a lunch-

time attack because it ‘mimics’ an adversary breaking in to a secret facility during the

lunch break to study and getting to temporarily test the decryption in general, but

not related to her problem specifically. An adaptive attack corresponds to the scenario

where an adversary, for example, has stolen a decryption machine. Obviously, CCA2 is

a stronger attack than CCA1, which itself is stronger than CPA, as the adversary has

more power [5].

The description of semantic security implicitly assumed a chosen plaintext attack. For

the CCA1 and CCA2 attacks the simulator runs as for the original CPA case, but the

adversary is different. For the CCA1 attack, the adversary may query the decryption

oracle polynomially many times after she is given the public key, but before she is given

the challenge ciphertext. Once the actual challenge is given to her, she loses access to

the decryption oracle. In the CCA2 attack, the decryption oracle is always available to

the adversary, though she is prohibited from asking the oracle to decrypt the challenge

ciphertext c, as this will result in a trivial win.

Although the goal of semantic security is a rather natural one, it is a bit cumbersome in

14 Introduction

practice, seeing as it is defined for all functions f expressing partial information of a mes-

sage. Semantic security has, however, been proven to be equivalent to the security goal

indistinguishability (IND) [32, 17]. This means that a scheme is SS-CPA/CCA1/CCA2

secure if and only if it is also IND-CPA/CCA1/CCA2 secure. Indistinguishability is a

bit less of a natural security goal, but much more practical to work with. This goal is

also captured in a game where the adversary is given the public information about the

encryption scheme she is attacking. If she is mounting a chosen ciphertext attack she

also has access to a decryption oracle she may query polynomially many times. She then

chooses two distinct messages m0,m1 of equal length, and she sends them to a chal-

lenger. This oracle encrypts one of the messages and sends the encryption c back to the

adversary. At this stage in the game she only has access to a decryption oracle if it is a

CCA2 attack, and if so, she may not query the oracle with her challenge ciphertext c.

Her task is to guess whether the challenger encrypted m0 or m1, and she wins the game

if she guesses correctly. Since she has a 50% chance of guessing correctly by a coin flip,

her advantage should only be negligibly better than 1/2.

Another security goal in addition to semantic security and indistinguishability is non-

malleability (NM). Whereas the two former goals relate to how much information is

leaked by the ciphertext, non-malleability relates to whether the adversary can mean-

ingfully manipulate the ciphertext. Slightly more formally: for a scheme to be non-

malleable, an adversary should only have negligible success when she is given a cipher-

text c encrypting an unknown message m and tasked with producing a ciphertext c′ and

a nontrivial relation R of her own choosing such that R(m,Pke.Dec(c′)) is true [5].

Combining any of the security goals mentioned with a type of attack presented gives

rise to a security notion: a scheme which achieves the goal semantic security under a

non-adaptive chosen ciphertext attack is an IND-CCA1 secure encryption scheme. As

previously mentioned, semantic security has been proven to be equivalent to indistin-

guishability. Furthermore, Bellare et al. [5] have proven that the security notion NM-

CCA2 is equivalent to IND-CCA2, and that if a scheme meets NM-CPA or NM-CCA1,

then that scheme also meets the security notion IND-CPA or IND-CCA1, respectively.

The described advances have moved the discussion of security somewhat away from the

trial and error based approach of the earlier history of cryptology. Instead, security

is proven under certain assumptions, and it is these assumptions which in turn are

attacked, not necessarily the schemes themselves. If an assumption proves to not hold,

for example the DDH assumption, then the schemes whose proof of security is built

on this assumption are possibly insecure. By basing security on established hardness

assumptions and intractable computations, the foundation is much sturdier and the

security clearer compared to before the 1940s, when security essentially boiled down to

1.4 Introduction to Advanced Asymmetric Cryptographic Primitives and
Their Security 15

‘it seems difficult to break the scheme, therefore it is’.

1.4 Introduction to Advanced Asymmetric Crypto-

graphic Primitives and Their Security

It was not just in the field of security analysis and proofs that strides were made after

the Second World War, though, also cryptography saw much progress. The invention of

both key exchange and asymmetric cryptography has already been mentioned, but these

were far from the only schemes being developed. One new type of cryptography that

may also be traced back to the seventies is what is known today as fully homomorphic

encryption (FHE), which was first suggested very briefly after the RSA cryptosystem

was proposed in 1978.

More specifically, Rivest, Adleman and Dertouzos presented the notion of ‘privacy homo-

morphisms’: “special encryption functions which permit encrypted data to be operated

on without preliminary decryption of the operands”[26]. It is highly likely that the

RSA cryptosystem inspired this notion, as RSA has the particular property of preserv-

ing multiplication of ciphertexts: Dec(Enc(m0) · Enc(m1)) = m0m1, where · denotes
the multiplication of ciphertexts and juxtaposition denotes the multiplication of plain-

texts. Following this, encryption schemes which support computation on encrypted data

became known as homomorphic encryption schemes. If an encryption scheme could sup-

port both addition and multiplication, it would be fully homomorphic, and one could

perform any computation on ciphertexts without needing to decrypt them first.

Any function, and therefore any computation, may be expressed as a circuit with ad-

dition and multiplication gates. A more precise phrasing of fully homomorphic encryp-

tion is therefore that such a scheme would be able to evaluate any circuit C such that

given encryptions c0, c1, . . . , ct of messages m0,m1, . . . ,mt, the evaluation of C given the

ciphertexts as input will output a valid encryption of C(m0,m1, . . . ,mt). The name ‘ho-

momorphic’ reflects this: the transformation by the function to the encrypted messages

should be equal regardless of whether it is performed before or after decryption [3, 14].

Rivest et al. provided examples of privacy homomorphisms, but they were all later

proven to be insecure, as an adversary would be able to recover the secret key [9].

Although several schemes able to homomorphically evaluate circuits with only addition

or multiplication gates were suggested over the years, a concrete fully homomorphic

encryption scheme was not suggested until Gentry did so in 2009 [14]. We give a formal

definition of fully homomorphic encryption here.

16 Introduction

Definition 2 (Fully Homomorphic Encryption [3, 14]) A fully homomorphic en-

cryption (FHE) scheme is given by a tuple (Fhe.Kg,Fhe.Enc,Fhe.Dec,Fhe.Eval) of prob-

abilistic algorithms running in polynomial time, where

� Fhe.Kg, the key generation algorithm, is an algorithm that takes a security parame-

ter n and outputs a triple (pk, sk, evk), where pk, sk are as for public key encryption

schemes, and evk is a key used for evaluation.

� Fhe.Enc, the encryption algorithm, is an algorithm that takes a public key pk and

a message m in the message spaceM as input and outputs a ciphertext c.

� Fhe.Eval, the evaluation algorithm, is an algorithm that takes as input an evaluation

key evk, a circuit C and a tuple of inputs that can be a mix of ciphertexts and

previous evaluation results. It produces an evaluation output.

� Fhe.Dec, the decryption algorithm, is an algorithm that takes a secret key sk and

either a ciphertext c or evaluation result as input, and outputs either a message m

or the invalid symbol ⊥.

As for public key encryption schemes, we require that an FHE scheme decrypts correctly:

for all messages m ∈ M, Pr[Fhe.Dec(sk,Fhe.Enc(pk,m)) = m] = 1. Furthermore, for

all circuits C and for all ciphertexts ci where mi ← Fhe.Dec(sk, ci) we require that the

circuit C is evaluated correctly,

Pr[Fhe.Dec(sk,Fhe.Eval(evk, C, c0, . . . , ct)) = C(m0, · · · ,mt)] = 1− ϵ(n),

where ϵ is a negligible function and n is the security parameter. Finally, an FHE scheme

should be compact: for any circuit C and any ciphertext ci, the size of the output

Fhe.Eval(evk, C, c0, . . . , ct) is polynomial in the security parameter n, and independent

of the size of the circuit.

Note that this definition requires that the scheme correctly evaluates any circuit, this

is what makes it fully homomorphic. If a scheme is only able to correctly evaluate

a restricted set of circuits, the scheme is a somewhat homomorphic encryption (SHE)

scheme, and a leveled homomorphic encryption scheme if it is able to correctly evaluate

any circuit C with up to L consecutive gates for some chosen L ∈ Z [3].

It is also important to note that the requirement of correct evalution in the definition

is for any circuit, singular. There is no inherent guarantee that the output of the eval-

uation algorithm is a valid input to the evaluation algorithm, hence the distinction of

ciphertext and evaluation output in the definition. In other words: staged evaluations

1.4 Introduction to Advanced Asymmetric Cryptographic Primitives and
Their Security 17

are not required to be correct. Any fully homomorphic encryption scheme which cor-

rectly evaluates any evaluation of i stages is said to be i-hop correct. This notion also

extends to somewhat and leveled homomorphic encryption schemes [3].

The starting point for Gentry’s FHE construction is an SHE scheme able to homomor-

phically evaluate its own decryption circuit. If a circuit is too deep for the SHE scheme

to evaluate homomorphically, the circuit is essentially broken up into ‘blocks’ so that

as much as possible of the circuit is evaluated, then the decryption circuit is evaluated,

then the next ‘block’ of the original circuit. Homomorphically evaluating the decryption

circuit essentially ‘refreshes’ the ciphertext, allowing it to be evaluated further. There is

no limit to how many times the ciphertext may be refreshed, which means any circuit

may be correctly evaluated homomorphically. The procedure of evaluating the decryp-

tion circuit homomorphically is known as ‘bootstrapping’, and is often a bottleneck in

the homomorphic evaluation. Note also that bootstrapping requires that an encryption

of the secret key is published, as it must be given as an input to the decryption circuit.

Every acknowledged FHE scheme to date has used Gentry’s blueprint of bootstrapping

an SHE scheme in order to achieve the fully homomorphic property [20].

Despite these homomorphic properties, a fully homomorphic encryption scheme is still

first and foremost an encryption scheme, and so the security notions for asymmetric cryp-

tography have been carried over to FHE schemes. Obviously, FHE schemes are specifi-

cally designed to be malleable, and they will therefore never be secure with respect to any

of the non-malleability security notions. Due to the equivalence with IND-CCA2, this

notion is also impossible to satisfy for schemes with any homomorphic property. Several

FHE schemes are proven to achieve IND-CPA, but the situation is more complicated for

the IND-CCA1 case, as is discussed at length in Article III [12] of this thesis.

So far, the topic has been that of ‘classical’ cryptology, for lack of a better term, where

the basic scenario is two people who want to send messages to each other no one else

should be able to read. Phrased differently: only authorized people should be able to

access the communication. This property is confidentiality, and it is the backbone of all

cryptographic schemes. However, there are many other properties one may wish for in

communication, and after the invention of asymmetric cryptography, the field has been

expanded to not just regard confidentiality.

The earliest example is the issue of authentication: to ensure that the person who

claims to have authored something is indeed the real author. This is tackled with

digital signatures, which may be regarded as a companion of asymmetric encryption,

and was introduced by Diffie and Hellman in the same article describing asymmetric

cryptography [11]. In digital signatures, the sender signs the message using her own

18 Introduction

private key, and the resulting signature may be publicly verified to be hers by the public

key, also called the verification key. The order of the private and public acts are switched

around compared to asymmetric encryption. Because of this close relationship between

asymmetric cryptography and digital signatures, Rivest, Shamir and Adleman were also

the first to suggest a concrete digital signature scheme, which was based on the RSA

cryptosystem.

The security of an encryption scheme is based on how easy it is for an adversary to

recover the key or the message, that is, how easy it is to breach the confidentiality of the

scheme. Similarly, since the main purpose of digital signature schemes is to verify the

authenticity of a signature, the security of signature schemes is based on how easy it is

for an adversary to forge a signature, and by doing so undermine the authenticity of the

signature scheme.

Just as for encryption schemes, a security notion for digital signature schemes is created

by demanding that a scheme obtains a security goal under a certain type of attack.

Unforgeability is the standard security goal of a signature scheme, with different flavours

of unforgeability, for example if the adversary is able to forge the signature of any

message, or merely a subset of messages. The different attacks range from the adversary

only knowing the public verification key, knowing the signatures of a subset of messages,

or being able to see the signature of any message of her choosing. The various security

notions for digital signature schemes were first formalised by Goldwasser, Micali and

Rivest in 1984 [19].

Confidentiality and authentication are possible to obtain separately, but is it possible to

create a scheme with both properties? The naive way is to simply encrypt the message,

and then sign the resulting ciphertext. It is possible to prove that this encrypt-then-

sign procedure preserves the security properties of both schemes as well as the public

verification of the digital signature. However, there is a more efficient alternative to this

naive approach: signcryption, which provides a single output which serves both as an

encryption of and a signature on a message. Signcryption comes in a variety of flavours,

with different security concerns for the different scenarios, for example if the scheme is

to be used by two or multiple users [10].

The different varieties of signcryption therefore have different security requirements, and

so further properties may be beneficial, in addition to confidentiality and authentica-

tion. One important such property is anonymity, meaning that a signcryption ciphertext

should not reveal any information about the originator of it to anyone but the intended

recipient. The reason anonymity arises as a security goal in signcryption is because in

the multi users scenario identities and unique keys must be assigned to users, and it is

1.4 Introduction to Advanced Asymmetric Cryptographic Primitives and
Their Security 19

conceivable that a signcryption ciphertext could reveal information about the key used,

and therefore the identity of the signer [4]. For asymmetric encryption, every sender

uses the same public key, and so this information leakage is not a concern, and a signa-

ture is designed so that anyone can publicly verify that it was created by a particular

secret key. Hence anonymity is not a concern in either asymmetric encryption or digital

signature schemes, and thus the security of signcryption is greater than the sum of its

parts.

A common theme in the security goals discussed so far is that ciphertexts or signatures

should be ‘honest’ somehow, for example that they should be non-malleable or impos-

sible to forge, respectively. But how is this possible? How is it possible to prove that

something is honestly generated, especially when this relates to whether something has

been generated using a secret key, for example a signature? In the presence of an adver-

sary with access to everything but the secret key, one way for the honest user to prove

that their signature is genuine is to prove that they know the secret key, but without

actually revealing said key.

Proving possession of knowledge without revealing the knowledge may be accomplished

by using a zero knowledge proof protocol, first suggested by Goldwasser, Micali and

Rackoff in 1985 [18]. In such a protocol, the prover Peggy wants to convince the verifier

Victor that she possesses some knowledge, but without actually sharing this knowledge

with Victor. In order to convince Victor, Peggy produces a proof that proves that she

knows what she claims, but nothing more. As is to be expected, there are several security

goals related to zero knowledge proof protocols, derived from the attacks one would want

to prevent. For example the goal of zero knowledge: that Victor should not be able to

extract any actual knowledge from the proof, and soundness: that Eve should not be

able to cook up a convincing proof that she possesses knowledge she in fact does not.

Zero knowledge proof protocols are a powerful tool to provide security in the face of

strong and dishonest adversaries, and the protocols have found several use cases as the

field has been developed. Examples of such cases include fully homomorphic encryption,

cryptocurrencies, electronic voting, and asymmetric encryption schemes both with and

without additional properties.

As with asymmetric encryption, the security of advanced cryptographic primitives often

relies on security reductions by demonstrating that if an adversary is able to undermine

some particular notion of security of the scheme, she is also able to solve some problem

which is believed to be hard. This may be phrased as “if the scheme does not achieve

the security notion, then the hardness assumption does not hold”. In this case, the

cryptanalysis of the scheme in question reduces to analyzing the hard problem it reduces

20 Introduction

to, because it follows that if the assumption does not hold, then the reduction does not

provide security. Although such a scenario is not enough to render a scheme insecure

in general, as there might be other reductions that do provide security, it is often the

case that schemes based on failed hardness assumptions are deemed insecure. Seeing as

several schemes may reduce their security to the hardness of the same problem, trying

to solve a particular hard problem is a more ‘general’ cryptanalysis than merely trying

to break one particular scheme.

However, recall that a particular security notion is a combination of an attack and a

security goal, and that just because a scheme achieves a particular goal in one attack

model, does not mean that it obtains it in another model, nor another goal in the same

attack model unless the two security notions are proven to be equivalent. It can be

relevant to study the security of a particular scheme for other notions than what is

captured by a particular reduction. In these cases, the specific scheme is analysed and

attacked with respect to the particular security notion. This is also the cryptanalytical

procedure for schemes that do not base their security on reductions, or base their security

on heuristics. Fully homomorphic encryption schemes are a good example of this, as

several schemes which are IND-CPA secure are demonstrably not IND-CCA1 secure,

and no scheme with any homomorphic property can achieve non-malleability in any

attack model, nor IND-CCA2 security. It follows that IND-CCA1 is the highest possible

security notion for FHE schemes. There are presently no concrete FHE/LHE/SHE

schemes that achieve IND-CCA1 security, and so analysing schemes with respect to this

security may determine if the notion is at all possible for these schemes. Cryptanalysis

may also provide important insights into how successful attacks may be thwarted for

future schemes.

Finally, it is important to stress that the cryptanalysis described so far is just one rather

theoretical aspect of cryptanalysis in general. There are many other aspects of security

to account for before exclaiming that a scheme is secure, as the way in which a particular

scheme is actually implemented and used may render even the strongest scheme insecure.

A famous example of this is the Soviets not using truly random keys, or even using a

key more than once, when encrypting messages with the unconditionally secure one-time

pad during the Second World War. This misuse of the scheme enabled messages to be

recovered from the ciphertexts [31]. All of which is to say that a reduction to a hard

problem is no guarantee that a cryptographic scheme is secure in a real world setting.

And so the historical cycle of cryptanalytical and cryptographic progress is set to con-

tinue, the progress of one field forcing the other to advance and improve. What has been

will be again, what has been done will be done again, but as we have seen, this cycle

does cause new innovations and improvements to appear under the sun.

1.5 Contribution 21

1.5 Contribution

We here briefly present the main findings of the four papers of the thesis, and how they

fit into the context of the four previous sections. There are two thematic parts, where

Article I, II, and III focus on the security of FHE/LHE/SHE schemes, and Article IV

defines a new asymmetric cryptographic primitive.

Article I [21] shows that the fully homomorphic encryption scheme RC [28] is susceptible

to a subfield lattice attack by Albrecht et al. [2], which recovers the secret key given only

the public information of the encryption scheme. The RC scheme based its proof of

security on the Decisional Small Polynomial Ratio (DSPR) problem, which is closely

related to the well-established NTRU problem, but sufficiently different for the attack

by Albrecht et al. to extend to RC, but not to schemes based on the NTRU problem.

Article I is, in short, an example of a scheme shown to be insecure because the scheme

reduces its security to a problem which is not sufficiently hard to provide security.

Furthermore, it is demonstrated that it is additional operations introduced to the scheme

to accommodate for the homomorphic properties which forces the security of the scheme

to reduce to the DSPR problem. Any attempt to avoid the subfield lattice attack

will therefore come at the expense of sacrificing the fully homomorphic property of the

scheme.

Article II [13] provides an adaptive key recovery attack on the leveled homomorphic

encryption scheme LGM [24]. The LGM scheme claimed to achieve security against such

an attack, but was unable to provide a proof of this security. At the time of publication,

the LGM scheme was the only LHE or SHE scheme which was believed to be secure

against adaptive key recovery attacks. Article II therefore falls into the other category

of cryptanalysis described in Section 1.4, as in this case it was the scheme itself, not an

underlying hardness assumption which was analysed and attacked.

The attack was implemented and ran on two realistic set of parameters for the scheme:

98.9% of the secret key was recovered after approximately 12 hours for one set, and the

entire secret key was recovered after 48 hours for the other set of parameters. The im-

plementation of the attack is open and available on GitHub [25].

Article III [12] provides an overview on all acknowledged FHE, LHE, and SHE schemes

with regards to IND-CCA1 security, and show that none of them are secure with respect

to this security notion. As alluded to in Section 1.4, IND-CCA1 security is where things

22 Introduction

get a bit complicated for homomorphic encryption schemes: there is no result stating

that FHE/LHE/SHE schemes cannot achieve IND-CCA1 security, yet several of them

are susceptible to key recovery attacks. Furthermore, any scheme which relies on boot-

strapping cannot be IND-CCA1 secure, since bootstrapping requires that an encryption

of the secret key is published. Therefore, an adversary with temporary access to a de-

cryption oracle may simply decrypt this ciphertext to recover the secret key and decrypt

any ciphertext without the oracle’s help. As mentioned in Section 1.4, all acknowledged

FHE schemes are based on Gentry’s blueprint, and therefore rely on boostrapping, hence

none of them are IND-CCA1 secure.

However, bootstrapping does not affect SHE and LHE schemes, and a handful of these

schemes have attempted to achieve IND-CCA1 security, or like LGM, security against

adaptive key recovery attacks. However, none of them have succeeded, and in fact most

SHE and LHE schemes do not aim for this level of security, and several have shown to

be susceptible to rather trivial attacks. Furthermore, the vulnerable schemes have been

developed further, without attempts to improve the security of them with respect to

IND-CCA1 security. The motivation of the paper is therefore to provide an assessment

of the security of these constructions, as well as schemes that are not based on earlier

schemes.

Article III extends already published key recovery attacks to new schemes, and also pro-

vides novel adaptive key recovery attack. We note that none of the attacked schemes

aimed at achieving IND-CCA1 security, and so Article III may therefore be regarded as

several examples of the final type of cryptanalysis mentioned in Section 1.4: analysing

schemes with respect to other security notions than they are designed to achieve. Fi-

nally, we also provide an overview of possible general constructions for IND-CCA1 secure

FHE/LHE/SHE schemes.

Article IV [22] presents a framework for Vetted Encryption (VE), a new cryptographic

primitive with three different variants. The common scenario for all three variants is the

following: a recipient vets which senders can send them messages by setting up a filter

which publicly verifies that a particular sender is in fact vetted. This filter receives a

single public key, and every vetted sender receives one personal encryption key.

The three variants are Anonymous, Identifiable and Opaque Vetted Encryption (AVE,

IVE and OVE), where the difference is whether the identity of the sender is revealed to

the filter and/or the recipient. In the AVE setting, the sender remains anonymous for

both the filter and recipient, whereas the sender is identifiable to both entities in IVE.

Both of these settings have great similarities to different variants of signcryption, and

1.5 Contribution 23

these similarities are also discussed in the article. Finally, in the OVE setting, the sender

is anonymous for the filter, but is identified to the recipient. This setting of VE is more

closely related to group signatures, and we also discuss these similarities.

We define security goals and notions for all three variants, and also provide general

constructions which achieve the defined security notions. All the constructions rely on

well-established cryptographic primitives such as public key encryption schemes, signa-

ture schemes, and zero knowledge proof protocols. As with signcryption, the security

goals of either version of vetted encryption are larger than the sum of their parts.

24 Introduction

Bibliography

[1] Alice and Bob: A History of The World’s Most Famous Cryptographic Couple.

http://cryptocouple.com. Accessed: 10.12.2021.

[2] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-

stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding

schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I,

volume 9814 of LNCS, pages 153–178. Springer, Heidelberg, August 2016.

[3] Frederik Armknecht, Colin Boyd, Christopher Carr, Kristian Gjøsteen, Angela

Jäschke, Christian A. Reuter, and Martin Strand. A guide to fully homomor-

phic encryption. Cryptology ePrint Archive, Report 2015/1192, 2015. https:

//eprint.iacr.org/2015/1192.

[4] Paulo S.L.M. Barreto, Benôıt Libert, Noel McCullagh, and Jean-Jacques

Quisquater. Signcryption Schemes Based on Bilinear Maps. In Alexander W. Dent

and Yuliang Zheng, editors, Practical Signcryption, pages 71–97. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2010.

[5] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations

among notions of security for public-key encryption schemes. In Hugo Krawczyk,

editor, CRYPTO’98, volume 1462 of LNCS, pages 26–45. Springer, Heidelberg,

August 1998.

[6] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. How to reduce your en-

emy’s information (extended abstract). In Hugh C. Williams, editor, CRYPTO’85,

volume 218 of LNCS, pages 468–476. Springer, Heidelberg, August 1986.

[7] Dan Boneh. The Decision Diffie-Hellman problem. In Joe P. Buhler, editor, Algo-

rithmic Number Theory, pages 48–63. Springer Berlin Heidelberg, 1998.

[8] Stefan A. Brands. An efficient off-line electronic cash system based on the repre-

sentation problem. CWI Technical report, CS-R9323, 1993.

26 BIBLIOGRAPHY

[9] Ernest F. Brickell and Yacov Yacobi. On privacy homomorphisms (extended ab-

stract). In David Chaum and Wyn L. Price, editors, EUROCRYPT’87, volume 304

of LNCS, pages 117–125. Springer, Heidelberg, April 1988.

[10] Alexander W. Dent and Yuliang Zheng. Practical Signcryption. Springer, Berlin,

Heidelberg, 2010.

[11] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, 22(6):644–654, 1976.

[12] Prastudy Fauzi, Martha Norberg Hovd, and H̊avard Raddum. On the IND-CCA1

Security of FHE Schemes. Cryptology ePrint Archive, Report 2021/1624, 2021.

https://eprint.iacr.org/2021/1624.

[13] Prastudy Fauzi, Martha Norberg Hovd, and H̊avard Raddum. A Practical Adaptive

Key Recovery Attack on the LGM (GSW-like) Cryptosystem. In Jung Hee Cheon

and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 12th International

Conference, PQCrypto 2021, pages 483–498, Springer, Cham, July 2021.

[14] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-

versity, 2009.

[15] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge

University Press, Cambridge, UK, 2001.

[16] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cam-

bridge University Press, Cambridge, UK, 2004.

[17] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28(2):270–299, 1984.

[18] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of

interactive proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[19] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme

secure against adaptive chosen-message attacks. SIAM Journal on Computing,

17(2):281–308, April 1988.

[20] Shai Halevi. Homomorphic Encryption. In Yehuda Lindell, editor, Tutorials on

the Foundations of Cryptography: Dedicated to Oded Goldreich, pages 219–276.

Springer, Cham, 2017.

[21] Martha Norberg Hovd. A Successful Subfield Lattice Attack on a Fully Homo-

morphic Encryption Scheme. In Stig Frode Mjølsnes and Ragnar Soleng, editors,

Proceedings of the 11th Norwegian Information Security Conference, Septemer2018.

BIBLIOGRAPHY 27

[22] Martha Norberg Hovd and Martijn Stam. Vetted encryption. In Karthikeyan Bhar-

gavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, INDOCRYPT 2020,

volume 12578 of LNCS, pages 488–507. Springer, Heidelberg, December 2020.

[23] Auguste Kerckhoff. La cryptographie militaire. Journal des Sciences Militaires,

pages 5–38, January 1883.

[24] Zengpeng Li, Steven D. Galbraith, and Chunguang Ma. Preventing adaptive key re-

covery attacks on the gentry-sahai-waters leveled homomorphic encryption scheme.

Cryptology ePrint Archive, Report 2016/1146, 2016. https://eprint.iacr.org/

2016/1146.

[25] H̊avard Raddum and Prastudy Fauzi. LGM-attack. Available at https://github.

com/Simula-UiB/LGM-attack, 2021.

[26] Ronald L. Rivest, Leonard M. Adleman, Michael L. Dertouzos, et al. On data

banks and privacy homomorphisms. Foundations of secure computation, 4(11):169–

180, 1978.

[27] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the Association

for Computing Machinery, 21(2):120–126, 1978.

[28] Kurt Rohloff and David Bruce Cousins. A scalable implementation of fully ho-

momorphic encryption built on NTRU. In Rainer Böhme, Michael Brenner, Tyler

Moore, and Matthew Smith, editors, FC 2014 Workshops, volume 8438 of LNCS,

pages 221–234. Springer, Heidelberg, March 2014.

[29] Mike Rosulek. The Joy of Cryptography. Online textbook. Available at https:

//joyofcryptography.com. Accessed: 10.12.2021.

[30] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Tech-

nical Journal, 28(4):656–715, 1949.

[31] Simon Singh. Koder. Aschehoug, Oslo, 2000.

[32] Yodai Watanabe, Junji Shikata, and Hideki Imai. Equivalence between semantic se-

curity and indistinguishability against chosen ciphertext attacks. In Yvo Desmedt,

editor, PKC 2003, volume 2567 of LNCS, pages 71–84. Springer, Heidelberg, Jan-

uary 2003.

28 BIBLIOGRAPHY

Chapter 2

Articles

30 Articles

Article I

2.1 A Successful Subfield Lattice Attack on a Fully

Homomorphic Encryption Scheme

Martha Norberg Hovd

In Stig Frode Mjølsnes and Ragnar Soleng, editors, Proceedings of the 11th Norwegian

Information Security Conference, September 2018. Presented by the candidate at NISK

in September 2018.

Version reproduced here in Cryptology ePrint Archive, Report 2021/1626, 2021. https:

//eprint.iacr.org/2021/1626.

The article is based on the Master’s thesis of the candidate, which was supervised by

Kristian Gjøsteen at NTNU.

A Successful Subfield Lattice Attack on a Fully

Homomorphic Encryption Scheme*

Martha Norberg Hovd1,2

1 Simula UiB, Norway
2 University of Bergen, Norway

Abstract

We present the application of a known subfield lattice attack on a fully homomorphic
encryption scheme based on NTRU. We show that the scheme is vulnerable to the attack
due to a particular parameter having to satisfy a derived lower bound. We also show that,
due to the structure of the scheme, the attack is successful in all practical instantiations
of the scheme.

1 Introduction

Fully homomorphic encryption (FHE) schemes are encryption schemes with the following prop-
erty: for any function f defined over the message space, Dec(Eval(f, c)) = f(Dec(c)), where
c = Enc(m) for a message m, and Eval is an evaluation algorithm. The first such scheme
was presented by Gentry in 2009 [4], and several schemes have been presented since. They
mostly follow the same structure and have the same starting point: an encryption scheme
where both multiplication and addition of freshly generated ciphertexts are homomorphic:
Dec(Enc(m1) + Enc(m2)) = m1 +m2, and Dec(Enc(m1)Enc(m2)) = m1m2 for two (possibly
distinct) messages m1,m2.

All these starting schemes add bounded randomness to the plaintext to obscure it, and
decryption is guaranteed to be correct so long as the randomness stays within the bounds
prescribed during set-up, meaning that an encryption of m will actually decrypt to m. This
bounded randomness is also referred to as ‘noise’. The problem is that as operations are per-
formed on a ciphertext, the noise may grow until it no longer respects the required bounds.
At this point, the noise is said to have become unmanageable, as we no longer have any guar-
antee of correct decryption. These schemes which allow for a limited amount of homomorphic
operations to be performed are merely somewhat homomorphic.

In order to have a fully homomorphic scheme the noise in the ciphertexts must be reduced,
which is usually achieved through a combination of operations. These operations may stunt
the growth of noise, or reduce it slightly, but it is not enough to provide an FHE scheme. To
create an FHE scheme, bootstrapping is applied: a homomorphic evaluation of the decryption
algorithm. Bootstrapping reduces the noise sufficiently to allow for homomorphic evaluation of
any function, but it is a very time-consuming procedure. It is therefore preferable to construct
an FHE scheme by relying on other strategies and using bootstrapping only as a last resort, as
a scheme heavily dependent on bootstrapping is very impractical.

In some cases, the somewhat homomorphic ‘starting scheme’ is based on a previous scheme,
but with different parameter settings, which may result in a less secure scheme. We show one
such example in this article, namely that the NTRU-based FHE scheme RC by Rohloff and
Cousins [8] is vulnerable to an attack by Albrecht et al. [1]. The RC scheme has different

*This paper appeared at the NISK 2018 conference.

parameter settings compared to the standard NTRU scheme to accommodate for the noise-
reducing operations needed to perform homomorphic operations. In particular, this means that
the attack by Albrecht et al. does not break the original NTRU encryption scheme.

2 Preliminaries

2.1 Notation

All vectors are row vectors and will be denoted with bold lower case letters: v,w, whilst matri-
ces will be denoted using bold upper case letters: A,B. Elements of either a vector, a matrix
or a polynomial ring will be denoted with a lower case letter in italics: a, b. Vectors will be
written as a = [a1, a2, . . . , an], whereas sets will be denoted by {0, 1, . . . }.

Multiplication of integers, or an integer and a vector or polynomial is denoted by simple juxta-
position: ab, av, af(x). Multiplication of a vector and a matrix will be denoted by a single dot:
v ·A, and finally, the multiplication of two polynomials will be denoted by an asterisk: f ∗ g.
Furthermore, this polynomial multiplication always takes place in some polynomial ring, and
the main motivation of the multiplicative notation is to serve as a reminder of this during com-
putations. It should be clear from the context whether or not a given element is a polynomial,
and any polynomial f will therefore, with very few exceptions, not be written f(x).

Let v,w be arrays of the same length k with elements from a polynomial ring R. We then
define the inner product of them as ⟨v,w⟩ = ∑k

i=1 vi ∗ wi ∈ R. In addition, we have the

following notation: for any two polynomials a =
∑n−1

i=0 aix
i, b =

∑n−1
i=0 bix

i, let [a, b] denote
the coefficient vector [a0, . . . , an−1, b0, . . . , bn−1].

The modular reduction p = r mod q reduces p modulo q to r ∈ (−q/2, q/2]. We also write
p ≡ r mod q if we wish to stress that p is equivalent to r modulo q: p = r+ kq, for k ∈ Z. The
notation generalizes to vectors and polynomials.

The Euclidean norm of an integer vector v is denoted by ∥v∥ =
√
v21 + v22 + · · ·+ v2n , whilst

∥ · ∥∞ denotes the infinity norm: ∥v∥∞ = max
i
{|vi|}. Supposing f is an integer polynomial,

∥f∥, ∥f∥∞ refers to calculating either norm of the coefficient vector of f .

For a probability distribution χ, x ← χ refers to drawing x according to χ. Furthermore,
any logarithm log will be to the base 2.

Finally, throughout this paper, the following lemma will prove quite useful.

Lemma 2.1. The following bound holds for any two elements a, b ∈ Z[x]/(xn + 1):

∥a ∗ b∥∞ ≤ n∥a∥∞∥b∥∞.

Proof. Seeing as ai ≤ ∥a∥∞, bi ≤ ∥b∥∞ ∀i ∈ {0, 1, . . . , n−1}, it follows that |aibj | ≤ ∥a∥∞∥b∥∞.
Since the polynomial is reduced with respect to xn+1, every product aibjx

i+j with i+ j ≥ n is
reduced to −aibjxi+j−n in the resulting polynomial ring element. Therefore, every coefficient
of a ∗ b is a sum of n terms aibj , and so it holds that ∥a ∗ b∥∞ ≤ n∥a∥∞∥b∥∞.

2

2.2 Lattices

Definition 2.2. Let {v1,v2, . . . ,vη} be a set of linearly independent vectors, with vi ∈ Rm

∀i ∈ {1, . . . , η}. The lattice L generated by v1,v2, . . . ,vη is the set of linear combinations of
these vectors with coefficients in Z:

L = {a1v1 + a2v2 + · · ·+ aηvη : a1, a2, . . . , aη ∈ Z}.

A basis for the lattice L is any set of independent vectors that generates L, and any two
such sets will have the same dimension. Suppose m = η, we may then represent a basis by a
square matrix (where the basis vectors form the rows of the matrix) and so we may calculate
the determinant of it. There are of course many possible bases of a lattice L, but as Proposition
6.14 of Hoffstein et al. [6] shows, any two bases of a lattice are related by an integer matrix
with determinant ±1. It follows from this result that for any two basis matrices B,B′ we have:
|det(B)| = |det(B′)|. In other words, the determinant of basis matrices is a lattice invariant,
defined as the determinant of the lattice.

Definition 2.3. Let L be a lattice of dimension η with basis B = {v1,v2, . . . ,vη}, where
vi ∈ Rη ∀i ∈ {1, 2, . . . , η}. The determinant of L is defined as

det(L) = |det(B)|.

Any vector v ∈ L has a (Euclidean) length, which we use to formulate the shortest vector
problem of a lattice L [6].

The shortest vector problem (SVP): Find a shortest nonzero vector in a lattice L, i.e. find a
nonzero vector v ∈ L that minimizes ∥v∥.

It may be shown that solving SVP is NP-hard under the randomized reduction hypothesis
[6]. Due to this proven hardness, SVP is used in cryptographic settings, so that breaking an
encryption scheme requires solving SVP for a certain instance. However, solving SVP precisely
is not always necessary; in some cases, it suffices to compute merely an approximation of the
vectors in question; that is, solving the following problem [6]:

Approximate-SVP: Let ψ(η) be a function of the lattice dimension η of a lattice L, with ∥v0∥ the
length of the shortest vectors in L. Find a nonzero vector v ∈ L such that ∥v∥ ≤ ψ(η)∥v0∥.

Of course, the length of the shortest vector v0 ∈ L is not always given, but an upper bound
on ∥v0∥ is always given by the following theorem:

Theorem 2.4 (Hermite’s Theorem (Theorem 6.25 [6])). Every lattice L of dimension η has at
least one nonzero vector v ∈ L satisfying ∥v∥ ≤ √η det(L)1/η.

Another result by Hermite is that for a given dimension η the Hermite’s constant γη is
the smallest value such that every lattice L of dimension η contains a nonzero vector v ∈ L
satisfying ∥v∥ ≤ √γη det(L)1/η. It follows that γη ≤ η [6]. Hermite’s constant is generally not
known. However, we may use the inequality to rephrase the approximate-SVP into the Hermite
Shortest Vector Problem [3]:

HSVP: Given a lattice L and an approximation factor α > 0, find a nonzero vector v ∈ L such
that ∥v∥ ≤ αdet(L)1/η.

3

The approximation factor α may be expressed as δη, where δ is known as the Hermite root
factor.

Of course, a solution to any of these problems is seldom apparent given a basis B for a lattice,
and the most efficient way of solving any of the presented problems is to find a basis which
contains the solution of either stated problem. This is known as basis reduction, and the main
algorithms are LLL [7] and its generalisation, BKZ [9], both of which are HSVP-algorithms [3].

LLL works by swapping two vectors in the basis and performing a reduction, whereas BKZ
works similarly, only with more than two vectors. The number of vectors BKZ works with is
known as the block size, denoted by β. The larger β is, the more precise the result of BKZ will
be. Although the algorithms are not fully understood, it is known that BKZ outperforms LLL.
BKZ also performs much better, both with respect to time and the resulting approximation
factors, than any theoretical bound predicts [3].

2.3 An Introduction to NTRU and its Security

The original NTRU encryption scheme is defined over the polynomial ring Z[x]/(xN −1) for an
integer N . The integer q > 1 is an additional parameter of the scheme, as most operations are
performed modulo q [5]. We present the idea of a key recovery attack on NTRU here because
it is the basis of a security argument for the RC scheme.

We present enough details of the NTRU-based scheme RC here to discuss a possible key
recovery attack on it, and defer a full presentation to Section 4. The scheme follows the general
structure of NTRU quite closely, the main difference is that the RC scheme is defined over the
polynomial ring R = Z[x]/(xn + 1), for n = 2k. The secret key of the scheme is a polynomial
f ← χ, for a distribution χ over R, and f must be invertible modulo q. The public key is
defined as h = f−1 ∗ g mod q, for the polynomial g ← χ.

One way to try to find the secret key f given only the public information q, n and h is to
reformulate the problem into one based on lattices. This is done by constructing a 2n×2n basis
matrix for a lattice LNTRU. For an NTRU public key polynomial h(x) = h0 + · · ·+ hn−1x

n−1,
the basis matrix of the lattice LNTRU is:

BNTRU =




1 0 . . . 0 h0 h1 . . . hn−1

0 1 . . . 0 −hn−1 h0 . . . hn−2

...
...

. . .
...

...
...

. . .
...

0 0 . . . 1 −h1 −h2 . . . h0
0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . q




.

Recall that h = g ∗ f−1 and f ∗ f−1 = 1 + qf ′, so we must have f ∗ h = g + qu for some
polynomial u = g ∗ f ′.

Proposition 2.5. For the polynomials f, g and u as described above, we have: [f,−u]·BNTRU =
[f, g].

Proof. The n first coefficients of the resulting vector of [f,−u] ·BNTRU are obviously f . Coef-

4

ficient n+ 1 + k, for k ∈ {0, 1, . . . n− 1} is expressed as:

n−1∑

i,j=0
i+j=k

fihj −
n−1∑

i,j=0
i+j=k+n

fihj − quk = gk + quk − quk = gk,

where the fact that xn is equivalent to −1 in R = Z[x]/(xn + 1) has been applied. Hence,
[f,−u] · BNTRU = [f, g], which means that [f, g] belongs to LNTRU, since the vector may be
expressed as a linear combination of the basis vectors of LNTRU using only integers.

Supposing [f, g] is among the shortest vectors in the lattice LNTRU, it follows that if an
adversary is able to solve SVP in LNTRU, she is able to compute f based solely on public
information, and thus break the scheme. Furthermore, any pair of polynomials [f̄ , ḡ] with
sufficiently small coefficients satisfying the relation f̄ ∗ h ≡ ḡ mod q will also suffice, as will
probably any solution to approximate-SVP for an approximation factor smaller than

√
n [6].

Thus, recovering the secret key f of the encryption scheme reduces to solving approximate-SVP
for the lattice LNTRU. We stress again that the vector [f, g] being among the shortest vectors
in the lattice LNTRU is a condition for this strategy to work.

3 Subfield Lattice Attack

There may be more efficient attacks than applying LLL or BKZ on the lattice basis, depending
on the properties of the scheme. We present one such attack here, by Albrecht et al. [1].

3.1 Algebraic Background

Let K = Q[ω] be a field, for a root of unity ω of order 2n, for n a power of 2, and let L be
a subfield of K such that L = Q[ω′], for ω′ a root of unity of order 2n′, where n′ ≤ n is also
a power of 2, and define ρ = n/n′. These fields will have rings of integers Z[ω] and Z[ω′],
respectively. These rings of integers may be shown to be isomorphic to the polynomial rings
R = Z[x]/(xn + 1) and R′ = Z[x]/(xn′

+ 1) [1].
We know from Galois theory that there is a Galois group G′ of automorphisms {φi} on

K that fixes L pointwise [1]. Using these automorphisms, we may define the norm function
NK/L : K→ L, as NK/L(a) =

∏
φi∈G′ φi(a).

3.2 The Attack

Given an instance of an NTRU-based encryption scheme, with sk = f and pk = h = f−1 ∗g, we
define f ′ = NK/L(f), g

′ = NK/L(g), h
′ = NK/L(h) and a new lattice L′

NTRU defined by h′ and q
as described in Section 2.3. The approach of the attack is to find a short vector [x′, y′] ∈ L′

NTRU

by performing LLL on the basis B′
NTRU and lift this vector up to [x, y] in the original lattice,

using the canonical inclusion map. If the vector [x′, y′] has certain properties, the vector [x, y]
will be short in LNTRU, and might therefore function as a secret key.

The actual attack rests on the following heuristic:

Heuristic 3.1. [Heuristic 1 [1]] For any n and any f, g ∈ R with reasonable isotropic
distribution of variance σ2 and any constant c > 0, there exists a constant C such that ∥f ′∥ ≤
(σnC)ρ and ∥g′∥ ≤ (σnC)ρ, except with probability O(n−c).

5

Moreover, Theorem 1 of Albrecht et al. [1] assures us of the existence of a lattice reduction
algorithm with block-size β which is able to find a vector [x′, y′] ∈ R′ such that ∥[x′, y′]∥ ≤
βΘ(n′/β)∥v0∥ when applied to the basis of the lattice L′

NTRU, where ∥v0∥ denotes the length of
the shortest vectors in the lattice. When combined with the observation that ∥v0∥ ≤ ∥[f ′, g′]∥
and Heuristic 3.1, we conclude that there exists a lattice reduction algorithm which with high
probability is able to find a vector [x′, y′] ∈ R′ such that

∥[x′, y′]∥ ≤ βΘ(n/βρ)∥[f ′, g′]∥ ≤ βΘ(n/βρ)(nσ)Θ(ρ).

Furthermore, we also have the following theorem:

Theorem 3.2. [Theorem 2 [1]] Let f ′, g′ ∈ R′ be such that ⟨f ′⟩ and ⟨g′⟩ are coprime ideals1

and h′ ∗ f ′ = g′ mod q for some h′ ∈ R′. If [x′, y′] ∈ L′
NTRU has length satisfying

∥[x′, y′]∥ < q

∥[f ′, g′]∥ , (1)

then [x′, y′] = v[f ′, g′] for some v ∈ R′.

Based on the result derived from Heuristic 3.1 and Theorem 1 of Albrecht et al. [1], we
conclude that for bound (1) to hold, and therefore for the attack to succeed, it suffices that

βΘ(n/βρ)(nσ)Θ(ρ) ≤ q. (2)

Once the vector [x′, y′] is found, we lift x′, y′ ∈ R′ to R using the canonical inclusion map
L : L→ K:

x = L(x′) = L(v) ∗ L(f ′),
y = L(y′) ∗ h/L(h′) mod q = L(v) ∗ L(g′) ∗ h/L(h′) mod q,

Here, v is as in Theorem 3.2. For simplicity, we set f̃ = L(f ′)/f , g̃ = L(g′)/g and h̃ = L(h′)/h;
we then have

x = L(v) ∗ f̃ ∗ f mod q

y = L(v) ∗ L(g′)/h̃ = L(v) ∗ g ∗ g̃/h̃ = L(v) ∗ f̃ ∗ g mod q

⇒ [x, y] = u ∗ [f, g] ∈ LNTRU with u = L(v) ∗ f̃ ∈ R.
In other words: the subfield attack finds a (small) multiplicative of [f, g] under certain reason-
able assumptions.

4 A Fully Homomorphic Encryption Scheme
based on NTRU

4.1 The Somewhat Homomorphic Encryption Scheme

We now state the RC encryption scheme by Rohloff and Cousins [8]. The scheme is defined
over the polynomial ring R = Z[x]/(xn + 1), for n a power of 2. The scheme has the integer
parameters q, p, chosen such that q ≫ p ≥ 2 and gcd(p, q) = 1. Given these integers, the rings
Rp = Zp[x]/(xn+1) and Rq = Zq[x]/(xn+1) are defined as the message and ciphertext space,
respectively. In addition, the probability distribution χ over Rq is defined, which will typically
be some discrete Gaussian distribution. The scheme consists of the following operations:

1Albrecht et al. note that the probability of ⟨f ′⟩ and ⟨g′⟩ being coprime is roughly 3/4, and also that
coprimality does not seem strictly necessary for the attack to be successful in practice [1].

6

KeyGen: Draw f ← χ such that f ≡ 1 mod p and ∃f−1 mod q. Draw g ← χ as well, and
output pk = h = g ∗ f−1 mod q and sk = f .

Enc(pk = h,m ∈ Rp): Draw e, r ← χ such that e ≡ m mod p.
Output c = pr ∗ h+ e mod q, d = 1.

Dec(sk = f, c ∈ Rq, d): Compute b̄ = fd ∗ c mod q and lift this to the integer polynomial b ∈ R
with coefficients in (−q/2, q/2]. Output m = b mod p.

EvalAdd(c0, c1, d0, d1): Output: c = c0 + c1 mod q, d = max(d0, d1).

EvalMult(c0, c1, d0, d1): Output: c = c0 ∗ c1 mod q, d = d0 + d1.

The two latter operations are the homomorphic operations, and it is also these that necessi-
tate the notion of the degree d of a ciphertext, which denotes the power of f−1 in the ciphertext.
Note that fk ∗ b = m mod p for any power k ≥ 0, whilst this is not necessarily the case for f−1,
as there is no guarantee that f−1 = 1 mod p. Therefore, the decryption procedure will decrypt
any ciphertext of degree at most the given d, assuming fd ∗ c = fk ∗ b mod q, which is why d
is set as max(d0, d1) in EvalAdd.

The polynomials f, g, r and e must be chosen so that they ensure correct decryption, so χ
should have parameters ensuring that these polynomials are ‘short enough’. What precisely
this entails will be discussed at some length throughout this section. Essentially: we derive
bounds the coefficients of these polynomials should satisfy to ensure correct decryption, even
after the noise reducing operations have been performed on a ciphertext. The resulting bounds
will be used to derive a final bound on q.

We start with the lower bound to be met on the coefficients of the polynomials f, g, r and
e which ensures correct decryption of a freshly generated ciphertext.

Proposition 4.1. If every coefficient of the polynomials f, g, r and e is strictly less than
√

q
4pn ,

any freshly generated ciphertext will be decrypted correctly.

Proof. The decryption of c = pr ∗h+e mod q proceeds as follows, when viewed as an operation
in R, as opposed to Rq:

b̄ = f ∗ c = f ∗ (pr ∗ h+ e) = pf ∗ r ∗ g ∗ f−1 + f ∗ e
= pq ∗ r ∗ g ∗ f ′ + pr ∗ g + f ∗ e,

where f ∗f−1 = qf ′+1. Consider the polynomial pr∗g+f ∗e in R. To ensure correct decryption,
every coefficient of this polynomial should have absolute value less than q/2, or else the result

is b = pr ∗ g + f ∗ e − q∑n−1
i=0 aix

i where some ai ̸= 0 and hence, b mod p need not equal m.
Therefore, if the inequlity ∥pr ∗ g + f ∗ e∥∞ < q/2 is satisfied, any freshly generated ciphertext
is decrypted correctly. Using the triangle inequality and Lemma 2.1, we may compute:

∥pr ∗ g + f ∗ e∥∞ ≤ ∥pr ∗ g∥∞ + ∥f ∗ e∥∞
≤ pn∥r∥∞∥g∥∞ + n∥f∥∞∥e∥∞
≤ pn∥r∥∞∥g∥∞ + pn∥f∥∞∥e∥∞ ≤ 2pnB2, (3)

for B a bound on the largest coefficient of r, g, f and e. If we assume (3) is less than q/2, then
any fresh ciphertext will decrypt correctly. This assumption is true if the polynomials r, g, f

and e are sampled from a distribution χ such that any coefficient is strictly less than
√

q
4pn .

7

4.2 Noise Reductions

The RC scheme uses key switching, ring reduction, modulus switching and bootstrapping as
strategies to reduce the noise of a ciphertext, and thus turn the somewhat homomorphic scheme
into a fully homomorphic encryption scheme. However, only key switching and modulus switch-
ing are being performed after every multiplication; we therefore only focus on these two oper-
ations in the following.

Note that this, strictly speaking, only makes the scheme presented here leveled homomor-
phic, as we need bootstrapping to make it truly fully homomorphic. Nevertheless, we refer
to the scheme presented here as a fully homomorphic scheme, mainly to separate it from the
‘starting scheme’ presented in Section 4.1, and refer the interested reader to Rohloff and Cousins
for details on the bootstrapping procedure [8].

4.2.1 Key Switching

Key switching converts a ciphertext of degree at most d encrypted under f1 into a ciphertext
of degree 1 encrypted under the secret key f2. This procedure requires a hint, namely a1→2 =
ā ∗ fd1 ∗ f−1

2 mod q, for χ → ā ≡ 1 mod p. Given the hint, the actual key switching is the
following procedure:

KeySwitch(c1, a1→2): Output: c2 = a1→2 ∗ c1 mod q.

Proposition 4.2. Suppose c1 is an encryption of m under f1 of degree d which decrypts
correctly: Dec(f1, c1, d) = m. If every coefficient of f1, f2, g, r, e and ā is strictly less than

(q
2d+1pdn2d

)
1

2d+1 , then Dec(f2, c2, 1) = m, with a1→2 and c2 generated according to the above
KeySwitch procedure.

Proof. Decryption of c2 results in:

b̄2 = f2 ∗ c2 = f2 ∗ a1→2 ∗ c1 = f2 ∗ ā ∗ fd1 ∗ f−1
2 ∗ c1

≡ ā ∗ fd1 ∗ c1 ≡ ā ∗ b̄1 mod q

If the inequality ∥ā∗ b̄1∥∞ < q/2 holds, decryption is guaranteed to be correct, i.e., b2 = ā∗b1 =
ā ∗m = m mod p.

Seeing as c1 is a ciphertext of degree d, it must be the result of d − 1 multiplications so,
without loss of generality, let b̄1 = fd1 ∗ (pr ∗ g ∗ f−1

1 + e)d mod q. If ∥ā ∗ b̄1∥∞ < q/2 holds, it
is the case that:

∥ā ∗ fd1 ∗ (pr ∗ g ∗ f−1
1 + e)d∥∞ = ∥ā ∗ fd1 ∗

d∑

i=0

(
d

i

)
piri ∗ gi ∗ f−i1 ∗ ed−i∥∞

= ∥ā ∗
d∑

i=0

(
d

i

)
piri ∗ gi ∗ fd−i1 ∗ ed−i∥∞

By Lemma 2.1 :

≤ n2d∥ā∥∞
d∑

i=0

(
d

i

)
pi∥r∥i∞∥g∥i∞∥f∥d−i∞ ∥e∥d−i∞

≤ pdn2dB2d+1
d∑

i=0

(
d

i

)
= 2dpdn2dB2d+1 < q/2.

8

Here, B is a bound on the largest coefficient in ā, r, g, f and e, and the condition of B being

strictly less than (q
2d+1pdn2d

)
1

2d+1 to ensure correct decryption after switching keys immediately
follows.

It follows that key switching should be performed after every multiplication to minimize this
bound. In the case d = 2 we have:

B5 <
q

8p2n4
. (4)

4.2.2 Modulus Switching

Modulus switching converts a ciphertext from modulus q to a smaller modulus, q̄ = q/q′ for
some factor q′ of q, by essentially dividing the ciphertext by q′. This operation will reduce the
underlying noise of the ciphertext by a factor of approximately q′. The operation works by
adding ∆, a small multiple of p equivalent to −c modulo q′, to the ciphertext c, so c + ∆ is
divisible by q′. This should only cause a slight increase in the noise of the ciphertext, and thus
ensure that the underlying message is preserved. Seeing as q′|q, it follows that gcd(q′, p) = 1⇒
∃v s.t. v = (q′)−1 mod p. The procedure ModSwitch(c, q, q′) is performed as follows:

1. Compute a short ϱ ∈ R such that ϱ = c mod q′.

2. Compute a short ∆ ∈ R such that ∆ = (q′v − 1)ϱ mod (pq′).

3. Let ϱ′ = c+∆ mod q. Note that q′ divides ϱ′ by construction.

4. Output c′ = (ϱ′/q′) ∈ Rq̄.

Note that the final step indirectly multiplies ϱ with v, which is easily compensated for by either
multiplying with q′ in the final step of the decryption procedure or ensuring that q′ ≡ 1 mod p.

Proposition 4.3. Suppose c is an encryption of degree 1 of the message m under the secret
key f . Let c′ = ModSwitch(c, q, q′). If every coefficient of f, g, r and e is less than or equal to

B, which satisfies 1
q′ (2pnB

2 + nB pq′

2) < q
2q′ , then vDec(f, c, 1) = Dec(f, c′, 1).

Proof. Let q̄ = q/q′. As ϱ = c mod q′ and v = (q′)−1 mod p, we may write

ϱ = c− q′l for l ∈ R, q′v = 1 + pk for k ∈ Z.

Following the procedure, we have2:

(q′v − 1)ϱ = pk(c− q′l) = pkc− pq′kl.
⇒ ∆ = pkc− pq′s for s ∈ R, as R ∋ ∆ = (q′v − 1)ϱ ≡ pkc mod pq′.

ϱ′ = c+∆ mod q = c+ pkc− pq′s = (1 + pk)c− pq′s
≡ q′vc− pq′s mod q.

c′ = ϱ′/q′ ≡ vc− ps mod q̄.

If the inequality ∥vc− ps∥∞ < q̄/2 is satisfied, decryption is correct:

f ∗ c′ = vf ∗ c− pf ∗ s = v(pr ∗ g(qf ′ + 1) + f ∗ e)− pf ∗ s ∈ R

2Throughout this proof, pk denotes p multiplied with k, not the public key.

9

≡ vpg ∗ r + vf ∗ e− pf ∗ s mod q̄

If the inequality ∥vf∗e+vpg∗r−pf∗s∥∞ < q̄/2, is respected, we will have: (f∗c′ modq̄) modp =
vm, and decryption of c′ will be correct. Thus, the following expression should be satisfied for
correct decryption:

∥f ∗ c′∥∞ = ∥f ∗ (c+∆)/q′∥∞ ≤
1

q′
(∥f ∗ c)∥∞ + ∥f ∗∆∥∞)

We use c = p ∗ r ∗ g ∗ f−1 + e as well as Lemma 2.1 and derive:

1

q′
(∥pg ∗ r + f ∗ e∥∞ + ∥f ∗∆∥∞) ≤ 1

q′
(2pnB2 + nB∥∆∥∞)

≤ 1

q′
(2pnB2 + nB

pq′

2
) < q/2q′. (5)

4.3 ComposedEvalMult and the Growth of q

The operation ComposedEvalMult is simply the sequential execution of EvalMult, KeySwitch
and ModSwitch.

Proposition 4.4. Suppose c0, c1 are encryptions of messages m0,m1, respectively, under the
public key h = g ∗ f−1

1 , both of degree 1. Correctness of ComposedEvalMult means

Dec(f2,ComposedEvalMult(c0, c1), 1) = Dec(f1, c0, 1) ∗Dec(f1, c1, 1),

where f2 is the new secret key after KeySwitch has been performed. The condition for correct
decryption is that the polynomials f1, f2, g, r0, r1, e0, e1 and ā are drawn from a distribution χ
so that their largest coefficient is smaller than B, and that B satisfies

1

q′
(4p2n4B5 + nB

pq′

2
) <

q

2q′
.

Proof. Based on the proofs of propositions 4.2 and 4.3, it follows that

f2 ∗ ComposedEvalMult(c0, c1) ≡ b̄ mod q̄,

where b̄ = m0 ∗m1 mod p. What needs to be calculated is the bound the drawn polynomials
should satisfy so the noise added during multiplication and switching keys is sufficiently lowered
by switching the modulus. The ciphertext ComposedEvalMult(c0, c1) outputs is of the form
c = 1

q′ (a1→2 ∗ c0 ∗ c1 +∆) for a factor q′ of q. We have the following:

f2 ∗ c = f2 ∗
1

q′
(a1→2 ∗ c0 ∗ c1 +∆)

=
1

q′
f2 ∗ (ā ∗ f−1

2 ∗ f21 ∗ (pr0 ∗ g ∗ f−1
1 + e0)(pr1 ∗ g ∗ f−1

1 + e1) + ∆)

= . . . ≡ 1

q′
(p2ā ∗ r0 ∗ r1 ∗ g2 + pā ∗ r0 ∗ g ∗ f1 ∗ e1

+ pā ∗ r1 ∗ g ∗ f1 ∗ e0 + ā ∗ f21 ∗ e0 ∗ e1 + f2 ∗∆) = b′ ≡ b̄ mod q̄.

10

If the inequality ∥b′∥∞ < q̄/2 holds, the equality b′ = b̄ also holds. To achieve a bound on the
coefficients of the polynomials, we use Lemma 2.1 and set

∥ā∥∞ = ∥r0∥∞ = ∥r1∥∞ = ∥g∥∞ = ∥f1∥∞ = ∥f2∥∞ = ∥e0∥∞ = ∥e1∥∞ = B,

and we compute:

∥b′∥∞ ≤
1

q′
(p2n4B5 + 2pn4B5 + n4B5 + nB∥∆∥∞)

≤ 1

q′
(4p2n4B5 + nB

pq′

2
). (6)

If 1
q′ (4p

2n4B5 + nB pq′

2) is less than q
2q′ , ComposedEvalMult outputs a ciphertext guaranteed

to be decrypted correctly.

Given this final bound on all the coefficients of the noise-inducing polynomials, we may use
it to derive the final bound on q. This bound will depend on other parameters of the scheme
and the probability distribution χ, and if the bound is satisfied decryption will be correct.

Suppose any of the polynomials affecting the noise level are drawn from a discrete Gaussian
distribution with parameter r, and set w as an assurance measure so that it is highly improbable
for any polynomial drawn from this distribution to have an Euclidean length greater than rw.
It follows that we may set a bound on the infinity norm of any such distributed polynomial as
rw√
n
. Using this bound and expression (6), we set the condition that

1

q′
(4p2n4(

rw√
n
)5 + n

rw√
n

pq′

2
) =

1

q′
(4p2n1.5r5w5 +

1

2
pq′
√
n rw) < q/2q′

should be satisfied for decryption to be correct after a call to ComposedEvalMult.
Assuming that 4p2n1.5r5w5 < q′ holds, it follows from the condition above that 1 +

1
2p
√
n rw < q/2q′. Furthermore, q/q′ ≥ q1 for q1 the smallest factor of q and thus also the

smallest possible ciphertext modulus. In theory, q1 could be significantly smaller than the
other factors of q, as q1 can be set as the final ciphertext modulus, which would not be sub-
jected to a modulus switching. We would therefore only require q1 to be large enough to decrypt
ciphertexts that have undergone D modulus switchings. A more practical approach however,
is to set the following universal bound for any factor of q, as Rohloff and Cousins, and we do:

qi > 4p2r5w5n1.5. (7)

We may therefore conclude that if all factors of q satisfies bound (7), the noise is sufficiently
reduced to ensure correct decryption of any freshly generated ciphertext and output of Com-
posedEvalMult, given that the input ciphertexts has at most the same noise level as any freshly
generated ciphertexts for the current ciphertext modulus q̄. Hence, q should satisfy the following
lower bound, as not doing so might result in an incorrect decryption:

q > (4p2r5w5n1.5)D+1. (8)

5 Subfield Lattice Attack on the NTRU-based
Fully Homomorphic Encryption Scheme

5.1 Applicability and Success of the Attack

It remains to be shown that the attack of section 3 is applicable to the RC scheme, and that
the attack will be successful.

11

We note first that Albrecht et al. state in particular that Heuristic 3.1 holds for the Gaussian
distribution [1], which is the distribution suggested for the RC scheme [8]. The attack is
therefore applicable to the RC scheme.

However, as emphasized in the final paragraph of Section 2.3, an attack based on solving the
SVP or approximate-SVP for the lattice LNTRU rests on the assumption that [f, g] is among the
shortest vectors in this lattice. This assumption must hold for the attack to produce a vector
which can be used as a secret key. The assumption does in all likelihood hold, as the following
proposition shows:

Proposition 5.1. With overwhelming probability, the vector [f, g] is one of the shortest vectors
in the lattice LNTRU.

Proof. Recall Theorem 2.4: the length of the shortest vector in any lattice L is at most√
η det(L)1/η. For LNTRU, we get ∥v0∥ ≤

√
2n (qn)1/2n =

√
2nq .

We may calculate a bound on ∥[f, g]∥, using the upper bound ∥f∥∞, ∥g∥∞ <
√

q
4pn , derived

in the proof of Proposition 4.1:

∥[f, g]∥ =
√
f20 + . . . f2n−1 + g20 + · · ·+ g2n−1 ≤

√
2n

(√ q

4pn

)2

=

√
q

2p
.

Comparing the two bounds, we have:
√

q
2p

/√
2nq =

√
1

4pn ≪ 1. Thus, seeing as the bound

on ∥[f, g]∥ is much smaller than the Hermite bound, it is highly probable that [f, g] is one of
the shortest vectors in LNTRU.

Thus, the attack is applicable to the RC scheme, and it will produce a vector usable as a
secret key with overwhelming probability.

Regarding the success of the attack: recall bound (2) of Section 3.2:

βΘ(n/βρ)(nσ)Θ(ρ) ≤ q,

satisfaction of which ensures that the attack succeeds. The bound being satisfied is more likely
as q grows larger with respect to n, i.e., the more factors q consists of, allowing for more
CompEvalMult operations to be performed, the more likely the bound is to be satisfied.

If D modulus switchings are possible, then q will be of size (4p2r5w5n1.5)D+1, in accordance
with bound (8). Allowing for D modulus switchings is desireable as it allows for at most D
multiplications to be performed before needing to bootstrap. The success of the attack therefore
hinges on whether the parameters also result in q satisfying bound (2). As the next subsection
shows, the attack is successful for an extensive range of parameters, as q does satisfy bound (2)
more often than not, and that setting the parameters in such a way that the attack fails results
in an impractical encryption scheme.

5.2 Results

Albrecht et al. carried out experiments to test their attack on actual systems [1], which is
neccessary due to a lack of understanding of the performance of the basis reduction algorithms
LLL and BKZ. The experiments were carried out on NTRU bases over the ring R = Z[x]/(xn+
1), for n a power of 2, which means that the experimental results are transferable to the
RC scheme. We may therefore use the experimental data given by Albrecht et al. [1] to

12

judge how successful such an attack may be on the RC scheme. We set the following values:
p = 2, r = w = 6, which are the parameter values Rohloff and Cousins suggest [8].

For example, a successful attack was carried out in 3.5 hours for n = 211 when log(q) ≥ 165,
which corresponds to D = 3, for q = (4p2r5w5n1.5)D+1 for the RC scheme. To achieve the
same success by running BKZ on the full lattice (that is, not exploiting the possibility of
using the sub-field strategy), an attacker would have to run BKZ with block size 27 to achieve
δ = 1.0141. For this block-size, BKZ is still considered practical, and the subfield lattice attack
might therefore not be too big an improvement in this specific instance [2].

The highest dimension the attack was carried out in was n = 212, with success for log(q)
as low as 190, yet again corresponding to D = 3, with the same parameter values as before.
This attack took 120 hours, whereas a direct attack on the full lattice would require running
BKZ with block size 131 to achieve δ = 1.0081, an attack that seems unfeasible at this point,
as β = 131 is much too large a block-size to be practical [2].

It follows from these utilizations of the attack that the RC scheme must be considered
insecure if the scheme is also to make meaningful use of the noise reduction strategies presented.
Note also that the subfield attacks used LLL to reduce the subfield basis. Therefore it seems
reasonable to expect better attacks if BKZ was used on these bases instead, as BKZ consistently
outperforms LLL.

6 Conclusions

We have shown that the subfield lattice attack described by Albrecht et al. [1] can be applied
to the NTRU-based fully homomorphic encryption scheme RC by Rohloff and Cousins [8]. The
attack requires the integer parameter q of the encryption scheme to satisfy a lower bound in
order to be successful. At the same time, utilization of necessary operations that reduce the
noise in a ciphertext also requires q to satisfy a second lower bound, which is typically much
larger than the one required for the attack to be applicable. For the scheme to be safe from
the attack, the parameters of the scheme make it very impractical, and essentially unusable,
as it would result in a scheme overly dependent on bootstrapping. Thus, we conclude that the
susceptibility of the described attack is inevitable, for all intents and purposes, if the scheme is
to make meaningful use of its noise reducing operations.

References

[1] M. R. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on overstretched NTRU assumptions
- cryptanalysis of some FHE and graded encoding schemes. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18,
2016, Proceedings, Part I, pages 153–178, 2016.

[2] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, pages 1–20, 2011.

[3] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages 31–51, 2008.

[4] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009.

[5] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key cryptosystem. In
Algorithmic Number Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings, pages 267–288, 1998.

13

[6] J. Hoffstein, J. Pipher, J. H. Silverman, and J. H. Silverman. An introduction to mathematical
cryptography. Springer New York, second edition, 2014.

[7] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische annalen, 261:515–534, 1982.

[8] K. Rohloff and D. B. Cousins. A scalable implementation of fully homomorphic encryption built
on NTRU. In Financial Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages 221–234,
2014.

[9] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theoretical
computer science, 53(2-3):201–224, 1987.

14

46 Articles

Article II

2.2 A Practical Adaptive Key Recovery Attack on

the LGM (GSW-like) Cryptosystem

Prastudy Fauzi, Martha Norberg Hovd and H̊avard Raddum

In Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 12th

International Conference, PQCrypto 2021, pages 483-498, Springer, Cham, July 2021.

Presented by the candidate at PQCrypto in July 2021.

Version reproduced here in Cryptology ePrint Archive, Report 2021/658, 2021. https:

//eprint.iacr.org/2021/658.

The development of the attack, writing and editing was split equally between the authors.

The candidate did not contribute to the implementation of the attack.

A Practical Adaptive Key Recovery Attack on
the LGM (GSW-like) Cryptosystem⋆

Prastudy Fauzi1, Martha Norberg Hovd1,2, and H̊avard Raddum1

1 Simula UiB, Norway
2 University of Bergen, Norway

Abstract. We present an adaptive key recovery attack on the leveled
homomorphic encryption scheme suggested by Li, Galbraith and Ma
(Provsec 2016), which itself is a modification of the GSW cryptosys-
tem designed to resist key recovery attacks by using a different linear
combination of secret keys for each decryption. We were able to effi-
ciently recover the secret key for a realistic choice of parameters using
a statistical attack. In particular, this means that the Li, Galbraith and
Ma strategy does not prevent adaptive key recovery attacks.

Keywords: Key recovery, somewhat homomorphic encryption, GSW,
statistical attack

1 Introduction

Fully homomorphic encryption (FHE) is a powerful primitive which allows for
meaningful computations to be performed on encrypted data, without the need
for decryption. An FHE scheme allows for ciphertexts to be evaluated over any
circuit without risking an erroneous decryption of the resulting ciphertext, i.e.,
Dec(C(Enc(m)))̸= C(m) for some circuit C. There are other flavours of homo-
morphic encryption as well: leveled homomorphic encryption (LHE) and some-
what homomorphic encryption (SHE), which both allow for a limited amount of
operations to be performed on a ciphertext before there is a risk of decryption
failure. A key difference between LHE and SHE is that the key generation of
LHE schemes takes an extra parameter as input, which specifies the depth of
the deepest circuit the scheme is able to homomorphically evaluate.

Many F/L/SHE schemes rely on a quantum secure assumption, such as the
hardness of learning with errors (LWE) and ring learning with errors (RLWE),
to provide security against key recovery attacks and/or message recovery. In
fact, these schemes are typically shown to achieve IND-CPA security, meaning
an adversary with access only to the public key and parameters is provably
unable to distinguish between the encryptions of any two messages. However,
most existing F/L/SHE schemes are known to be susceptible to adaptive key
recovery attacks [8,10]. In these attacks an adversary has temporary access to

⋆ This paper appeared at PQCrypto 2021. The final authenticated publication is avail-
able online at https://doi.org/10.1007/978-3-030-81293-5_25.

a decryption oracle, and is able to recover the secret key based on information
leaked from the decryption queries.

For example, schemes based on LWE or RLWE (such as GSW [11]) can
leak one bit of the secret key from a small number of decryption queries. These
schemes have public keys of the form (A,As+ e) with secret key s, a matrix A,
and noise e. Key recovery attacks either compute s directly, or first compute the
noise e and use this to derive s. Chenal and Tang used this approach to attack
several (R)LWE schemes, one of which was GSW [8].

Li, Galbraith and Ma (LGM, [13]) proposed a technique to circumvent such
key recovery attacks: instead of decrypting using a single secret key s, they
suggested changing secret keys for every decryption, so any information leaked
from two different decryption queries would be unrelated, which should make it
impossible for an adversary to recover any secret key. They constructed an LHE
scheme based on GSW they claimed achieved IND-CCA1 security, though they
were unable to provide a formal proof. 3

Concretely, they start with the dual version of GSW, where the public key
is of the form (A,As), but the secret key s must have small norm; security
now depends on the hardness of the inhomogeneous short integer solution (ISIS)
problem, which is also assumed to be quantum secure. Instead of having one
secret key s, they generate t distinct secret keys: s1, . . . , st. During decryption a
random linear combination of the secret keys, s′ =

∑t
i=1 λisi, is used, where the

λi’s are redrawn from a distribution for each decryption. The message space is Z2,
so a decryption query leaks, at best, one bit of s′: an unknown linear combination
of secret keys unlikely to ever be reused, since the λis that generate it are redrawn
for every decryption. The technique successfully thwarts the known adaptive key
recovery attacks on GSW and similar schemes, and Li et al. therefore argue that
their scheme achieves IND-CCA1 security, though they are unable to prove it.

In this paper we show that the LGM scheme is still susceptible to an adaptive
key recovery attack, as we are able to recover a secret key using a statistical
attack. We go even further to claim that the general approach of using a random
linear combination of secret keys for each decryption query is susceptible to
statistical adaptive key recovery attacks. To the best of our knowledge, the LGM
scheme is currently the only concrete leveled homomorphic encryption scheme
attempting to achieve IND-CCA1 security, which has proven a difficult security
notion to achieve for SHE or LHE schemes. 4

2 Preliminaries

Vectors are denoted by bold, lower case letters, and are assumed to be in column
form. Logarithms are always base 2. For a real number x, let ⌊x⌉ = ⌊x+ 1

2⌋ be the
 The original paper was published in ProvSec 2016 [14] however, the ePrint ver-
sion [13] of the paper contains major changes. In particular, the scheme we mount
the adaptive key recovery attack on in this article is found in the ePrint version.

4 There are suggestions for generic constructions achieving IND-CCA1 security (e.g.,
[7]), but there are no concrete instantiations of these constructions.

2

closest integer to x. For any integers x and q, let x mod q denote the modular
reduction centered around zero. For a vector v, let ∥v∥ be its Euclidean norm.
Unless stated otherwise, we refer to somewhat, leveled, and fully homomorphic
encryption schemes as simply homomorphic encryption schemes.

The gadget vector g is defined as the column vector (1, 2, . . . , 2l−1)T , and
the gadget matrix is defined as G = In ⊗ g ∈ Zn×nlq (i.e., G is a matrix with g
on the diagonal), for l = ⌊log(q)⌉+ 1.

Define G−1 : Zn×n′
q → {0, 1}nl×n′

to be the operation such that for any

matrix M ∈ Zn×n′
q , we have that G ·G−1(M) = M.

IND-CCA1. An encryption scheme E = (Setup,KeyGen,Enc,Dec) achieves
the security notion indistinguishability under (non-adaptive) chosen ciphertext
attack (IND-CCA1) if any probabilistic polynomial time adversary A has at
most a 1/2 + negl chance of winning the following game against a challenger C:

– C derives the parameters using params ← Setup(1κ), draws a key pair
(pk, sk)← KeyGen(params), and sends pk and the parameters to A.

– A sends ciphertexts c to her decryption oracle ODec, which returns Dec(c).
– A sends two messages of equal length (m0,m1) to C.
– C returns c← Enc(pk,mb) to A, for a randomly chosen bit b ∈ {0, 1}.
– A outputs the bit b∗, and wins if b∗ = b.

The notion of IND-CPA security is defined in a similar way, but here A does not
have access to a decryption oracle.

An adaptive key recovery attack is stronger than an IND-CCA1 attack, as
recovering the secret key enables an adversary to decrypt all ciphertexts, not
just distinguish between the encryptions of two chosen messages.

LWE. The Learning With Errors (LWE) distribution is defined as follows: for a
fixed vector s drawn uniformly at random from Znq , sample a vector a uniformly
at random from Znq and an error e from some noise distribution χ, and output

(a, b = a · sT + e mod q). The search problem of LWE is to find s given m
samples of the LWE distribution, where s is fixed for all the samples.

ISIS. Given a modulus q, a matrix B ∈ Zn×mq , and a vector u, the Inhomoge-
neous Short Integer Solution (ISIS) problem is to find a vector e drawn from a
distribution χ with bound B such that Be = u mod q, if such a vector exists. It
is required that m > n to prevent an adversary simply finding e using Gaussian
elimination [13,5].

2.1 Distributions

For integers a ≤ b, let [a, b] denote the set of integers x such that a ≤ x ≤ b.
A distribution over values S = [a, b] for integers a ≤ b is discrete uniform if

3

all n = b − a + 1 values x ∈ S can occur with equal probability 1/n. Such a

distribution has mean a+b
2 and variance n2−1

12 .
A distribution over values R is Gaussian with mean µ and variance σ2 if it

follows the probability density function

g(x) =
1

σ
√
2π
e

(x−µ)2

2σ2 .

A random variable following a Gaussian distribution is also said to be normally
distributed. The value σ is also known as the standard deviation.

We provide, without proof, some known properties of Gaussian distributions.

Lemma 1. Let (Xi)
n
i=1 be normally distributed independent random variables

with mean µi and variance σ2i for i ∈ {1, 2, . . . , n}. Let (ai)ni=1 be real numbers.
Then X =

∑n
i=1 aiXi is also normally distributed, with mean

∑n
i=1 aiµi and

variance
∑n

i=1 a
2
iσ
2
i .

Lemma 2. Let X be a random variable following a Gaussian distribution with
mean µ and variance σ2. Then Pr[|X − µ| ≥ tσ] = erf(t/

√
2), where erf(x) =

2√
π

∫
0
e−t

2

dt is the error function. In particular, Pr[|X − µ| ≥ 5σ] ≤ 2−20.

Theorem 1 (Central limit theorem for sample). Let X1, . . . , Xn be inde-
pendent random variables from a distribution with mean µ and variance σ2. Let
X = 1/n·∑n

i=1Xi. Then if n approaches infinity, X−µ converges to a Gaussian
distribution with mean 0 and variance σ2/n.

Informally, by taking a large enough sample size n, X − µ has mean ϵµ and
variance σ2/n+ ϵσ, where ϵµ, ϵσ may both be made arbitrarily small.

Discrete Gaussian Distribution. The discrete Gaussian distribution may be
viewed as a Gaussian distribution where the values are restricted to a countable
set, say Z. To preserve the desirable properties of Gaussian distributions men-
tioned above, one should not simply sample a Gaussian and round to the closest
integer. Instead, we adapt the definition of Gaussian distributions over S ⊆ Z
presented by Micciancio and Walter [16]. For the more general definition over
S ⊆ Zn, we refer to [1,13].

Definition 1. Let S be a subset of Z. For c ∈ R and a parameter σ > 0 ∈ R,
define ρσ,c(x) = e−π

(x−c)2

σ2 and ρσ,c(S) =
∑

 ∈S ρσ,c(x). The discrete Gaussian
distribution over S with center c and standard deviation σis defined as

∀x ∈ S : DS,σ,c(x) =
ρσ,c(x)

ρσ,c(S)
.

We also state Theorem 7 (one dimensional leftover hash lemma) of [13], as it
is central for the derivation of parameters for the LGM scheme. Li et al. present
it as a special case of Theorem 2 of Agrawal et al. [2].

4

Theorem 2. Let σ, ϵ ∈ R be such that ϵ > 0 and σ > C for some absolute
constant C (see [2]). Let t, σ′ ∈ R be such that t ≥ 10 log(8t1.5σ) and σ′ ≥
4t log(1/ϵ). Then the statistical difference between the following two distributions
is bounded by 2ϵ.

– Choose a length t vector x ∈ Zt with entries chosen from the discrete Gaus-
sian distribution on Zt with parameter σ and a length t vector ∈ Zt with
entries chosen from a discrete Gaussian distribution on Zt with parameter
σ′ and compute the output xT .

– Choose and output an element from the discrete Gaussian distribution on Z
with parameter σσ′.

3 The LGM Scheme

The leveled homomorphic encryption scheme LGM [13] is also known as DMGSW
since it uses a multi-key and dual version of GSW. We present it using mostly
the original notation, but denote the secret keys as si = (ri ∥−eTi)T , as opposed
to ei = (Ii ∥−tTi)T . Note also that we omit the details of homomorphic addition
and multiplication, as they are not relevant for our attack.

Setup(1κ, 1L): Let n = n(κ, L) and m = m(κ, L) be parameters n < m that
depend on the security parameter κ and number of levels L. Choose a
modulus q and bounded noise distribution χ = χ(κ, L) on Z with bound
B such that it achieves at least 2κ security against known attacks. Choose
the number of secret keys t = O(log n). Let l = ⌊log q⌋+1 andN = (t+m)l.
Output params = (n, q, χ,m, t, l, N).

KeyGen(params): Uniformly sample B ∈ Zn×mq . For i ∈ [1, t], sample ei from

χm, set ui = Bei and set si = (ri ∥ −eTi)T , where ri is the i-th row of the

t×t identity matrix. Return the public keyA = [u1∥. . .∥ut∥B] ∈ Zn×(t+m)q

and the secret key s = (s1, . . . , st).
Enc(A, µ ∈ Z2): Let G be the (t+m)×N gadget matrix. Sample R ← Zn×Nq

and X← χ(t+m)×N . Output C = µ ·G+ATR+X ∈ Z(t+m)×Nq .
Dec(s,C): Sample (λ1, . . . , λt) ∈ Ztq \ {0}t until the generated s′ =

∑t
i=1 λisi

has small norm. Let i ∈ [1, t], j, I = (i − 1)l + j be integers such that
λi ̸= 0, 2j−1 ∈ (q/4, q/2] and I ∈ [1, tl]. Compute u = ⟨CI , s

′⟩ mod q,
where CI is the Ith column of the ciphertext matrix C. Finally, output
|⌊u/2j−1⌉| ∈ {0, 1}.

Correct decryption of honestly generated ciphertexts follows from the fol-
lowing observations: first, note that Asi = 0 for all i by construction, which
ensures that As′ ≡ 0 mod q. Then, due to s′ being small and the choice of I,
u = µGT s′ +XT s′ = µ2j−1 + E for some small E. It is clear that the rounded
division with 2j−1 will result in the message µ.

Li et al. mainly focus on the case where the λis are drawn uniformly at
random from {0, 1}, but they also discuss other possible distributions to sample

5

from, such as a larger uniform distribution or a discrete Gaussian distribution.
We consider the security of the scheme in all these cases.

Deducing a message from a ciphertext boils down to solving the LWE-like
instance BTR+X, whilst security against (non-adaptive) key recovery attacks
is based on the ISIS problem.

The intuition behind LGM’s claimed IND-CCA1 security is that since a new
secret key is being used to decrypt every time the oracle is called, an adversary
will be unable to deduce anything meaningful about either the summands of
the key or the key itself, as she gets at most one bit of information from each
decryption query, since the message space is Z2. Li et al. argued that any infor-
mation leaked from one decryption query cannot be combined with information
from another query, since the secret keys are different every time.

3.1 Parameter derivation

The authors do not suggest a concrete parameter setting for the LGM scheme;
we therefore derive a realistic choice for parameters based on the information
and bounds provided in [13], which we also state here.

– The parameters m, n, q and the bound B must all be chosen so that the
instantiated cases of LWE and ISIS problems are hard to solve.

– The inequality tB + mB2 < q/8 must be satisfied in order to prevent an
erroneous decryption of a fresh (i.e., unevaluated) ciphertext.

– Li et al. suggest setting B = 6σ.
– If the distribution of the values of ⟨CI , s

′⟩ mod q = ⟨CI ,
∑t

i=1 λisi⟩ mod q
resembles a uniform distribution over Zq, it must be indistinguishable from
a uniform distribution over Zq. By the leftover hash lemma, we must have
t ≥ log(q) + 3κ where κ is the security parameter of the scheme for the two
distributions to be indistinguishable.

– If the distribution of the values of ⟨CI , s
′⟩ mod q = ⟨CI ,

∑t
i=1 λisi⟩ mod q

resembles a discrete Gaussian distribution over Zq, t and σ must satisfy the
bounds of Theorem 2, i.e., t ≥ 10 log(8t1.5σ) and σ ≥ C. This ensures that
statistical difference of the distribution of values of ⟨CI , s

′⟩ mod q and a
discrete Gaussian with parameter σσ′ is bounded by 2ϵ.

We stress that the distribution mentioned in the two final points arise naturally
during decryption, and that the properties of the distribution depends on CI , so
both points must be taken into account. We start from the final point to derive
σ ≤ C, for C ≥ 18Kηϵ(Z), where K > 1 is some universal constant and ηϵ(Z) ≤√
ln (ϵ/44 + 2/ϵ)/π is the smoothing parameter of the integers [2,18]. Setting

ϵ = 0.005 to provide a statistical difference of 0.01 according to Theorem 2 and
assumingK ≈ 1, we derive σ ≥ 25, so we choose σ = 25. Using the other bounds,
we get t = 400, m = 525, B = 150 and q = 94, 980, 001, which ensures a 120-bit
security against currently known attacks on LWE and ISIS [3,5]. 5

5 Seeing as we do not use n in our attack, we do not set it explicitly. We do note,
though, that it affects the hardness of the LWE instance, and is implicitly set by the
requirement m > n. We assume m ≈ n.

6

4 The Key Recovery Attack

First note that any non-zero linear combination of the secret vectors can be used
to decrypt. Hence, to perform a successful key recovery attack we will only need
to recover any single si = (ri ∥ −eTi)T . We present our attack to recover the
entire secret key {s1, . . . , st}, by recovering the coefficients at a particular index
across the t secrets si, index by index. However, for the concrete experiments,
we recover just one secret key.

We first assume the suggested variant of LGM where the values λi are cho-
sen uniformly at random from Z2, and present the basic attack for this case.
Afterwards we show that the attack generalises to the cases λi ∈ [0, b − 1] and
λi ∈ [−b, b], where b is some (very) small constant. This constraint on λi is nec-
essary to ensure that ∥s′ = ∑λisi∥ is small, as is required by the scheme. We
also discuss the security of the scheme for the case where the λis are sampled
from a discrete Gaussian distribution.

λi ∈ {0, 1}. Recall that decryption works by first choosing λ1, . . . , λt uniformly
at random from {0, 1} and then generating a one-time decryption key s′ as

s′ = λ1s1 + . . .+ λtst = (λ1, . . . , λt,

t∑

i=1

λiei,1, . . . ,

t∑

i=1

λiei,m).

Next, a column CI of the ciphertext matrix C is chosen, where I corresponds
to some index k that satisfies λk = 1. Then u = ⟨CI , s

′⟩ mod q is computed,
and the decryption oracle returns |⌊u/2j−1⌉|, for the unique (and known) value
j for which q/4 < 2j−1 ≤ q/2.

In the following we focus on recovering the first component of each ei, namely
the e1,1, e2,1, . . . , et,1 that are linearly combined in position t+1 of s′. The same
attack can be carried out to recover all the other m positions with an easy
adaptation. We construct our chosen ciphertexts from column vectors ca,i with
some integer a in position i for 1 ≤ i ≤ t, a 1 in position t+ 1 and 0 elsewhere:

ca,i = (0, . . . , a, . . . , 0︸ ︷︷ ︸
length t, a in pos. i

, 1, 0, . . . , 0︸ ︷︷ ︸
length m

)T .

Let Dα be the ciphertext matrix where for all i the column corresponding to
λi is cα,i, and let Ra,i be the ciphertext matrix where every column is ca,i:

Dα =




α 0 · · · 0
0 α · · · 0
0 0 · · · α
1 1 · · · 1

0(m−1)×t



, Ra,i =




0(i−1)×t
a a · · · a

0(t−i)×t
1 1 · · · 1

0(m−1)×t



.

Asking for the decryption of Dα will result in the following expression for
u = u(Dα), no matter which index k corresponds to the chosen column CI :

7

u(Dα) = ⟨cα,i, s′⟩ = α+
t∑

i=1

λiei,1.

This is because it is a requirement that λk = 1 for the chosen index I.
The output of the decryption query will depend on the size of α, as well as
the value of

∑t
i=1 λiei,1. In the attack we will only use values of α that are

close to 2j−2. In particular, we will always have 0 < α +
∑t

i=1 λiei,1 < q, and

thus will never have to consider any reductions modulo q. If α +
∑t

i=1 λiei,1 <

2j−2 the decryption oracle will return 0, and if α +
∑t

i=1 λiei,1 ≥ 2j−2 it will

return 1. Define the value E =
∑t

i=1 λiei,1. Asking for the decryption of Dα

many times will make E a stochastic variable that takes its value according to
a discrete Gaussian distribution over the interval [Emin, Emax], where Emin and
Emax are the minimum and maximum values E can take, respectively. Denoting
the expected value of E by E(E), we get E(E) = 1/2

∑t
i=1 ei,1. Approximately

half of the time E will take a value that is smaller than E(E) and approximately
half of the time the value of E will be greater than E(E).

Similarly, asking for the decryption of Ra,i will give the following expression
for u = u(Ra,i):

u(Ra,i) = ⟨ca,i, s′⟩ = λia+ λiei,1 +
∑

k ̸=i
λkek,1.

In this case we do not know if λi is 0 or 1. If λi = 0, the result is u(Ra,i) =∑
k ̸=i λkek,1 ≪ 2j−2, and so the decryption will output 0. If λi = 1 the output

of the decryption query will depend on the size of a and the value of the sum∑
k ̸=i λkek,1. Define Ei to be Ei =

∑
k ̸=i λkek,1. In the same way as above, asking

for decryptions of Ra,i multiple times will make Ei be normally distributed over
some interval, with an expected value E(Ei) = 1/2

∑
k ̸=i ek,1.

The main idea of the attack is to ask for many decryptions of Dα and Ra,i,
and count how often the decryption oracle returns 1. Asking for sufficiently many
decryptions makes the randomness of the unknown and varying λi’s even out to
their expected values. Counting how often the decryption oracle returns 1 for
various values of α and a allows us to extract information about the size of ei,1,
and accurately estimate its value.

Attack procedure. For a more detailed explanation of how the attack works,
we start with the following definition.

Definition 2. Let h(α) be the number of times the decryption oracle returns 1
when asked for a number of decryptions of Dα, and let hi(a) be the number of
times the decryption oracle returns 1 when asked for a number of decryptions of
Ra,i.

The number of times we ask for the decryption of the same ciphertext is
denoted by T , and its exact value will be determined later. By doing a binary

8

search, find the integer α0 such that h(α0) < T/2 ≤ h(α0 + 1). Next, make
an interpolated value αest that we estimate would give exactly T/2 decryptions
returning 1 if we were allowed to ask for decryptions of Dα for α ∈ R:

αest =
h(α0 + 1)− T/2
h(α0 + 1)− h(α0)

α0 +
T/2− h(α0)

h(α0 + 1)− h(α0)
(α0 + 1).

Note that the value αest is a real value, and it is our best estimate for the
equation αest+1/2

∑t
i=1 ei,1 = 2j−2 to hold. To be precise, we get the equation

αest + 1/2

t∑

i=1

ei,1 = 2j−2 + ϵ, (1)

where |ϵ| becomes small when the sample size T grows large.
Next, we repeat the process and ask for decryptions of Ra,i for i = 1, . . . , t.

Note that λi = 0 half of the time in these decryptions, which always causes the
oracle to return the value 0. So the values hi(a) will be approximately half of
h(a). This is compensated for by finding the value a0 such that 2hi(a0) < T/2 ≤
2hi(a0 + 1). Knowing that λi = 1 whenever we get a 1-decryption, we do the
same interpolation as above and find an estimate aest ∈ R such that

aest + ei,1 + 1/2
∑

k ̸=i
ek,1 = 2j−2 + ϵi, (2)

where |ϵi| is small. Subtracting (2) from (1) and rearranging we get

ei,1 = 2(αest − aest) + 2(ϵi − ϵ). (3)

Rounding the right-hand side value recovers the correct ei,1, provided that
T is large enough to make |ϵi| < 1/8 and |ϵ| < 1/8.

The attack can be repeated to recover all the ei, for x = 2, 3, . . . ,m by
setting the 1 in ca,i to be in position t+x. One can also focus on fully recovering
only one of the vectors ei by recovering ei, for some fixed i and x = 1, 2, . . . ,m.
Note that the recovery of an entry of any ei-vector is independent of the recovery
of any other entry. This is what enables us to recover a single ei-vector in its
entirety, which can be used as a decryption key.

For the attack to work with high probability, we need T ∈ O(t · σ2). In
particular, we have the following:

Lemma 3. If T ≥ 800 · t · σ2 then in Eq. (1) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (2) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

Proof. Since λi is taken from the uniform distribution over {0, 1} it has mean
1/2 and variance 1/4. Moreover, ei,1 is taken from a Gaussian distribution with
mean 0 and variance σ2. Then λi ·ei,1 is taken from a Gaussian distribution with

mean 1/2 ·∑ ei,1 and variance 1/2 ·σ2. Hence ϵ =
∑t

i=1 λi · ei,1−E(E) is a sum
of Gaussians, which by Lemma 1 is also a Gaussian with mean 0 and variance
t/2 ·σ2. However, if we take an average of T samples of such a function, then by

9

the central limit theorem for sample means we get a Gaussian X with mean 0
and variance t

2T ·σ2. If T ≥ 800 · t ·σ2 then X has standard deviation ≤ 1/40, in
which case Pr[|ϵ| ≥ 1/8] ≤ 2−20 by Lemma 2. Similarly, Pr[|ϵi| ≥ 1/8] ≤ 2−20.

⊓⊔

Remark 1. We cannot get a smaller lower bound for T using Lemma 8.1 of [1]
since there is no guarantee that the Gaussian X in the above proof is integral.

The running time will then be O(Tm) = O(tσ2m). We have that t can only
be polynomially large in the security parameter to have efficient encryption.
Also, ∥s′∥ must be small in order for the underlying ISIS problem to be hard.
Therefore, the attack runs in polynomial time.

4.1 Generalisation of the attack

The above attack assumes that the values λi were sampled uniformly at ran-
dom from {0, 1}. We now investigate whether the attack can be prevented
by choosing the λi from a larger set. The two generalisations we consider are
λi ∈ {0, 1, . . . , b− 1}, or λi ∈ {−b, . . . , b}. As before, we can take T ∈ O(t · σ2).
We show that the attack can be generalised to work in both cases.

λi ∈ {0, 1, . . . , b − 1}. The attack can be adapted to work when the λi are
sampled uniformly at random from {0, 1, . . . , b−1}. We again focus on recovering
the coefficients ei,1, the other ei, ’s are recovered by repeating the attack with
the same adaptation as above. This also means that we may choose to recover a
single ei-vector here as well.

When the decryption oracle is given the ciphertext matrixDα, it will compute
u(Dα) = λkα+

∑t
i=1 λiei,1, where λk ̸= 0. When α ≈ 2j−2/(b−1), the decryption

oracle will return 0 whenever λk < b− 1, since λkα+
∑t

i=1 λiei,1 < 2j−2 in this
case. Only when λk = b− 1 can we get decryptions that return 1. We know that
λk ̸= 0 when decrypting Dα, so the probability that λk = b− 1 is 1/(b− 1).

As before, we scale the numbers h(α) with b − 1 to do a binary search and
find the value α0 such that (b− 1)h(α0) < T/2 ≤ (b− 1)h(α0 + 1). We then use
this to estimate the αest for which we would expect (b − 1)h(αest) = T/2 if we
were allowed to ask for decryptions of Dα where α ∈ R.

When λi ∈ {0, 1, . . . , b−1}, the expected value of
∑t

i=1 λiei,1 is
b−1
2

∑t
i=1 ei,1.

The αest we find therefore gives the equation

(b− 1)αest +
b− 1

2

t∑

i=1

ei,1 = 2j−2 + ϵ, (4)

where |ϵ| is small for large T .
In the same fashion we can ask for decryptions of Ra,i where a ≈ 2j−2/(b−1)

and count the number of 1-decryptions we get. When decrypting Ra,i we may
have λi = 0, so the probability that λi = b − 1 (which is necessary for the
decryption oracle to return 1) is 1/b. We therefore scale the values of hi(a)

10

by b, and find an interpolated value for aest based on the value a0 for which
bhi(a0) < T/2 ≤ bhi(a0 + 1). This yields the equation

(b− 1)aest + (b− 1)ei,1 +
b− 1

2

t∑

k ̸=i
ek,1 = 2j−2 + ϵi, (5)

where |ϵi| is small. Subtracting (5) from (4) gives

ei,1 = 2(αest − aest +
ϵi − ϵ
b− 1

),

and rounding this value recovers the correct ei,1, provided |ϵi| < (b − 1)/8 and
|ϵ| < (b− 1)/8.

The proof of the following lemma is almost identical to Lemma 3 and is thus
omitted. In fact, the upper bound for Pr[|ϵi| ≥ (b−1)/8] and Pr[|ϵ| ≥ (b−1)/8]
will be even smaller than 2−20 for b > 2.

Lemma 4. If T ≥ 800 · t · σ2 then in Eq. (4) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (5) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

λ ∈ {−b, . . . , b}. We start by asking for T decryptions of Dα, where α ≈
2j−2/b, and count how often the decryption oracle returns 1. Recall that the
decryption outputs the absolute value of ⌊u/2j−1⌉, so there are now two cases
where the decryption oracle can return 1, namely when λi = b or λi = −b. There
are 2b+1 numbers in {−b, . . . , b}, but 0 cannot be chosen for λk when decrypting
Dα, so the probability of having λk equal to −b or b is 2/2b = 1/b. We scale
the numbers h(α) by a factor b to compensate for this. We then interpolate like
before to find the value αest such that we would expect h(αest) = T/2 if we
were allowed to ask for decryptions of Dαest for α ∈ R. When the set of values
that λi can take is symmetric around 0, the expected value of

∑
λiei,1 is 0. The

equation we get for αest is then simplified to

bαest = 2j−2 + ϵ, (6)

where |ϵ| is small. Note that we do not need to distinguish between the cases
λk = −b and λk = b, as this is incorporated in the probability 2/2b for having
the possibility of 1-decryption. So the αest we find covers both the cases −bα <
−2j−2 and bα > 2j−2, which both result in 1-decryptions.

When decrypting Ra,i we can have λi = 0, so the probability of λi = −b or
λi = b is then 2/(2b+ 1). We ask T times for decryptions of Ra,i, and as before
find the value aest that is the best estimate for 2b+12 hi(aest) = T/2. We then get
the equation

baest + bei,1 = 2j−2 + ϵi, (7)

where |ϵi| is small. Subtracting (7) from (6) gives us

ei,1 = αest − aest +
ϵi − ϵ
b

.

11

Rounding this value to the nearest integer recovers the correct ei,1, provided
T is large enough to make |ϵi| < b/4 and |ϵ| < b/4.

The proof of the following lemma is almost identical to Lemma 3 and is thus
omitted. In fact, the upper bound for Pr[|ϵi| ≥ b/4] and Pr[|ϵ| ≥ b/4] will be
even smaller than 2−20.

Lemma 5. If T ≥ 800 · t · σ2 then in Eq. (6) we have that Pr[|ϵ| ≥ 1/8] ≤ 2−20

and in Eq. (7) we have that Pr[|ϵi| ≥ 1/8] ≤ 2−20.

4.2 Implementation of the attack

We have implemented the attack and verified that it works as explained. The
code for the attack was written in C, and can be found at [17]. The secret
ei-vectors were sampled using the DGS library [4].

For testing the attack we have used a Dell server with 75 CPU cores (AMD
Epyc 7451). We ran the attack twice, using the parameter sets deduced in Sec-
tion 3.1. For the first attack we used t = 190,m = 525, b = 2, and σ = 25, which
gives the sample size T = 95, 000, 000 according to Lemma 3. For the second
attack we used t = 400,m = 525, b = 2, and σ = 25, for which Lemma 3 gives
the sample size T = 200, 000, 000. In both attacks we drew the λi’s uniformly
from {0, 1} and aimed to recover all the 525 coefficients of e2

6.
In the attack on the t = 190 case, 519 of the 525 coefficients were recovered

correctly. The six coefficients that were wrong all had a difference 1 with the
correct value. In the attack on the t = 400 case, all 525 coefficients of e2 were
recovered correctly.

The run time for the first attack was approximately 12 hours, and for the
second attack approximately 48 hours, both using 75 CPU cores in parallel.
However, the code can be optimised in several ways to reduce the run time. In
particular, it is possible to abort early and not do all T decryptions when it is
clear that h(α) or hi(a) will be much greater or smaller than T/2. We did not
implement this optimisation, and computed all T decryptions every time.

Our attack does not necessarily recover a secret key flawlessly, as demon-
strated above with the t = 190 case, where 6 out of 525 estimated coefficients
were either −1 or 1 off from their true value. In these cases, we need a second
phase to recover the entire secret key. It is straightforward to check whether
such a second phase is necessary, as we may simply check if As̃i = 0, for an
estimated secret key s̃i = (ri,−ẽi)T , where ẽi is the estimate of ei we get by
running the attack. If As̃i ̸= 0, there is at least one wrong entry of ẽi, implying
ei = ẽi + ϵ, where ϵ is a non-zero vector sampled from a Gaussian distribution
with mean 0 and a very small standard deviation. Recall that the public key is
A = [u1 ∥ . . . ∥ ut ∥ B], where ui = Bei, so we can calculate Bϵ = Bẽi − ui.
Now, Bϵ may be described as n highly unbalanced instantiations of the knap-
sack problem: only approximately 1% of the coefficients of ϵ are either −1 or
1. These instantiations are much simpler to solve than the standard knapsack

6 We chose e2 arbitrarily; the attack works to recover any ei, i ∈ {1, . . . , t}.

12

problem: one estimation for the time complexity for the Bϵ case is Õ(20.03n)[6],
another is Õ(20.0473n)[12], though the first algorithm does not guarantee finding
the solution. Even though the memory requirement is higher in either case, the
(potential) second phase of the attack does not contribute in any substantial
way to the cost of the key recovery attack, and ensures that the secret key is
completely recovered.

4.3 λi drawn from a non-uniform distribution

Whilst the authors of LGM mainly focus on the λi ∈ {0, 1} case, they also dis-
cuss other distributions it would be possible to sample from, e.g., other uniform
distributions, or a discrete Gaussian distribution. As shown above, sampling λi
from other uniform distributions does not prevent our attack, however, a line
of argument in the LGM paper suggests that a particular choice of a discrete
Gaussian distribution might.7

The argument is as follows: if the values of ⟨CI ,
∑t

i=1 si⟩ resemble sam-
ples from a discrete Gaussian distribution, and the standard deviation σ′ of
the λ-distribution satisfies the condition of Theorem 2, the theorem itself is
applicable to the distribution of the values of ⟨CI ,

∑t
i=1 λisi⟩. Then, seeing as

⟨CI ,
∑t

i=1 λisi⟩ is statistically close to a ‘regular’ discrete Gaussian distribution
with standard deviation σσ′ by Theorem 2, the result from the decryption oracle
cannot leak any information about the secret key.

A rough estimate for the parameters required to achieve 120-bit security in
these cases is: t = 400, σ = 25, B = 150, σ′ = 12, 231,m = 940, and q is a 40-bit
number. These parameters prevent any practical use of the system, especially
given the fact that the scheme encrypts a single bit at a time.

But that aside, could the scheme with this λ-distribution be regarded as a
theoretical construct to demonstrate that IND-CCA1 security is achievable for
homomorphic encryption schemes? We argue that the answer is no. Even if the λ-
distribution is chosen according to Theorem 2, the theorem only guarantees that
the distribution over ⟨CI ,

∑t
i=1 λisi⟩ is statistically close to a discrete Gaussian

distribution if the matrix column CI is such that the values of ⟨CI ,
∑t

i=1 si⟩
appear to be drawn from a discrete Gaussian distribution themselves.

We stress that the choice of CI is entirely up to the adversary in an IND-
CCA1 game, as she can simply submit a ciphertext matrix where every column
is CI . It is therefore feasible for her to submit a CI such that the values of
⟨CI ,

∑t
i=1 si⟩ do not appear to be drawn from a discrete Gaussian distribution,

meaning Theorem 2 does not apply. It is therefore not possible to positively
conclude that no useful information is leaked by a decryption query, even if it
merely results in an adversary obtaining a non-negligible advantage in the IND-
CCA1 game, and not a complete recovery of the secret key. Furthermore, the
adversary can adapt her choice of CI , whilst the choice of the distribution from
which the λis are drawn is fixed when the system is generated. The λ-distribution
therefore cannot be constructed to fit both the situation where CI is designed

7 See discussion in Section 7 of [13].

13

to provide values of ⟨CI ,
∑t

i=1 si⟩ seemingly drawn from a discrete Gaussian
distribution and when it is designed to not provide such values.

4.4 Thwarting the attack

We discuss some possible ideas to prevent the key recovery attack described
above, and argue that they will not work.

Decryption oracle uses the same (λ1, . . . , λt) for the same ciphertext.
One can ensure that an attacker that queries the same ciphertext C (say, C = Dα

as defined previously) multiple times will have the same set of λ-values chosen
in every decryption. It will then be impossible to do the attack we presented, as
it relies on having random and independent λ-values chosen for each query. This
can be done by setting (λ1, . . . , λt) = PRF(C) for some pseudo-random function
PRF that returns a vector of small values.

To circumvent this measure, the attacker can add a few 1’s to the large part
of the top t rows of Dα or Ra,i that are defined to be 0. The number of 0’s in this
part of Dα or Ra,i is t(t− 1). So if the attacker intends to ask for T decryptions
of the same matrix, she can make the matrices unique by adding up to ρ 1’s in
all possible ways in the top t rows. The computation in the decryption will still
be approximately the same. The largest number ρ of 1’s that must be added in
this way is the smallest integer that satisfies

ρ∑

i=0

(
t(t− 1)

i

)
≥ T.

For the parameters used in our attack (t = 190, T = 200.000.000) this is satisfied
already for ρ = 2.

When adding two 1’s to Dα or Ra,i, the estimates in Eq. (1) and Eq. (2) will
be disturbed by an extra 1 in approximately (2/t) · (1/2) = 1/t of the queries
(the chosen column contains an extra 1 with probability 2/t, and the λj-value it
meets in the inner product will also be 1 with probability 1/2). This error can be
compensated for in the estimation of αest and aest by adding an extra term to the
equations in Eq. (1) and Eq. (2), but both values will be the same and anyway
cancel out in Eq. (3). Hence the attacker can overcome such a countermeasure.

Repeat multiple decryptions and return a value only if they are con-
sistent. Alternatively, one can define a new decryption function which runs the
original decryption function ℓ times and return bit b only if all ℓ evaluations
return b, and abort (i.e., return ⊥) if they are not all equal. However, note that
we now have 3 return values (0, 1,⊥) instead of 2, and can compute the expected
value of each return value for every α similar to before.

For instance, consider querying Dα to the new decryption oracle, where α is
a value such that the original decryption oracle would return 0 with probability
p, and 1 with probability 1 − p. Then the new decryption oracle aborts with

14

probability 1 − (pℓ + (1 − p)ℓ), which achieves maximum at p = 1/2. Hence to
detect an optimal αest as in Eq. (1), one asks for T decryptions of Dαest

and
makes sure ≈ (1−21−ℓ)) ·T of them abort. Note that the attack strategy fails if ℓ
is sufficiently large (e.g., ℓ ∈ Θ(κ)), but a large choice of ℓ also severely restricts
the LGM scheme’s level of homomorphism, since a noisy ciphertext obtained
from a homomorphic evaluation would also fail (i.e., return ⊥ or the wrong bit)
with non-negligible probability in the new decryption function.

Ciphertext checks. A plausible strategy to thwart our attack would be to
add a ciphertext check during decryption, to ensure that the ciphertext to be
decrypted has been honestly generated. Using a ciphertext check, Loftus et
al. [15] constructed an SHE scheme that provably achieved IND-CCA1 security,
although the underlying hardness assumption was later shown to be insecure; see
discussion in [13] and the references therein. If such a ciphertext check is added
to the decryption procedure, maliciously generated ciphertexts may simply be
rejected by the decryption oracle, which will make it impossible to mount our
attack. As illustrated by the previous idea, it is far from clear how to successfully
add an efficient ciphertext check to the LGM scheme.

We argue that in general any such ciphertext check that uses the same secret
key value both to check ciphertexts are well-formed and to decrypt will naturally
give some information about the secret key. One can instead have two secret key
values as in the CCA1-secure group homomorphic encryption scheme CS-lite [9],
where the first value is used only for checking ciphertexts are well-formed, while
the second value ensures indistinguishability even if the first value is revealed.
We leave as an open problem how such a method can work with LGM or other
homomorphic encryption schemes.

5 Conclusion

We have shown that the LGM scheme is susceptible to an adaptive key recov-
ery attack, disproving the authors’ claim that the scheme achieves IND-CCA1
security. The attack is practical for λi’s drawn uniformly from {0, 1}, and is still
practical and efficient for λi’s drawn uniformly from a larger set of integers. We
have also argued that the scheme is not secure even if the λi’s are drawn from a
discrete Gaussian distribution. In short, none of the distributions suggested by
Li et al. ensures the IND-CCA1 security of the LGM scheme.

A plausible strategy to thwart our attack would be to add a ciphertext check
during decryption, but we do not know if the strategy can be applied to the
LGM scheme, and we know of no other strategies that may be applicable to the
scheme to achieve IND-CCA1 security. We therefore do not know how to tweak
the LGM scheme to be resistant to our proposed statistical attack.

15

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (May / Jun 2010)

2. Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete Gaussian leftover hash
lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013,
Part I. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (Dec 2013)

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015), http://eprint.iacr.
org/2015/046

4. Albrecht, M.R., Walter, M.: dgs, Discrete Gaussians over the Integers (2018), avail-
able at https://bitbucket.org/malb/dgs

5. Bai, S., Galbraith, S.D., Li, L., Sheffield, D.: Improved combinatorial algorithms
for the inhomogeneous short integer solution problem. Journal of Cryptology 32(1),
35–83 (Jan 2019)

6. Becker, A., Coron, J.S., Joux, A.: Improved generic algorithms for hard knap-
sacks. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 364–385.
Springer, Heidelberg (May 2011)

7. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 213–240. Springer, Heidelberg (Mar 2017)

8. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat ho-
momorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATIN-
CRYPT 2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (Sep 2015)

9. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer, Heidelberg (Aug 1998)

10. Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks on NTRU-
based somewhat homomorphic encryption schemes. In: Lehmann, A., Wolf, S.
(eds.) ICITS 15. LNCS, vol. 9063, pp. 283–296. Springer, Heidelberg (May 2015)

11. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (Aug 2013)

12. Howgrave-Graham, N., Joux, A.: New generic algorithms for hard knapsacks. In:
Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 235–256. Springer,
Heidelberg (May / Jun 2010)

13. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the
gentry-sahai-waters leveled homomorphic encryption scheme. Cryptology ePrint
Archive, Report 2016/1146 (2016), http://eprint.iacr.org/2016/1146

14. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on
the GSW levelled homomorphic encryption scheme. In: Chen, L., Han, J. (eds.)
ProvSec 2016. LNCS, vol. 10005, pp. 373–383. Springer, Heidelberg (Nov 2016)

15. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat ho-
momorphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol.
7118, pp. 55–72. Springer, Heidelberg (Aug 2012)

16. Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic,
constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS,
vol. 10402, pp. 455–485. Springer, Heidelberg (Aug 2017)

16

17. Raddum, H., Fauzi, P.: LGM-attack (2021), available at https://github.com/

Simula-UiB/LGM-attack

18. Zheng, Z., Xu, G., Zhao, C.: Discrete Gaussian measures and new bounds of the
smoothing parameter for lattices. Cryptology ePrint Archive, Report 2018/786
(2018), https://eprint.iacr.org/2018/786

17

Article III

2.3 On the IND-CCA1 Security of FHE Schemes

Prastudy Fauzi, Martha Norberg Hovd and H̊avard Raddum

In Cryptology ePrint Archive, Report 2021/1624, 2021. https://eprint.iacr.org/

2021/1624.

The majority of the work and writing was done by the candidate. The editing was split

equally between the authors.

On the IND-CCA1 Security of FHE Schemes

Prastudy Fauzi1, Martha Norberg Hovd1,2, and H̊avard Raddum1

1 Simula UiB, Bergen, Norway
{prastudy,martha,haa ardr}@simula.no

2 Department of Informatics, University of Bergen, Norway

Abstract. Fully homomorphic encryption (FHE) is a powerful tool in
cryptography that allows one to perform arbitrary computations on en-
crypted material without having to decrypt it first. There are numerous
FHE schemes, all of which are expanded from somewhat homomorphic
encryption (SHE) schemes, and some of which are considered viable in
practice. However, while these FHE schemes are semantically (IND-CPA)
secure, the question of their IND-CCA1 security is much less studied.
In this paper, we group SHE schemes into broad categories based on their
similarities and underlying hardness problems. For each category, we
show that the SHE schemes are susceptible to either known adaptive key
recovery attacks, a natural extension of known attacks, or our proposed
attacks. Finally, we discuss the known techniques to achieve IND-CCA1
secure FHE and SHE schemes.

Keywords: FHE schemes, IND-CCA, cryptanalysis

1 Introduction

Fully homomorphic encryption (FHE) allows meaningful computation to be per-
formed on encrypted material without decrypting it. Slightly more formally: for
any circuit C, we require that Dec(C(c)) = C(Dec(c)) for any ciphertext c. The
notion was initially suggested in the late seventies by Rivest et al. [69], and
Gentry proposed the first successful FHE scheme in 2009 [46].

Ever since Gentry’s breakthrough, there has been a lot of development in
FHE, especially with regards to practicality. Although Gentry’s initial scheme
was later implemented [47], it was little more than a proof of concept and far
from being practical. Today the situation is very different, with several FHE
libraries and examples of practical applications to real-world problems. For in-
stance, recent field trials in the financial sector [63] include applying homomor-
phic encryption on a machine learning pipeline, making it possible to outsource
work and analyses previously limited to in-house treatment. Furthermore, an
international ISO/IEC standard is due by 2024 [56], and NIST is tracking the
progress of FHE as a privacy-enhancing technology [1].

As FHE moves further into the realm of practicality and real-world applica-
tion, it is crucial to study the security of these schemes in detail. The security
notion most FHE schemes have aimed for, and several provably achieved based

on hardness assumptions, is indistinguishability under chosen plaintext attacks
(IND-CPA). The security notion captures whether an adversary with access
to the public key is able to distinguish between encryptions of messages, i.e.,
whether a ciphertext leaks information about its content.

However, IND-CPA offers no security guarantees if an adversary can obtain
decryptions of ciphertexts. Such a scenario is hardly far-fetched, e.g., if a mali-
cious cloud does not return the ciphertext arising from an honest computation,
but rather an adulterine ciphertext, the cloud may observe if the client rejects
the ciphertext as invalid by requesting a recomputation. Zhang et al. show how
such an attack may be used to construct a probabilistic decryption oracle [81].
Chillotti et al. [32] demonstrate that the very set-up of FHE schemes makes
them susceptible to reaction and safe error attacks. Similarly, a padding oracle
attack [62,77] enables one to decrypt arbitrary ciphertexts by making use of a
server that only tells whether or not the padding of an encrypted message is
valid. Furthermore, it is difficult to rule out any adversarial access to decrypted
material in the settings with rich data flows where FHE is being, or suggested
to be, used; for example, in scenarios with multiple collaborating parties ex-
changing data or in combination with machine learning [26,67]. Finally, Cheon
et al. [28] point out that some applications demand that decrypted values are
shared with each involved party, not just those in possession the secret key, and
give multi-party computation and differential privacy as examples of such appli-
cations. In short, IND-CPA is not sufficient to guarantee security in some of the
scenarios where FHE is being used.

Beyond IND-CPA, there are additional levels of indistinguishability: IND-
CCA1, where the adversary gets a decryption oracle for a limited amount of time,
and IND-CCA2, where the adversary gets a decryption oracle that can be used
at any time. It is well known that if an encryption scheme has any homomorphic
property, it cannot achieve IND-CCA2 security. Finding a fully homomorphic
encryption scheme that achieves IND-CCA1 security is still an open problem.3

Some generic constructions of FHE schemes achieving IND-CCA1 security have
been suggested, but none of them have been instantiated. Furthermore, although
these constructions provably achieve IND-CCA1 security, they do suffer from
various shortcomings, as will be discussed in Section 6.

All acknowledged FHE schemes are constructed in the same way. The starting
point is a somewhat or leveled homomorphic encryption (SHE or LHE) scheme,
with noise-based encryption, able to perform a limited number of homomorphic
operations on ciphertexts before correct decryption is not guaranteed. The ‘base
scheme’ is then expanded into an FHE scheme by homomorphically evaluating
the decryption circuit on a ciphertext, which reduces the amount of noise in the
ciphertext. This procedure is called bootstrapping and requires publishing some
encrypted secret key material.

It is worth stressing that bootstrapping excludes IND-CCA1 security. Af-
ter all, if an adversary may decrypt any ciphertext she chooses, she can simply
choose to decrypt the published secret key material, which then allows her to

 In contrast, group homomorphic schemes can be IND-CCA1 secure, e.g., CS-lite [39].

2

decrypt other ciphertexts. Furthermore, several LHE and SHE schemes rely on
publishing encrypted versions of various secret keys for other purposes than
bootstrapping, such as key switching (e.g., BGV [17]) or relinearisation (e.g.,
BV11a and BV11b [19,20]), which makes homomorphic evaluations composable.
Note that publishing such encryptions also prevents IND-CCA1 security. Hence,
it seems that the best we can hope for is an IND-CCA1 secure SHE or LHE
scheme that does not rely on key switching, relinearisation, or any other oper-
ation which requires publishing encryptions of secret keys. We stress that there
is no result stating that homomorphic encryption schemes cannot achieve IND-
CCA1 security. However, the presently known methods of constructing these
schemes prevent such a level of security from being obtained, or introduce some
shortcoming.

Almost no published SHE or LHE schemes aim at achieving IND-CCA1
security, though, but settle for IND-CPA. Furthermore, the schemes that have
attempted to achieve IND-CCA1 security have, as we shall see, since been proven
insecure. Several SHE and LHE schemes have been shown to be susceptible to
adaptive key recovery attacks: an adversary is able to recover the secret key if
she has access to a decryption oracle. However, since security against adversaries
able to decrypt has not been strived for, vulnerable schemes have been developed
and improved further in different ways, but not necessarily with any effort to
make them IND-CCA1 secure, or resilient against adaptive key recovery attacks.
Dahab, Galbraith and Morais [40] make this point as well: “There are adaptive
key recovery attacks on many schemes and these schemes were adapted and
optimised later; thus such constructions should be assessed in order to verify
whether the attacks are still feasible”.

It is worth emphasizing that these adaptive key recovery attacks are not
just a theoretical threat: as previously mentioned, it is possible to construct a
(probabilistic) decryption oracle using reaction attacks [81], and there are use
cases where decrypted material being made available to adversaries is either
probable or inevitable. The fact that it is possible to mount attacks that recover
the secret key also on LHE and SHE schemes, i.e., schemes that do not employ
bootstrapping, makes assessing the security of these schemes especially pressing.
These schemes are a natural alternative to bootstrapped FHE schemes if the
users wish to avoid the risk of key recovery through the published bootstrapping
key, and it is therefore important to assess whether there is still a risk of the
secret key being recovered also for LHE and SHE schemes.

Our contributions. In this paper, we provide precisely the assessment re-
quested by Dahab et al.: we review all acknowledged SHE and LHE schemes
with respect to adaptive key recovery attacks and show that all schemes are
susceptible to such an attack. We determine if the schemes are vulnerable to a
previously published attack and provide novel attacks for those not susceptible
to already known attacks. Seeing as schemes strongly inspired by earlier schemes
are likely to be susceptible to the same attack, we also provide a table of scheme
genealogy: an overview of which schemes have been directly based on which.

3

Attack Affected schemes Extends to

Chenal and Tang ((R)LWE) [26] Bra12 [15], BGV [17],
BV11a [19], BV11b [20],
GSW [48]

CKKS [29], FV [43], BCIV
[13], AN [5], CLPX [25],
CIL [24], BV14 [21], BL [9],
CCS [23], CM [33], CGGI
[31], Jou [52], BP [18], AH
[4], PS [66], CS17 [37]

Loftus et al.* (Ideal Lattice) [60] Gen [46], GH* [47],
SV*[72]

SS* [74], SV14* [73]

Zhang et al. (AGCD) [80] and CMNT [35], vDGHV [76] CNT [36], CS15 [30]
Chenal and Tang (AGCD) [26] CLT [34],CCKLLTY [27],

KLYC [54]

Dahab et al. (NTRU) [40] BLLN [14], LATV* [61] RC* [71]

Fauzi et al. (other) [44] LGM [59]

Section 5.2 (AGCD) Per [68], BBL [8]

Section 5.3 (other) DHPSSWZ [41], AFFHP
[3]

Table 1. IND-CCA1 attacks and affected schemes. The second column lists schemes
mentioned by the attack paper, while the third column lists schemes we found to be
affected as well. An asterisk (*) denotes schemes that have been shown to not be
IND-CPA secure. Note that the paper by Loftus et al. presents both an attack and a
scheme, where the asterisk denotes that the scheme is not IND-CPA secure, and the
attack breaks the schemes listed in the table. The two final rows are novel attacks.

Additionally, we provide an overview of which schemes are no longer deemed
IND-CPA secure. A summary of our findings with regards to security is listed
in Table 1. We also discuss the prospect of noiseless schemes and the existing
generic constructions for IND-CCA1 secure homomorphic encryption schemes.
However, we do not discuss implemented variants of schemes, e.g., if an imple-
mentation improves the bootstrapping procedure of a presented scheme, as it
does not affect the achieved security of the basis scheme.

We group schemes into five broad categories primarily based on the underly-
ing hardness problem: (R)LWE, ideal lattices, AGCD, NTRU, and ‘other’. Note
that the schemes in the category ‘ideal lattices’ are based on several hardness as-
sumptions, which is why we prefer referring to this category by the structure the
schemes are based on. Furthermore, all the schemes based on AGCD are defined
over the integers, and we also refer to these schemes as ‘integer-based schemes’.
The motivation for this categorisation is that it essentially corresponds to groups
of schemes susceptible to the same attack. For example, a large majority of the
schemes based on AGCD is broken by an attack by Chenal and Tang [26]. The
schemes in the fifth ‘other’ category are schemes that are not based on either
of the already mentioned hardness assumptions. For each category, we sketch
the existing attacks, and show that these attacks can be extended to several
other SHE schemes in the same category by relatively easy modifications. As

4

mentioned previously, we also provide novel attacks for the schemes not affected
by any of the already known attacks or their extensions.

Related work. The security notions mentioned so far all assume the decryp-
tion procedure returns an exact message: if m has been encrypted, an unaltered
ciphertext will decrypt to exactly m. However, this is not the case for all homo-
morphic encryption schemes, most notably CKKS [29], where decryption returns
an approximation of the message. This discrepancy was noted by Li and Miccian-
cio [57], who also proposed a novel security notion for approximate encryption
schemes, termed IND-CPAD, which reduces to IND-CPA for exact schemes, and
showed that CKKS is not IND-CPAD secure. They also presented a key recov-
ery attack that does not rely on a decryption oracle, demonstrating the practical
implication of the discovered insecurity. Cheon et al. has published a report ad-
dressing the insecurity, discussed which applications the attack is applicable to,
and introduced extensions to libraries to prevent the key recovery attack [28].

Loftus et al. [60] discuss attacks on homomorphic encryption schemes in the
verification setting, IND-CVA, where the adversary has access to a verfication
oracle, rather than a decryption oracle, which determines if the decryption algo-
rithm will output ⊥ when given a specific ciphertext c. Loftus et al. demonstrate
that an IND-CCA1 secure scheme may be IND-CVA2 insecure, if the adversary
has access to the verification oracle after she has received the challenge cipher-
text [60]. The vast majority of homomorphic encryption schemes consider all
elements in the ciphertext domain as valid inputs to the decryption procedure,
though. In these settings, the verification oracle is of no help to the adversary,
as all ciphertexts are valid.

However, Chillotti et al. [32] and Zhang et al. [81] argue that the notion of
a verification oracle should be extended from whether a ciphertext decrypts, to
whether a ciphertext decrypts to something meaningful. They present the fol-
lowing scenario: a malicious cloud returns a ‘dishonest’ ciphertext to a client
who has asked for a computation. If this ciphertext does not decrypt to some-
thing the client deems meaningful or valid, the client will ask the cloud for a
recomputation, thus leaking that the decryption was not meaningful, and sim-
ilarly leaking that a decryption was meaningful if no action is taken. Either
result leaks information about the decrypted result. Chillotti et al. and Zhang
et al. show that the very structure of homomorphic encryption make schemes
susceptible to these fault injection, safe-error and reaction attacks, and that the
attacks are a viable threat to real-world applications.

Finally, keyed-homomorphic encryption is a primitive, suggested by Lai et
al. [55], closely related to homomorphic encryption. Here, any homomorphic
evaluation of a ciphertext requires access to a particular evaluation key, which
does not enable decryption. Lai et al. suggest an instantiation of such a scheme
and prove that encrypted messages are indistinguishable even if an adversary
has access to a decryption oracle.

5

2 Preliminaries

2.1 Notation

We use two distinct modular reductions: p = r mod q denotes centrally reducing
p modulo q to r ∈ (−q/2, q/2], whilst p = r mod q denotes the modular reduc-
tion to r ∈ [0, q − 1]. In both cases, we may also write p ≡ r mod q or p ≡ r
mod q if we wish to stress that p is equivalent to r modulo q: p = r + nq. This
convention generalises to vectors and polynomials.

Vectors are denoted by bold lower case letters, whilst matrices are denoted
by bold upper case letters. Normal letters are used to denote both integers and
polynomials. We have aimed to strike a balance between having a consistent
notation throughout the paper and also not diverging too much from the origi-
nal articles. For example, parameters are denoted by Greek letters for schemes
defined over the integers but not for the other schemes.

Several schemes use the gadget vector or matrix with respect to a base b and a
parameter l: the gadget vector g is defined as the column vector (1, b, . . . , bl−1)T ,
and the gadget matrix is defined asG = In⊗g ∈ Znl×n (i.e.,G is a matrix with g
on the ‘diagonal’). For an integer a < bl, we define the function g−1(a) : Z→ Zl
so that g−1(a) is the row vector with the (signed) base b decomposition of a,
i.e., g−1(−a) = −g−1(a) for a positive integer a, and g−1(a) ·g = a. This notion
extends naturally to vectors, so for an n-length vector a, we define the function
G−1(a) = [g−1(a1), g−1(a2), . . . , g−1(an)] ∈ Znl. The function extends similarly
to matrices: for a matrix A ∈ Zn×n, G−1(A) ∈ Zn×nl simply applies G−1 to
each row of A. Moreover, G−1(A) ·G = A [68].

We always denote schemes by the initials of the authors or the first three
letters of the surname if there is a single author. This is mostly in line with the
naming convention of the field, but we stress that we do this also for schemes
with other proposed names, e.g., TFHE (CGGI [31]) and YASHE (BLLN [14]).

2.2 Notions

There are different flavours of homomorphic encryption, and we briefly present
them here. As previously mentioned, all suggested schemes use the same ap-
proach of adding noise to a message to encrypt it, which builds up as the cipher-
text is evaluated. If the noise grows too much, decryption is not guaranteed to
be correct. For a more thorough discussion, see Appendix A.

– Somewhat homomorphic encryption (SHE) refers to schemes able to perform
a limited number of homomorphic additions and/or multiplications before
an evaluated ciphertext is not guaranteed to decrypt correctly. Although the
number of operations may be estimated, it cannot be set explicitly.

– Leveled homomorphic encryption (LHE) schemes are similar to SHE schemes
in that they allow for a limited amount of operations to be performed on a
ciphertext. Here, though, the amount can be set explicitly, and is included
as a parameter, the ‘levels’ L, in the key generation.

6

– Fully homomorphic encryption (FHE) allows for an unlimited number of
homomorphic operations to be performed on a ciphertext. The only known
way of achieving an FHE scheme is to bootstrap an SHE or LHE scheme.

It is required that all these types of schemes achieve compactness:4 there exists
a polynomial p such that the size of any evaluated ciphertext is less than p(λ),
where λ is the security parameter of the scheme in question. In other words, the
growth of an evaluated ciphertext should be independent of both the size of the
circuit and, in the case of LHE, the level parameter L [6].

We refer to all these three types of schemes collectively as *HE schemes to
emphasise that the schemes are homomorphic both with respect to addition
and multiplication. We also refer to them as ‘homomorphic encryption schemes’,
which must not be confused with group homomorphic schemes.

We recall the notion of indistinguishability under (non-adaptive) chosen ci-
phertext attack (IND-CCA1) for an encryption scheme E = (KeyGen,Enc,Dec):
any PPT adversary A has at most a 1/2 + ϵ chance of winning the following
game against a challenger C, where ϵ is negligible in the security parameter λ:

– C draws a key pair (pk, sk)← KeyGen(params), and sends pk to A.
– A makes polynomially many ciphertext queries to her decryption oracle
ODec, which returns Dec(c) for any ciphertext c that A has sent it.

– A sends two plaintexts of equal length (m0,m1) to C.
– C returns c← Enc(pk,mb) to A, for a randomly chosen bit b ∈ {0, 1}.
– A outputs the bit b∗, and wins if b∗ = b.

Here, params denotes the security parameter λ of the scheme, and possibly other
parameters output by a SetUp(λ) algorithm. The notion of IND-CPA security is
defined in a similar way, but here, A does not have access to a decryption oracle.

Finally, we note that all the attacks discussed in this paper are adaptive key
recovery attacks, where an adversary with access to a decryption oracle is able
to recover the secret key. These attacks are strictly stronger than a regular IND-
CCA1 attack, as it allows an adversary to decrypt any ciphertext of her choosing,
not just distinguishing between the encryptions of two chosen messages.

3 Schemes

Most schemes are grouped according to which known attack they are susceptible
to, which largely corresponds to which problem they are based on, and we let
the titles of subsections reflect this. There are a handful of schemes that do not
fit into either of these groups, i.e. not broken by a known attack nor based on
the same problem as previously broken schemes, which are presented separately
in Section 3.5. Finally, we briefly discuss noise-free *HE. Unless explicitly stated,
none of the schemes or constructions discussed are fully homomorphic.

All the attacks presented in Section 4 and Section 5 only use decryption
results of ciphertexts to reconstruct the secret key. We therefore focus on key

4 Not all definitions insist SHE schemes achieve compactness [6].

7

Parent Child(ren)

BGV [17] CKKS [29]
Bra12 [15] FV [43]
FV [43] BCIV [13], AN [5], CLPX [25], CIL [24], AH [4]
GSW [48] BV14 [21], BL [9], CM [33], CCS [23], CGGI [31], PS [66], BP [18], Jou [52]
Gen [46] SS [74]
SV [72] GH [47], LMSV [60], SV14 [73]
vDGHV [76] CLT [34], KLYC [54], CNT [36], CCKLLTY [27], CMNT [35]

Table 2. The genealogy of various homomorphic schemes. ‘Children’ are schemes di-
rectly based on the ‘parent’ scheme. Schemes in bold are based on ideal lattices, schemes
in italics are defined over the integers, and the rest are schemes based on (R)LWE.
Schemes which are not based directly on a parent scheme (‘orphans’) are not listed.

generation, encryption and decryption when presenting schemes. In particular,
we do not discuss the addition or multiplication algorithms of the schemes.

As previously mentioned, several schemes are based on earlier work, some-
times more or less copying a ‘base’ scheme. We refer to such a base scheme as a
‘parent’ and a scheme that has been based on it (and greatly resembles it) as its
‘child’; see Table 2 for an overview of this genealogy. Seeing as there are so many
schemes with great similarities, we do not present all suggested *HE schemes,
but rather the parent schemes, from which others are easily derived, and present
a generalisation of all proposed schemes in the (R)LWE case. We also present
‘orphan’ schemes: those that are not directly based on earlier work.

Finally, we note that, for simplicity, some encryption schemes are presented
as symmetric key, rather than as public key. For all the schemes where this
is the case, there is a standard transformation to make the scheme public key
(see, e.g., [76]): the secret key remains the same, and the public key is a set of
different encryptions of the additive identity element in the message space, e.g.,
0. A message m is then, roughly speaking, encrypted by adding a small, random
subset of the public key to m or an encoding of m, whilst decryption is the
same as in the symmetric scheme. For details on the transformation of a specific
scheme, the reader is referred to the original article of the scheme in question.

3.1 (R)LWE

There are several (R)LWE-based *HE schemes, most of which are children of
BGV [17], Bra12 [15], or GSW [48]. These schemes have a common structure:

– The private key is a vector s ∈ Rn for some polynomial ring R (in the
case of RLWE) or for R = Zq (in the case of LWE). For RLWE, n = 1.
The private key is drawn from either a bounded Gaussian distribution or a
uniform distribution over polynomials with binary or ternary coefficients.

– The public key generation first computes an (R)LWE sample a′ = As+ e,
whereA ∈ RN×n is a randomly sampled matrix and e ∈ RN is sampled from
a noise distribution χ. Then the public key PK ∈ RN×(n+1) is constructed
using A and a′ such that PK · (−s ∥ 1) = e.

8

– Encryption of a message m ∈ M first encodes it as m′ ∈ Rn+1 (e.g., m′ =
(0, . . . , 0,m)), samples some randomness r ∈ RN and outputs c = r ·PK +
m′ ∈ Rn+1. In some variants, m′ and r are matrices instead of vectors.

– Decryption parses the ciphertext as c = (a, b) where a ∈ Rn and b ∈ R,
then computes m = ρ(⟨a, s⟩− b) (for LWE), or m = ρ(a · s− b) (for RLWE)
where ρ : R→M is a rounding function into the plaintext space.

3.2 Ideal lattices

The most important schemes in this category are Gentry’s original scheme
Gen [46], and its most notable children GH [47] and SV [72]. Gentry presented his
original scheme in rather general terms, whereas later schemes are specialisations
of it. As a consequence, the ‘general’ scheme Gen is based on BDDP and SSSP,5

but the ‘specialisation schemes’ GH, SV and their children are based on a differ-
ent, but related problem, namely the short principal ideal problem (SPIP). This
computational assumption has since been proven insecure [10,11,38], meaning in
particular that SV and its children (see Table 2) are not IND-CPA secure.

For this reason, we choose not to present any particular scheme in this sub-
section, nor any attack later in the article. Instead, we mention that both GH
and SV were proven to be susceptible to an adaptive key recovery attack, which
also extends to Gen [60,40]. The LMSV scheme was suggested in the same pa-
per as the attack [60], which was considered the only IND-CCA1 secure SHE
scheme for many years. The starting point for the LMSV construction was the
SV scheme, though, and it is therefore now known to not be IND-CPA secure.
We will discuss the LMSV scheme and the construction it relied on in Section 6.1.

3.3 Approximate Greatest Common Divisor (AGCD)

vDGHV. The original homomorphic scheme defined over the integers was pre-
sented by van Dijk et al. [76], and we refer to it as vDGHV.

The bit-length η of the secret key is chosen according to the security param-
eter λ, as is the noise distribution χ. The symmetric encryption scheme is:

KeyGen: Choose an odd integer p from the interval [2η−1, 2η). Output sk = p.
Enc(p,m ∈ {0, 1}): Draw q, r ← χ such that 2r < p/2, output c = pq + 2r +m.
Dec(p, c): Output (c mod p) mod 2.

The IND-CPA security of vDGHV is based on the difficulty of the AGCD prob-
lem: given a collection of ciphertexts, it should not be possible for an adversary
to deduce p, the approximate greatest common divisor of the ciphertexts.

BBL. Another scheme based on the AGCD problem is BBL [8], which differs
significantly from the vDGHV scheme. The BBL paper presents two schemes: a
basic and a batched construction. Since the decryption of the batched construc-
tion is a generalisation of the basic one, we present the basic scheme here.

5 Bounded Distance Decoding Problem, and Sparse Subset Sum Problem

9

The scheme has public parameters (γ, ρ, η, τ), all dependent on the security
parameter λ. The parameter γ is the bit-length of a component of the public
key, and alongside ρ and the secret key p, it defines the noise distribution χγ,ρ
used during key generation. For the parameters γ, ρ, p, the noise distribution is
defined as follows: draw integers q ← Z ∩ [0, 2γ), r ← Z ∩ (−2ρ, 2ρ), and output
pq+ r. Additionally, τ defines the number of components in the public key, and
finally η defines the bit length of the secret key p. Recall that gT is the γ-length
gadget row vector, and g−1 : Z→ {0, 1}γ produces a column vector.

KeyGen: Sample an η-bit integer p, and sample an integer x0 ← χγ,ρ such that
the bit length is γ. Then sample τ integers xi ← χγ,ρ such that xi ≤ x0
for 1 ≤ i ≤ τ ; we write x = [x1, . . . , xτ]. Output pk = (x0,x), sk = p.

Enc(pk,m): Draw a matrix S← {0, 1}τ×γ , and output c = mgT + xS mod x0.

Dec(p, c): Compute µ = cg−1(p/2) mod p. If |µ| ≥ p/4, return 1, else return 0.

Per. The schemes defined over the integers presented so far only encrypt single
bits, although BBL may be batched. To remedy this, Pereira proposed a scheme
that operates natively on vectors and matrices [68]. Furthermore, the size of the
message space is a separate parameter that can be made as large as required.

The parameters of the scheme are similar to those of vDGHV and BBL: η is
the bit-length of the secret prime p, and γ is the bit-length of the integer x0 used
for modular reductions of ciphertexts. There is also the noise distribution χ and
noise parameter ρ. In addition, the scheme relies on the dimension n of vectors
and matrices being encrypted, and the bound B on message size: for any integer
m being encrypted, we have |m| ≤ B, which naturally extends to vectors and
matrices. Finally, we also have the parameter b, which is the base for the gadget
matrix/vector, and the gadget decomposition function G−1. We note that the
scheme is designed so that the matrix and vector encryption and decryption use
the same secret key material, and that the scheme only allows for matrix-matrix
and vector-matrix multiplications.

KeyGen(λ,B, n, η, ρ, ρ0, γ): Draw an η-bit prime p, then sample x0 from χρ0,p
such that the bit-length of x0 is γ and x0 = qp + r for |r| ≤ 2ρ0 . Sample
K uniformly from Zn×n 0 until K−1 mod x0 exists. Finally, define α =

⌊ 2η−1

2B+1⌉, output sk = (p,K), and update the set of public parameters
{B,n, η, ρ, ρ0, γ} to include {α, x0}.

EncMat(sk,M): Construct the matrix X = pQ+R by sampling each matrix el-
ement from χ< 0 , which only outputs elements smaller than x0. Compute
C = (X+GKM)K−1 mod x0, and output C.

DecMat(sk,C): Compute C′ = G−1(αK−1)CK mod x0, then C∗ = C′ mod p,
and finally output ⌊C∗/α⌉.

EncVec(sk,m): Construct an n-length vector x = pq + r, again by sampling
every vector element from χ< 0 . Compute and output c = (x+ αm)K−1.

DecVec(sk, c): Compute c′ = cK mod x0, then c∗ = c′ mod p. Return ⌊c∗/α⌉.

10

The indistinguishability of ciphertexts is based on AGCD, as the hardness of
AGCD ensures that the distribution from which X and x are drawn is indistin-
guishable from the uniform distribution over Z 0 (Lemma 3 of [68]). Using this
indistinguishability, security is proven by a hybrid argument.

3.4 NTRU

There are three schemes that closely resemble NTRU: LATV [61], RC [71], and
BLLN [14]. Despite great similarities, they are based on different problems:
BLLN is based on RLWE, whilst LATV and RC are based on the Decisional
Small Polynomial Ratio (DSPR) problem (defined in [61]), which may be re-
garded as the standard NTRU problem restricted to a specific set of parameters.

Albrecht et al. [2] found an attack on LATV which recovered the secret key
using only the public material, and the same attack was later shown to apply
to the RC scheme [51]. The attack takes advantage of precisely the specific
parameters of the DSPR problem, implying that neither LATV nor RC are
IND-CPA secure, and we therefore do not discuss these schemes further.

Despite the similarities between the schemes, BLLN is not affected by the
Albrecht et al. attack, and we present the scheme below. BLLN is based on the
version of NTRU proven by Stehlé and Steinfeld to be as secure as RLWE [75].
The size of the parameters chosen for BLLN ensures that the proof of security
of Stehlé and Steinfeld extends to BLLN as well. This is not the case for LATV
or RC, which is why these schemes reduce to DSPR.

BLLN. The BLLN scheme is defined over the ring R = Z[x]/Φd(x), where Φd(x)
is the dth cyclotomic polynomial. Despite this general definition, we present the
case where the ciphertext ring is R = Z[x]/(xn+1) for n a power of two, as this
is the parameter the authors mention specifically.

The plaintext space is defined as Rp = R/pR and the ciphertext space as
Rq = R/qR, for integers p ≪ q, where we also require that gcd(p, q) = 1. In
addition, BLLN uses a bounded noise distribution χk defined over Rq for key
generation, and a separate noise distribution, χe, for encryption. Both these
noise distributions are typically some truncated discrete Gaussian, with bounds
Bk and Be, respectively.

ParamsGen(λ): Given λ, fix n to determine the ring Z[x]/(xn + 1). The secu-
rity parameter also determines the moduli q and p, as well as the noise
distributions χk and χe.

KeyGen(n, q, p, χk, χe): Draw f ′, g ← χk, set f = pf ′+1 mod q, compute f−1 ∈
Rq (redrawing if f−1 does not exist), and output (pk, sk) = (h = gf−1, f).

Enc(pk,m ∈ [−p/2, p/2)): Draw r, e ← χe, and compute c = ⌊q/p⌋m + r + he
mod q as an element of R.

Dec(sk, c): Compute and output m = ⌈pq (fc mod q)⌋ mod p ∈ R.

11

3.5 Miscellaneous schemes

AFFHP. Albrecht et al. [3] proposed AFFHP, a scheme whose security relies
on the hardness of computing Gr obner bases for ideals of multivariate polyno-
mial rings and the ideal membership (IM) problem. The scheme works over the
polynomial ring Fq[x0, . . . , xn−1] for a prime q.

The IM problem states that for a general ideal I ⊂ Fq[x0, . . . , xn−1] it is
hard to determine if a random polynomial from Fq[x0, . . . , xn−1] lies in I or
not. AFFHP is designed with respect to general Gr obner bases for ideals in
Fq[x0, . . . , xn−1]. However, homomorphic multiplication only works when a par-
ticular parameter d is equal to 1, resulting in the reduced Gr obner basis always
having the form G = {x0−a0, x1−a1, . . . , xn−1−an−1} for ai ∈ Fq. Since we are
only concerned with schemes that are *HE, we only consider this case. Note that
for any f ∈ Fq[x0, . . . , xn−1], we will always have f mod G ∈ Fq for Gr obner
bases of the mentioned form.

The secret key of the scheme is G and the message space is {0, 1}. A distri-
bution of “small” polynomials e is used for noise. Encryption and decryption of
the symmetric key variant of AFFHP then works as follows:

Enc(m): Draw f of bounded degree at random from Fq[x0, . . . , xn−1]. Compute
f0 = f−(f mod G), and select e← χ at random. Return C = f0+2e+m.

Dec(C): Compute and return (C mod G) mod 2.

DHPSSWZ. The SHE scheme DHPSSWZ was proposed by Dor oz et al. [41],
where the security is based on the Finite Field Isomorphism (FFI) problem.
Informally, the FFI problem states that for a prime q, elements chosen from
a particular distribution in one representation of the field Fqn are distributed
uniformly at random when mapped to a different representation of Fqn .

Let f and F be two monic irreducible polynomials of degree n over Fq. The
message space of the scheme is elements m(x) ∈ X = Fq[x]/(f(x)), where the
coefficients of m(x) are taken from {0, 1}. To stunt the growth of the noise when
performing operations on the ciphertexts, f has to be sparse and have small
coefficients, typically from {−1, 0, 1}. The ciphertext space is Y = Fq[y]/(F (y)).
The private key consists of f , as well as explicit isomorphisms between X and Y.
More specifically, ϕ(y) is the particular element of Y, written as a polynomial in
y of degree at most n − 1, which is the root of f denoted by x in X. Likewise,
ψ(x) is the specific element of X isomorphic to the root of F labelled y in Y.
Both ϕ(y) and ψ(x) are therefore understood as fixed, known polynomials in the
description of the encryption and decryption. The encryption and decryption of
the symmetric key variant of the scheme are done as follows:

Enc(m(x)): Draw r(x) from a distribution giving small polynomials. Output
C(y) = 2r(ϕ(y)) +m(ϕ(y)) mod F (y).

Dec(C(y)): Replace y by ψ(x) in the polynomial C and output (C(ψ(x)) mod
f(x)) mod 2.

12

LGM. As we will see in Section 4.1, schemes based on LWE (e.g., GSW) can leak
one bit of the secret key from a small number of decryption queries. Essentially,
they have public keys of the form (A,As+e) with secret key s, and key recovery
attacks either compute s, or compute the noise e and use Gaussian elimination to
derive s. Li, Galbraith and Ma (LGM, [58]) proposed a technique to circumvent
such attacks. Firstly, they start with a dual version of GSW, where the public
key is of the form (A,As), and the secret key s has small norm; security then
depends on the hardness of the inhomogeneous short integer solution (ISIS)
problem. Secondly, instead of having one secret key vector s, they have t of
them; decryption works by using a different random linear combination of the
secret keys s′ =

∑t
i=1 λisi for each decryption query. Hence a decryption query

leaks, at best, one bit of s′: an unknown linear combination of secret key vectors
which with high probability will not be reused in other decryption queries. Li et
al. argued that this would prevent adaptive key recovery attacks, however, such
an attack was later found by Fauzi et al. [45].

The attack does not extend to any other scheme, as the LGM is the only
scheme which employs the strategy of using ‘ephemeral’ secret keys to thwart
adaptive key recovery attacks. We present the LGM scheme and provide the
intuition of the attack in Section 4.4 for completeness, and refer to Fauzi et
al. [45] for further details. Note that, here, κ is the security parameter, whilst λ
is a sampled variable.

Setup(1κ, 1L): Let n = n(κ, L) and m = m(κ, L), choose a modulus q and
bounded noise distribution χ = χ(κ, L) on Z such that at least 2κ secu-
rity against known attacks is achieved. Choose the number of secret keys
t = O(log n). Let l = ⌊log q⌋ + 1 and N = (t + m)l. Output params =
(n, q, χ,m, t, l, N).

KeyGen(params): Uniformly sample B ∈ Zn×mq . For i ∈ [1, t], sample ei from

χm, set ui = Bei and set si = (ri ∥−eTi)T , where ri is the i-th row of the

t×t identity matrix. Return the public keyA = [u1∥. . .∥ut∥B] ∈ Zn×(t+m)q

and the secret key s = (s1, . . . , st).
Enc(A, µ ∈ Z2): Let G be the (t+m)×N gadget matrix. Sample R ← Zn×Nq

and X← χ(t+m)×N . Output C = µ ·G+ATR+X ∈ Z(t+m)×Nq .
Dec(s,C): Sample (λ1, . . . , λt) ∈ Ztq \ {0}t until the generated s′ =

∑t
i=1 λisi

has sufficiently small norm. Let i ∈ [1, t], j, I = (i − 1)l + j be integers
such that λi ̸= 0, 2j−1 ∈ (q/4, q/2] and I ∈ [1, tl]. Compute u = ⟨CI , s

′⟩
mod q, where CI is the Ith column of the ciphertext matrix C. Finally,
output |⌊u/2j−1⌉| ∈ {0, 1}.

3.6 Noise-free attempts

All known *HE schemes have a non-constant ciphertext expansion. Gjøsteen
and Strand [50] go further and conjecture that the security of a *HE scheme
either depends on a massive ciphertext expansion or a weak or strange algebraic
structure, limiting the applicability of the scheme. To support their conjecture,

13

they show that no noise-free and secure schemes can exist in vector spaces or
fields; however, there are no final conclusions in the case of rings.

Nuida [65] proposed a generic construction of noise-free FHE based on sur-
jective group homomorphisms π : C → M. The generic construction is secure if
elements in the kernel of π are indistinguishable from elements in the ciphertext
space C, which is a variant of the subgroup hiding assumption. Nuida provided
a candidate construction using combinatorial group theory; however, it is non-
compact (i.e., the ciphertext size can be unbounded), and does not have an
explicit proof of IND-CPA security. Since other existing candidate constructions
have similar issues, we will disregard noise-free *HE constructions in our work.

4 Existing attacks

4.1 (R)LWE attacks

Chenal and Tang [26] present attacks on several schemes based on (R)LWE, for
example BGV [17] and GSW [48], see Table 1 for a full overview. The attacks
recover the secret key bit by bit, and coefficient by coefficient (wherever this
applies), by using the result of the decryption queries to perform a binary search
on secret values.

Recall from Section 3.1 that schemes based on LWE have ciphertexts of the
form c = (a, b) where a ∈ Rn and b ∈ R, for the ring R = Zq. The private key
is a vector s ∈ Rn and decryption is computed as m = ρ(⟨a, s⟩ − b), where ρ
is some rounding function that maps elements from R into the plaintext space.
In fact, any scheme with this type of decryption function is vulnerable to the
following adaptive key recovery attack.

In the LWE case, the adversary asks for decryptions of c = (ei, b), where
ei ∈ Rn is the unit vector with 1 at position i and 0 everywhere else, which
leaks information on si. Doing a binary search with different values for b allows
the adversary to find a b0 such that

ρ(⟨(0, . . . , 1, . . . , 0), s⟩ − b0) = m0 ̸= m1 = ρ(⟨(0, . . . , 1, . . . , 0), s⟩ − b0 + ϵ),

for an arbitrarily “small” value of ϵ. Note that ϵ is an element in a general ring
R, but for the homomorphic properties to work with correct decryption, the
elements of R need to have a notion of size and distance. Knowing exactly where
the border b0 is, where ρ(si − b0) is rounded to either m0 or m1, allows the
adversary to determine si to any degree of accuracy. Repeating for all positions
1 ≤ i ≤ n gives an adaptive key recovery attack on these schemes.

In the RLWE case, the general attack is equally simple. RLWE uses cipher-
texts of the form c = (a(x), b(x)) where a(x), b(x) ∈ R[x] for some polynomial
ring R[x] modulo an ideal I. For a secret key s(x) ∈ R[x] the decryption function
in this case takes the form Dec(c) = ρ(a(x)·s(x)−b(x)), where a(x)·s(x) denotes
polynomial multiplication in R[x] mod I and ρ is some rounding function into
the plaintext space. Simply querying the decryption oracle with ciphertexts of
the form c = (1, b(x)) for various choices of b(x) allows one to do a binary search
on the coefficients of s(x) in the same way as in the LWE case.

14

4.2 AGCD attacks

There are two attacks on homomorphic encryption schemes defined over the
integers. The attack by Zhang et al. [80] recovers the secret key of the vDGHV
scheme, an attack the authors themselves point out is directly transferable to
CMNT [35]. Chenal and Tang later gave a more efficient key recovery attack
against vDGHV [26]. The two attacks differ in strategy, and we therefore present
both approaches. We remind the reader that a ciphertext in vDGHV is of the
form c = m+ 2r+ qp, where the odd integer p ∈ [2η−1, 2η − 1] is the secret key.
Decryption first reduces the ciphertext modulo the secret key p, then modulo 2.

Zhang et al. construct several encryptions of 0, which they then alter so that
all the different ciphertexts have a fixed noise. Given a ciphertext c encrypting
0, this construction is achieved by performing a binary search for an added noise
term ρ such that Dec(c + ρ) = 0, but Dec(c + ρ + 1) = 1, and define the new
ciphertext ci = c + ρ + 1. Given the constructed ciphertexts c0, c1, . . . , ck, they
compute gcd(c0 − c1, c1 − c2, . . . , ck−1 − ck), which will be p with overwhelm-
ing probability. The attack requires O(λ2) operations, where λ is the security
parameter of the scheme.

Whereas Zhang et al. attacked the scheme by essentially constructing cipher-
texts such that the underlying problem was easy, Chenal and Tang proposed a
more direct search for the secret key. Initially, an adversary has both a lower and
upper bound for p, namely lp = 2η−1+1 and up = 2η− 1, respectively. She then
takes advantage of the following: if she queries the decryption oracle with an
even number c ∈ (lp, up), it will return 0 if c < p, and 1 if c > p, as Dec(c) = (c
mod p) mod 2, and c < 2p. Therefore, if she finds the even integer c such that
Dec(c) = 0 and Dec(c + 2) = 1, she knows that p = c + 1. The attack requires
roughly η oracle queries, which is more efficient than the Zhang et al. attack.

4.3 NTRU attack

An adaptive key recovery attack against the NTRU-based scheme BLLN was
presented by Dahab, Galbraith and Morais [40]; we give the main idea of the
attack and its complexity, and refer to the original article for further details. The
attack is not applied to other schemes later, and we state it for completeness.

The attack itself is fairly simple. It takes advantage of the fact that the
decryption of BLLN involves multiplying the ciphertext with the secret key and
then performing two modular reductions: first modulo q, then p. The idea is to
query the decryption oracle with rounded fractions divisible by p. The fractions
are also designed so that as long as the denominator is large compared to the
secret key f , the fraction is not reduced modulo q, and the decryption algorithm
will therefore output 0. However, as the denominator of the queried fraction
becomes just smaller than f , the fraction becomes large enough to be reduced
modulo q when multiplied with the secret key. This will cause the second modular
reduction to result in something nonzero, making it easy to detect when the
denominator became smaller than f , and hence calculate the secret key.

15

For BLLN, the complexity of the attack depends on the parameters of the
scheme. If p > 2 and the coefficients of f ′, g are all in {−1, 0, 1}, it takes a
single query to recover the secret key. In the more general case where p ≥ 2, and
no restrictions are placed on the polynomials, the complexity is O(n log(Bk)),
where n is the order of the polynomial defining the ciphertext space, and Bk is
a bound on the largest coefficient of f .

4.4 LGM attack

Recall that the LGM scheme has a secret key vector consisting of t secret keys
(s1, . . . , st), where each key is of the form si = (ei∥ri) for some noise vector ei,
and that an ephemeral secret key s′ =

∑t
i=0 λisi is generated for each decryption

procedure.
Although Li et al. discuss several possible distributions to sample λi from,

their main focus is λi drawn uniformly from {0, 1}. We therefore present the
attack for this scenario and refer to Fauzi et al. [45] for details on the attack
for more general λ distributions. The attack recovers a vector ei one component
ek,i at the time, and each vector and component is recovered independently of
each other. In particular, it is possible to calculate a single vector ei to recover
si and use it for decryption, and we therefore only discuss how to recover e1.

Note that we can construct a ciphertext matrixC such that the inner product
during decryption always results in α +

∑t
i=0 λiei,1, by ensuring that for each

possible index I, the column CI has α in position i, and 1 in position t +
1. By repeated queries of this ‘diagonal’ matrix, one obtains an estimate of
1/2

∑t
i=0 ei,1 by observing how often the decryption oracle returns 0 and 1 for a

specific value of α, as the decryption results in 0 if α+
∑t

i=0 λiei,1 < 2j−2, and 1
otherwise. Essentially, the attack searches for the value of α where the resulting
ciphertext decrypts as often to 0 as 1, as this indicates that the average value
α+

∑t
i=0 ei,1 is very close to 2j−2, and the adversary can now estimate

∑t
i=0 ei,1

After this estimation of 1/2
∑t

i=0 ei,1 is obtained, the decryption oracle is
repeatedly queried with ciphertext matrices where every column is identical,
and has a value a in position i, and a 1 in position t + 1. Decryption of such
a matrix will always result in λia + λei,1 +

∑
k ̸=i λkek,1, which will provide an

estimate of ei,1 + 1/2
∑

k ̸=i λkek,1, again by observing how often the decryption
oracle returns 0 and 1 for different values of a. Combining these two estimations
provides an estimation of ei,1, and repeating this for the other indices of e1
allows the adversary to recover the secret key s1 = (r1 ∥ −eT1)T .

5 Attacking other schemes

We now discuss how to apply known attacks to other schemes, as susceptibility
of an adaptive key recovery attack is inherited from a parent scheme to a child.
Because the schemes over ideal lattices and those based on NTRU are, with a
few exceptions, not IND-CPA secure, we limit this discussion to schemes based
on (R)LWE and AGCD. We also present novel attacks against schemes that are
not affected by the attacks presented in Section 4.

16

5.1 Applying the (R)LWE attack on other schemes

Many schemes based on (R)LWE are built on or slightly adapted from earlier
schemes, as is clear from Table 2 in Section 3. For example, the CKKS scheme [29]
is the result of a general framework being applied to the BGV scheme. The frame-
work allows for recovery of the message by computing the MSB of a ciphertext,
modulo some modulus. Because the structure of the BGV scheme is intact, the
key recovery attack on BGV described in [26] is directly applicable to CKKS.

The Chenal and Tang (R)LWE attack also works on all children of GSW
mentioned in Table 2. For most of these, the structure and decryption func-
tions are almost identical, hence the attack trivially extends. A special case is
CGGI [31], where the plaintext space is a subset of a torus,6 but the decryption
function is otherwise very similar to GSW and CKKS: it takes the inner product
of a ciphertext with the private key, subtracts an element and rounds the result
to the nearest element in the plaintext space. Hence the attack in Section 4.1
can still be adapted to CGGI.

Similarly, the attack also works on FV [43] and its children, found in Table 2.
First, observe that FV itself is essentially an RLWE variant of the LWE-based
Bra12 [15], where in particular, the decryption function is the same formula, but
in the ring setting. Moreover, all the children follow FV’s structure, including
almost identical decryption functions; the differences in specific message spaces
and algorithms for homomorphic evaluations do not affect the success rate of
the Chenal and Tang attack.

The CS17 [37] scheme is a bit different from other (R)LWE schemes in that
it relies on the learning with rounding (LWR) problem, which is closely related
to (R)LWE. We have verified that the attack procedure from Section 4.1 still
applies to the CS17 scheme; the decryption oracle can be made to return the
secret key plus a scalable term, rounded into the plaintext space. A binary search
on the scalable term allows the adversary to determine each component of the
secret key to any degree of accuracy.

5.2 Attacks on AGCD-based schemes

Applying the known attack on other schemes. The adaptive key recovery
attack by Chenal and Tang [26] on vDGHV described in Section 4.2 is applicable
to all the children of vDGHV listed in Table 2, as well as CS15 [30]. The attack
is either directly transferable or requires a trivial generalisation to account for
vectors of messages and/or a larger message space than {0, 1}.

BBL. The BBL scheme presented in Section 3.3 is not immediately affected by
any of the attacks presented in Section 4.2 We therefore present a novel adaptive
key recovery attack against the scheme.

6 The torus is defined as the set of real numbers modulo 1, which can be identified
with the half-open interval [0, 1) on the number line.

17

Recall that the decryption algorithm Dec(p, c) first computes µ = cg−1(p/2)
mod p, then outputs 1 if |µ| ≥ p/4, and 0 otherwise.

We note that the bit-length η of p is part of the public parameters, so the
adversary has both a lower and an upper bound on p: 2η−1 and 2η − 1, respec-
tively. She therefore also has the lower bound 2η−2 for p/2, and we emphasise
that 2η−2 is not reduced mod p, for any value of p.

The attack proceeds as follows: the adversary will recover the ith element
of g−1(p/2) by querying the decryption oracle with the ciphertext with 2η−2 in
position i, and 0 elsewhere. If the ith component of g−1(p/2) is 1, the decryption
oracle returns 1, and 0 otherwise. The vector g−1(p/2) is then completely recov-
ered after η− 1 queries, after which the adversary may simply multiply with the
corresponding gadget vector g to recover p/2.

Per. As for the BBL scheme, the Per scheme is not broken by any of the attacks
presented in Section 4.2, and we therefore provide a novel adaptive key recovery
attack against it. Although the Per scheme is defined for ciphertexts in both
matrix and vector form, we only use the matrix version of the scheme to recover
the secret key sk = (p,K). We explain how to recover the secret integer p first,
then how to recover the secret matrix K. Recall that the decryption works as
follows: for an input C, compute C′ = G−1(αK−1)CK mod x0, then C∗ = C′

mod p, and finally output ⌊C∗/α⌉.
We denote the greatest common divisor of α and x0 as d, and note that

1 ≤ d ≤ α. Since α ≤ p
2B+1 <

p
2 , we also have that d mod p = d. Irrespective of

the value of d, we let α−1 denote the integer such that α−1α ≡ d mod x0.

Step 1: Recovering p. Our first observation is that, using G−1(αK−1)G = αK−1

over Z 0 (see [68, Sec. 3.3]), the decryption of C = α−1G proceeds as follows:
C′ = G−1(αK−1)α−1GK = α−1αK−1K = d · In, where In is the n× n identity
matrix. Then C∗ = (d · In) mod p = d · In and M = ⌊d/α⌉In.

We use the ciphertext α−1G as a starting point to perform a binary search
for a factor t such that td < p/2, but (t+1)d ≥ p/2. If td ≤ p/2, the decryption
of tα−1G will return approximately td/αIn, which has positive entries when
td < p/2. If td ≥ p/2 then the decryption of tα−1G will return a matrix with
negative entries, or 0 if the entries have too small absolute value. It is therefore
easy to detect the exact t which produces td < p/2 ≤ (t+ 1)d.

For d = 1, p = 2t + 1 is now recovered. For d ≥ 2, note that the inequality
td < p/2 ≤ (t + 1)d implies 3td < 3p/2 ≤ 3(t + 1)d, and that we can narrow
the interval by querying to see if (3t + 1)d < 3p/2 or (3t + 2)d < 3p/2. During
decryption of (3t+i)α−1G (i = 1, 2) we know that one whole multiple of p will be
subtracted from (3t+i)d when reducing modulo p. If such a subtraction happens,
it is because (3t+ i)d ≥ 3p/2, and the decryption result will be negative. If there
is no such subtraction, the decryption result will be positive, and we know that
(3t+ i)d < 3p/2. Hence we can narrow down the search interval for p by a factor
3, e.g., if it was determined that (3t+ 1)d > 3p/2 then 2td < p < 2(3t+ 1)d/3.
We continue multiplying the inequalities by 3 and narrowing down the interval

18

for p by a factor of 3 in each iteration. After log3 d iterations, i.e., O(η+log3(d))
decryption queries, the interval contains a single digit and p is recovered.

The attack hinges on the assumption that the ciphertext is not reduced
modulo x0 during decryption. In order to avoid this modular reduction, we need
3log (d)td < x0/2. We have 3log (d)td = td2 < tdα ≤ p/2α < 2η−12η−2 = 22η−3,
where we have used the fact that α = ⌊2η−1/(2B+1)⌋ and B ≥ 1. Furthermore,
we have that x0 > 2γ−1, and finally that it is required that γ ≥ 2η [68], so we
conclude that the ciphertext queries will never be reduced modulo x0, and our
attack recovers p successfully.

Step 2: Recovering K. Successfully recovering p already displays a serious weak-
ness of the scheme, but for a full key recovery attack, we also need to recover the
secret matrix K. We show how to find K for b = 2 here, and sketch an attack
procedure for a general b.

We take advantage of the decryption procedure including G−1(αK−1), and
rather attempt to reconstruct this matrix instead of K directly. Note that the
elements of G−1(αK−1) are all in the interval [0, b− 1].

Let Ei,j denote the matrix with 1 in position (i, j), and 0 elsewhere. Querying
Ei,j to the decryption oracle will produce

C′ =




b1,ikj,1 b1,ikj,2 · · · b1,ikj,n
b2,ikj,1 b2,ikj,2 · · · b2,ikj,n

...
... · · ·

...
bn,ikj,1 bn,ikj,2 · · · bn,ikj,n


 ,

where bu,v is the (u, v)-th element of G−1(αK−1), and ku,v is the (u, v)-th ele-
ment of K. We note that 1 ≤ u ≤ nl, and 1 ≤ v ≤ n, where l = ⌈logb(2γ)⌉. We
query the decryption oracle for all possible matrices Ei,j .

If b = 2, G−1(αK−1) is a binary matrix. We then use the decryption results to
determine if a particular element bi,j is non-zero by checking whether the vector
of the form ⌊bi,j

[
ki,1 · · · ki,n

]
/α⌉, obtained from i-th row of the decryption query

on Ej,i, is non-zero. If it is, we set bi,j = 1, else we set it to 0. We can thus obtain
G−1(αK−1), and hence also αK−1. It is then easy to reconstruct K.

We now sketch how an attack for a general b can work, but leave out a rigorous
procedure. First we note the sizes of various parameters as recommended by [68]:
x0 ≈ 2160, p ≈ 280, 260 ≤ α ≤ 278, b ≈ 27, and r ≈ 240 where x0 = qp+ r.

The secret elements ki,j are random in Z 0 and are multiplied with bi′,j′ where
bi′,j′ < b. Since r and b are relatively small compared to the other parameters, we
find that first reducing bi′,j′ki,j modulo x0 and then reducing the result modulo
p is approximately the same as just reducing modulo p directly:

|(bi′,j′ki,j mod p)− ((bi′,j′ki,j mod x0) mod p)| ≤ br.

With b ≈ 27 and r ≈ 240, this difference will be mostly negligible when
dividing by α ≥ 260 before output. The result will be the same with high proba-
bility, or just one off if not the same. Hence we simplify further analysis by just
reducing modulo p.

19

The adversary gets to see the values ⌊(bi′,j′ki,j mod p)/α⌉ for all choices of
i, j, i′, j′. Looking at C′, we see that all elements in one column share the same
ki,j . Assume for concreteness that α = 270, and that ⌊(b1,1k1,1 mod p)/α⌉ is the
smallest positive value among the values ⌊(bi,1k1,1 mod p)/α⌉ that the attacker
sees, which will be in the range [−511, 512].

We then know that ⌊(ab1,1k1,1 mod p)/α⌉ ≈ a⌊(b1,1k1,1 mod p)/α⌉ for some
small values of a, since they will not lead to new reductions modulo p. We can
estimate when bi,1 = ab1,1 by looking at the ratio

⌊ (bi,1k1,1 mod p)α ⌉
⌊ (b1,1k1,1 mod p)α ⌉

≈ bi,1
b1,1

= a.

Repeating with different kj,1 produces n different estimates of this ratio,
which should give approximately the same value for all cases where ⌊(b1,1kj,1
mod p)/α⌉ is smaller than 512/a. We then learn the linear relation b1,1 = ab1,i.
Repeating for different bi,j-elements allows the adversary to create a linear sys-
tem between them, which can either be solved or whose solution space is small
enough to be exhaustively searched as b is only of size 27.

5.3 Attacks on AFFHP and DHPSSWZ

We now present new attacks on AFFHP and DHPSSWZ using a variant of
binary search. Consider the value of (ka mod q) mod p for an unknown a and
chosen multiple k, where q is prime and q ≫ p. We show how to recover a in
this scenario. In the following we identify Fq with [0, q− 1], and to ease notation
we let D(ka) ∈ Fp denote the oracle that returns (ka mod q) mod p.

First, query D(a). As a < q, this will simply give us the value of a mod p.
As long as ka < q we know that D(ka) = (k mod p)(a mod p), and we can
check how long this property holds by asking for D(ka) for k ∈ N. For some
k we reach the point where D(ka) = ka mod p but D((k + 1)a) = ((k + 1)a
mod p) − (q mod p). Note that q mod p ̸= 0 as q is prime. We are therefore
able to determine the exact value k = k0 such that k0a < q ≤ (k0 +1)a. Since a
is uniformly distributed over Fq, we expect O(1) queries to determine k0.

We now have the following inequalities

k0a < q ≤ (k0 + 1)a⇔ q

k0 + 1
≤ a < q

k0

Multiplying through by 2 we get 2k0a < 2q ≤ (2k0+2)a. Ask for D((2k0+1)a).
Knowing the value of a mod p, we can determine if the reduction of (2k0 + 1)a
modulo q subtracted q or 2q before reducing modulo p. This determines whether
2k0a ≤ 2q ≤ (2k0 + 1)a or (2k0 + 1)a ≤ 2q ≤ (2k0 + 2)a. In other words, we can
find k1 such that k1a0 < 2q ≤ (k1 + 1)a0. This gives the following inequalities

k1a < 2q ≤ (k1 + 1)a⇔ 2q

k1 + 1
≤ a < 2q

k1
.

20

We continue like this, multiplying through with 2 and asking the oracle
D((2k1 + 1)a) to determine the value k2 such that k2a < 4q ≤ (k2 + 1)a, etc.
After t iterations we have the following inequalities

kta < 2tq ≤ (kt + 1)a⇔ 2tq

kt + 1
≤ a < 2tq

kt
.

We now show that the interval where a can be found shrinks exponentially fast
with increasing t, and only O(log q) queries are needed to determine a exactly.

First note that k0 ≥ 1, and by induction kt ≥ 2t for all t ≥ 0. Define d(t) to
be the size of the interval where a can be found after t iterations. We then get

2tq

kt
− 2tq

kt + 1
= d(t) =⇒ 2tq = d(t)kt(kt + 1) > d(t)22t =⇒ q

2t
> d(t)

Hence, after O(log q) queries the attacker is able to determine a.

CCA key recovery attack on AFFHP Recall that the secret key of AFFHP
is a Gr obner basis G = {x0−a0, . . . , xn−1−an−1} ⊂ Fq[x0, . . . , xn−1], where the
ai are unknown coefficients from Fq. For a given ciphertext C ∈ Fq[x0, . . . , xn−1],
the decryption function returns (C mod G) mod 2. Setting C = xi will then
yield xi mod G = ai, so the decryption oracle will output ai mod 2. More
generally, the decryption of C = kxi for some k ∈ Fq will return kai mod 2.
The attacker can therefore recover all the unknown ai by using the method
described above. The complexity for this attack is O(n log q) decryption queries.

CCA key recovery attack on DHPSSWZ Recall that the decryption func-
tion of DHPSSWZ for a ciphertext C(y) is given as Dec(C(y))= (C(ψ(x)) mod
f(x)) mod 2, where ψ(x) and f(x) are part of the secret key. We first show that
the attacker can determine ψ(x) by asking for polynomially many decryptions
of some chosen ciphertexts. All ciphertexts will take the form C(y) = ky, for
selected choices of k ∈ Fq. Note that if the attacker only asks for decryptions
of linear polynomials, i.e., C(ψ(x)) = kψ(x), no reduction modulo f(x) will oc-
cur. Hence we can disregard f(x) in the decryption function, and the decryption
oracle will simply output kψ(x) mod 2 for all ciphertexts the attacker asks for.

Let ψ(x) = an−1xn−1 + . . . + a1x + a0 with ai ∈ Fq. The decryption oracle
will output (kan−1 mod 2)xn−1+ . . .+(ka0 mod 2) for the chosen ciphertexts
C(y) = ky. By focusing on one coefficient ai at a time we can now use the
method described at the start of this subsection to recover all a0, . . . , an−1 and
hence the exact ψ(x), by asking for O(n log q) decryptions.

Finally, given ψ(x) and the public polynomial F (y), the secret polynomial
f(x) can easily be recovered as follows. We know that y ∈ Y and ψ(x) ∈ X are
two different representations of the same element of Fq. This element is defined
by being a root of the polynomial F . Hence we have G(x) := F (ψ(x)) = 0,
where deg(G(x)) ≤ n(n − 1) and x is the element of X defined by being a root

21

Generic Construction Instantiation Notes

*HE + PA-1 [7,60]
GH-variant of SV + lattice
knowledge assumption [60]

SV now insecure; PA-1 uses
non-falsifiable assumption

Multi-key IBHE [12,22]

Multi-key *HE + IBE [16]
Only compact w.r.t. circuit
complexity

SubExp LWE + random ora-
cle [33]

Only compact w.r.t. circuit
complexity

SubExp iO + SubExp
DDH [22,78]

SubExp iO is a very strong
assumption

FHE + zk-SNARK [64,22]
FHE without bootstrapping
+ knowledge assumptions [22]

FHE without bootstrapping
currently only known using
SubExp iO

Table 3. Generic constructions of IND-CCA1 *HE. The first construction has an
insecure instantiation, while the other constructions only have a generic instantiation.
Hence, none of these generic strategies provide a concrete instantiation.

of f . Therefore f(x)|G(x), and we can find f(x) by factoring G(x) and seeing
which of the irreducible factors has the particular property of having degree n
and only small coefficients. Factoring a univariate polynomial of degree d over
Fq has complexity O(d2 log q) (or even smaller, see [53]), so the complexity of
recovering f(x) in this step is at most O(n4 log q).

6 Generic constructions of IND-CCA1 secure *HE

We present here the various more generic approaches for constructing an IND-
CCA1 secure *HE scheme, see Table 3 for a summary. The constructions apply
existing generic constructions from group-homomorphic cryptosystems to the
*HE setting and provide novel (generic) instantiations. The main problem with
these constructions is that the resulting schemes are typically not compact and
are rather impractical. Therefore, none of the generic constructions has, to the
best of our knowledge, been implemented.

6.1 LMSV

The SHE scheme presented by Loftus et al. [60] was for a long time the only
*HE scheme thought to be IND-CCA1 secure, but it has since been broken.

The strategy was to construct an SHE scheme that achieves both IND-CPA
and plaintext awareness (PA-1), which is known to result in an IND-CCA1 secure
scheme [7]. Informally, plaintext awareness states that if an adversary is able to
construct a valid ciphertext, she already knows the plaintext it encrypts. Then,
intuitively, the decryption oracle is of no use to the adversary in an IND-CCA1
game, as she must already know the plaintext of any ciphertext she queries. In

22

particular, the adversary is unable to query the decryption oracle with adulter-
ine ciphertexts designed specifically to reveal information about the secret key,
seeing as she must already know the secret key to be able to construct such
valid ciphertexts. Hence, IND-CPA results in IND-CCA1 security. We state the
formal definition of the PA-1 notion in Appendix B, and refer to [7] for further
details on both PA-1 and the construction IND-CPA + PA-1 → IND-CCA1.

The LMSV scheme added a ciphertext check to the decryption procedure
of an IND-CPA secure *HE scheme. The check aims to ensure that only hon-
estly generated ciphertexts are decrypted, as this ensures that the scheme also
achieves PA-1 security. The ciphertext check is based on a novel lattice knowl-
edge assumption. Informally, this lattice knowledge assumption states that if an
adversary is able to produce a vector c suitably close to a lattice point p when
given only the basis of the lattice, then there is an extractor able to output p,
given c and the random coins of the adversary. In other words, if an adversary is
able to construct a vector sufficiently close to a lattice point, she must already
know that lattice point. In the security proof, ciphertexts are likened to the
vector c output by an adversary against the lattice knowledge assumption.

The starting scheme of LMSV, SV [72], based its IND-CPA security on SPIP,
which was later broken [10,11,38], meaning that LMSV is not IND-CPA and
hence not IND-CCA1 secure. Note, however, that the lattice knowledge assump-
tion is unaffected by the attacks on SPIP. Therefore, it is conceivable to rely
on this assumption to create a different IND-CCA1 secure scheme, but such a
scheme would have to avoid relying on SPIP for IND-CPA security. It should
also be noted that the lattice knowledge assumption is highly nonstandard and
not well studied.

Despite these drawbacks, the approach of ‘adding’ PA-1 security to an SHE
scheme that is IND-CPA secure is in and of itself both sound and interesting.
However, it appears to be challenging to achieve both of these notions for SHE
schemes, particularly PA-1, seeing as the LMSV scheme is the only one to suggest
such a construction.

6.2 Constructions from Multi-key Identity-Based Encryption

Canetti et al. [22] give a construction for IND-CCA1 secure *HE schemes based
on multi-key identity-based homomorphic encryption (IBHE) schemes. The con-
struction is a simple transformation as follows:

KeyGen: Same as for the multi-key IBHE scheme. The secret key is the master
secret key msk, and the public key is the master public key mpk.

Enc(mpk,m): Sample a random identity id, compute c = EncIBHE(mpk, id,m),
and output (c, id).

Dec(msk, (, id)): Parse = (c, id), compute skid = Ext(id,msk), and output
m = DecIBHE(skid, id, c).

Eval: Uses the IBHE evaluation function.

The IND-CCA1 security of the encryption scheme rests on the selective se-
curity for random identities of the multi-key IBHE scheme, which, informally,

23

ensures that an adversary has a negligible advantage of distinguishing between
encryptions of two messages of her choosing under a random identity, even if she
has access to an oracle which provides her with the decryption key of any iden-
tity of her choosing. For a formal definition of the security notion, the interested
reader is referred to Canetti et al. [22].

It is important to note that for an evaluated ciphertext to be decrypted, it
will need to contain the identities of all the ciphertexts used in the evaluation.
This means that the length of an evaluated ciphertext depends on the number
of input ciphertexts, so the resulting scheme is not compact. We stress that this
entails that the construction results in a scheme that, technically speaking, does
not satisfy the definition of *HE schemes.

The authors also give a generic instantiation that achieves multi-key IBHE
by combining a multi-key FHE scheme and an identity-based encryption scheme,
and also suggest concrete schemes as building blocks. They also provide a generic
instantiation that achieves multi-key IBHE in the random oracle model using
sub-exponentially secure LWE.

In a concurrent work, Yasuda et al. [79] use the same generic construction
based on multi-key IBHE to achieve a non-compact IND-CCA1 secure SHE
scheme, with a similar proof for IND-CCA1 security as the one described above.
A concrete instantiation for this construction has not been suggested.

6.3 (Probabilistic) iO-based

As discussed previously, Canetti et al. [22] showed that it is possible to con-
struct a (non-compact) *HE scheme from a multi-key IBHE scheme. In the
same article, the authors also suggested constructing a multi-key IBHE from a
sub-exponentially secure iO (from which a probabilistic iO is constructed) and
sub-exponentially secure lossy encryption (which can be based on DDH).

We note that Wang et al. found a technical weakness regarding how identities
were handled in evaluations, which enabled an attack on the PiO-based construc-
tion. However, Wang et al. also provided a patched version of the construction
and proved that their construction achieves IND-CCA1 security [78].

The constructions differ in certain aspects, such as the set-up and generation
of keys for identities. Still, there are also important similarities, such as both
constructions using a trapdoor encryption scheme during the encryption pro-
cedure of the IB *HE scheme. The most important common factor is that the
evaluation hinges on PiO: the circuit given as input is parsed as an algebraic
circuit with separate addition and multiplication gates, which are then evalu-
ated using obfuscations of different probabilistic programs. For further details
on either construction, we refer to the respective article. Neither construction
currently has a concrete instantiation.

6.4 k-SNARK construction

Canetti et al. [22] also gave a generic construction of IND-CCA1 secure FHE
from IND-CPA secure FHE using the Naor-Yung paradigm [64]. Essentially, the

24

public key consists of two different public keys pk1, pk2 of the same FHE scheme
along with a common reference string crs for the zk-SNARK. An encryption
of a message m is then of the form (Enc(pk1,m),Enc(pk2,m), π), where π is
a proof of knowledge that the first two elements encrypt the same message m.
Intuitively, this construction ensures IND-CCA1 security because the only way
an adversary would be able to construct a ciphertext of a message the decryption
oracle accepts is to actually encrypt the message, as she should not be able to
construct a valid proof π otherwise. Thus, the decryption oracle cannot reveal
to the adversary anything which she does not already know.

Note here that the Canetti et al. construction requires a zk-SNARK, instead
of the usual NIZK used in the general Naor-Yung paradigm, to ensure π stays
compact and hence preserves the compactness of the resulting IND-CCA1 se-
cure FHE. However, due to the black-box separation of SNARKs and falsifiable
assumptions [49], IND-CCA1 security would then require a non-falsifiable as-
sumption. Also, note that the construction requires an IND-CPA secure FHE
scheme without bootstrapping or key publication. It is not known whether or
not a scheme with such properties is possible under standard assumptions.

7 Discussion

We have given an overview of the state of IND-CCA1 security for *HE schemes,
both for concrete schemes and generic constructions. We have shown that several
schemes are susceptible to the same adaptive key recovery attacks, mainly be-
cause many schemes are optimisations of earlier work, so attacks carry over more
or less trivially. We also presented new adaptive key recovery attacks against
schemes that had not been studied w.r.t. IND-CCA1 security before now.

It is worth discussing why chosen ciphertext attacks are so devastating against
*HE schemes. We repeat a point made by Chillotti et al. [32], namely that if
the proof of IND-CPA relies on a search-to-decision reduction of a problem, an
adversary with access to a decryption oracle may simply follow the steps of this
very reduction to recover the secret key. Most *HE schemes do rely on such a
reduction, particularly all schemes based on LWE and RLWE.

Moreover, the requirement of both addition and multiplication being homo-
morphic might make achieving IND-CCA1 harder, as there are few mathematical
structures to define encryption schemes over that allow for a more or less natural
homomorphic evaluation of ciphertexts. It could be the case that these structures
themselves complicate achieving IND-CCA1 security. The result by Gjøsteen and
Strand showing that secure noiseless schemes cannot exist in vector spaces or
fields might suggest that this is the case [50]. Furthermore, there are group
homomorphic schemes that achieve IND-CCA1 security, e.g., CS-lite [39], and
although there is no proof that it cannot be homomorphic in both multiplication
and addition, CS-lite is strongly believed to be strictly group homomorphic. It
could be the case that requiring both operations to be homomorphic forces the
message or secret key to be so ‘accessible’ in the ciphertext that some information
is always leaked once an adversary has access to a decryption oracle.

25

An important point in this discussion is that all the adaptive key recovery
attacks we presented, both novel and prior work, take advantage of the fact that
decryption is a relatively ‘easy’ procedure, where the secret key is typically just
multiplied with the ciphertext or it is applied in a modular reduction. This is a
stark contrast to, e.g., block ciphers where the secret key is carefully scrambled,
and changing one bit of the ciphertext will result in an avalanche effect so that
several bits of the decrypted ciphertext are changed. A naive remedy would be to
create a scheme with a more ‘convoluted’ decryption procedure. However, boot-
strapping a scheme hinges both on circular security and on the decryption circuit
being as easy as possible: if this is not the case, the homomorphic evaluation
of the decryption circuit will not reduce the noise in the ciphertext sufficiently
to allow for further evaluations of it. In other words, the scheme would not
be fully homomorphic. The easy decryption procedure is therefore inherent in
all bootstrappable schemes. Furthermore, all suggested SHE and LHE schemes
have been designed to be bootstrapped so that they may be expanded to an
FHE scheme, meaning they all have a shallow decryption circuit. The overview
we have provided strongly suggests that this approach is not compatible with
providing security against adaptive key recovery attacks or IND-CCA1 security.

We repeat the point from Zhang et al. [81], namely that as the use cases
of *HE schemes increase the probability of leakage of decrypted material, IND-
CCA1 is an essential requirement for a secure homomorphic encryption scheme.
We believe that a good starting point for creating an *HE scheme which achieves
IND-CCA1 security would be the generic construction using zk-SNARKs by
Canetti et al. [22]. As mentioned in Section 6.4, the construction relies on non-
falsifiable assumptions. However, as the authors noted, one may use weaker prim-
itives such as designated-verifier zk-SNARKs, and it is an interesting open prob-
lem to determine the minimum flavour of zero-knowledge that is needed to get
IND-CCA1 security using the Canetti et al. construction. Alternatively, devel-
oping pure SHE or LHE schemes that are not designed to be bootstrappable
might be a fruitful strategy, as this could allow for a decryption procedure ‘con-
voluted’ enough to result in IND-CCA1 security or protection against adaptive
key recovery attacks.

References

1. Privacy enhancing technologies. https://csrc.nist.go /Projects/pec, accessed:
23. September 2021

2. Albrecht, M.R., Bai, S., Ducas, L.: A subfield lattice attack on overstretched NTRU
assumptions - cryptanalysis of some FHE and graded encoding schemes. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol. 9814, pp. 153–178.
Springer, Heidelberg (Aug 2016)

3. Albrecht, M.R., Farshim, P., Faugère, J.C., Perret, L.: Polly cracker, revisited. In:
Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 179–196.
Springer, Heidelberg (Dec 2011)

4. Arita, S., Handa, S.: Subring homomorphic encryption. In: Kim, H., Kim, D.C.
(eds.) ICISC 17. LNCS, vol. 10779, pp. 112–136. Springer, Heidelberg (Nov / Dec
2018)

26

5. Arita, S., Nakasato, S.: Fully homomorphic encryption for point numbers. In: Inter-
national Conference on Information Security and Cryptology. pp. 253–270. Springer
(2016)

6. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,
M.: A guide to fully homomorphic encryption. Cryptology ePrint Archive, Report
2015/1192 (2015), http://eprint.iacr.org/2015/1192

7. Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without
random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62.
Springer, Heidelberg (Dec 2004)

8. Benarroch, D., Brakerski, Z., Lepoint, T.: FHE over the integers: Decomposed and
batched in the post-quantum regime. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 271–301. Springer, Heidelberg (Mar 2017)

9. Berkoff, A., Liu, F.H.: Leakage resilient fully homomorphic encryption. In: Lindell,
Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 515–539. Springer, Heidelberg (Feb 2014)

10. Biasse, J.F., Fieker, C.: Subexponential class group and unit group computation in
large degree number fields. LMS Journal of Computation and Mathematics 17(A),
385–403 (2014)

11. Biasse, J.F., Song, F.: Efficient quantum algorithms for computing class groups and
solving the principal ideal problem in arbitrary degree number fields, pp. 893–902
(2016), https://epubs.siam.org/doi/abs/10.1137/1.9781611974331.ch64

12. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM Journal on Computing 36(5), 1301–1328 (2007)

13. Bootland, C., Castryck, W., Iliashenko, I., Vercauteren, F.: Efficiently processing
complex-valued data in homomorphic encryption. Journal of Mathematical Cryp-
tology 14(1), 55–65 (2020)

14. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) 14th IMA International
Conference on Cryptography and Coding. LNCS, vol. 8308, pp. 45–64. Springer,
Heidelberg (Dec 2013)

15. Brakerski, Z.: Fully homomorphic encryption without modulus switching from clas-
sical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 868–886. Springer, Heidelberg (Aug 2012)

16. Brakerski, Z., Cash, D., Tsabary, R., Wee, H.: Targeted homomorphic attribute
based encryption. Cryptology ePrint Archive, Report 2016/691 (2016), http://
eprint.iacr.org/2016/691

17. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012. pp. 309–325.
ACM (Jan 2012)

18. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short
ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS, vol.
9814, pp. 190–213. Springer, Heidelberg (Aug 2016)

19. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS. pp. 97–106. IEEE Computer
Society Press (Oct 2011)

20. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (Aug 2011)

21. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014. pp. 1–12. ACM (Jan 2014)

27

22. Canetti, R., Raghuraman, S., Richelson, S., Vaikuntanathan, V.: Chosen-ciphertext
secure fully homomorphic encryption. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS,
vol. 10175, pp. 213–240. Springer, Heidelberg (Mar 2017)

23. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part II. LNCS, vol. 11922,
pp. 446–472. Springer, Heidelberg (Dec 2019)

24. Chen, H., Iliashenko, I., Laine, K.: When heaan meets fv: a new somewhat homo-
morphic encryption with reduced memory overhead. IACR Cryptol. ePrint Arch.
2020, 121 (2020)

25. Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic
encryption. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 116–136.
Springer, Heidelberg (Apr 2018)

26. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat ho-
momorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) LATIN-
CRYPT 2014. LNCS, vol. 8895, pp. 239–258. Springer, Heidelberg (Sep 2015)

27. Cheon, J.H., Coron, J.S., Kim, J., Lee, M.S., Lepoint, T., Tibouchi, M., Yun, A.:
Batch fully homomorphic encryption over the integers. In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 315–335. Springer, Heidel-
berg (May 2013)

28. Cheon, J.H., Hong, S., Kim, D.: Remark on the security of ckks scheme in practice.
Cryptology ePrint Archive, Report 2020/1581 (2020), https://eprint.iacr.org/
2020/1581

29. Cheon, J.H., Kim, A., Kim, M., Song, Y.S.: Homomorphic encryption for arith-
metic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 409–437. Springer, Heidelberg (Dec 2017)

30. Cheon, J.H., Stehlé, D.: Fully homomophic encryption over the integers revisited.
In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056,
pp. 513–536. Springer, Heidelberg (Apr 2015)

31. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption over the torus. Journal of Cryptology 33(1), 34–91 (Jan 2020)

32. Chillotti, I., Gama, N., Goubin, L.: Attacking FHE-based applications by software
fault injections. Cryptology ePrint Archive, Report 2016/1164 (2016), http://
eprint.iacr.org/2016/1164

33. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (Aug 2015)

34. Coron, J.S., Lepoint, T., Tibouchi, M.: Scale-invariant fully homomorphic encryp-
tion over the integers. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
311–328. Springer, Heidelberg (Mar 2014)

35. Coron, J.S., Mandal, A., Naccache, D., Tibouchi, M.: Fully homomorphic en-
cryption over the integers with shorter public keys. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 487–504. Springer, Heidelberg (Aug 2011)

36. Coron, J.S., Naccache, D., Tibouchi, M.: Public key compression and modulus
switching for fully homomorphic encryption over the integers. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 446–464. Springer,
Heidelberg (Apr 2012)

37. Costache, A., Smart, N.P.: Homomorphic encryption without Gaussian noise.
Cryptology ePrint Archive, Report 2017/163 (2017), http://eprint.iacr.org/
2017/163

28

38. Cramer, R., Ducas, L., Peikert, C., Regev, O.: Recovering short generators of
principal ideals in cyclotomic rings. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 559–585. Springer, Heidelberg (May
2016)

39. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO’98. LNCS, vol.
1462, pp. 13–25. Springer, Heidelberg (Aug 1998)

40. Dahab, R., Galbraith, S., Morais, E.: Adaptive key recovery attacks on NTRU-
based somewhat homomorphic encryption schemes. In: Lehmann, A., Wolf, S.
(eds.) ICITS 15. LNCS, vol. 9063, pp. 283–296. Springer, Heidelberg (May 2015)

41. Doröz, Y., Hoffstein, J., Pipher, J., Silverman, J.H., Sunar, B., Whyte, W., Zhang,
Z.: Fully homomorphic encryption from the finite field isomorphism problem. In:
Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 125–155.
Springer, Heidelberg (Mar 2018)

42. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp.
10–18. Springer, Heidelberg (Aug 1984)

43. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/2012/
144

44. Fauzi, P., Hovd, M.N., Raddum, H.: A practical adaptive key recovery attack on the
lgm (gsw-like) cryptosystem. Cryptology ePrint Archive, Report 2021/658 (2021),
https://eprint.iacr.org/2021/658

45. Fauzi, P., Hovd, M.N., Raddum, H.: A practical adaptive key recovery attack on
the lgm (gsw-like) cryptosystem. In: Cheon, J.H., Tillich, J.P. (eds.) PQCRYPTO
2021. pp. 483–498. Springer, Cham (July 2021)

46. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC. pp. 169–178. ACM Press (May / Jun 2009)

47. Gentry, C., Halevi, S.: Implementing Gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–
148. Springer, Heidelberg (May 2011)

48. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (Aug 2013)

49. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all fal-
sifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC. pp.
99–108. ACM Press (Jun 2011)

50. Gjøsteen, K., Strand, M.: Fully homomorphic encryption must be fat or ugly?
Cryptology ePrint Archive, Report 2016/105 (2016), http://eprint.iacr.org/
2016/105

51. Hovd, M.N.: A successful subfield lattice attack on a fully homomorphic encryption
scheme. In: Proceedings of the 11th Norwegian Information Security Conference
(2018)

52. Joux, A.: Fully homomorphic encryption modulo Fermat numbers. Cryptology
ePrint Archive, Report 2019/187 (2019), https://eprint.iacr.org/2019/187

53. Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition.
SIAM Journal on Computing 40(6), 1767–1802 (2011)

54. Kim, J., Lee, M.S., Yun, A., Cheon, J.H.: CRT-based fully homomorphic encryption
over the integers. Cryptology ePrint Archive, Report 2013/057 (2013), http://
eprint.iacr.org/2013/057

29

55. Lai, J., Deng, R.H., Ma, C., Sakurai, K., Weng, J.: CCA-secure keyed-fully ho-
momorphic encryption. In: Cheng, C.M., Chung, K.M., Persiano, G., Yang, B.Y.
(eds.) PKC 2016, Part I. LNCS, vol. 9614, pp. 70–98. Springer, Heidelberg (Mar
2016)

56. Laine, K.: Updates on iso/iec standardization. Email sent to the mailing list stan-
dards@homomorphicencryption.org 15. September 2021

57. Li, B., Micciancio, D.: On the security of homomorphic encryption on approximate
numbers. In: Canteaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021. LNCS, vol.
12696, pp. 648–677. Springer, Cham (2021)

58. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the
gentry-sahai-waters leveled homomorphic encryption scheme. Cryptology ePrint
Archive, Report 2016/1146 (2016), http://eprint.iacr.org/2016/1146

59. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on
the GSW levelled homomorphic encryption scheme. In: Chen, L., Han, J. (eds.)
ProvSec 2016. LNCS, vol. 10005, pp. 373–383. Springer, Heidelberg (Nov 2016)

60. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On CCA-secure somewhat ho-
momorphic encryption. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol.
7118, pp. 55–72. Springer, Heidelberg (Aug 2012)

61. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC. pp. 1219–1234. ACM Press (May 2012)

62. Manger, J.: A chosen ciphertext attack on RSA optimal asymmetric encryp-
tion padding (OAEP) as standardized in PKCS #1 v2.0. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 230–238. Springer, Heidelberg (Aug 2001)

63. Masters, O., Hunt, H., Steffinlongo, E., Crawford, J., Bergamaschi, F., Rosa,
M.E.D., Quini, C.C., Alves, C.T., de Souza, F., Ferreira, D.G.: Towards a ho-
momorphic machine learning big data pipeline for the financial services sector.
Cryptology ePrint Archive, Report 2019/1113 (2019), https://eprint.iacr.org/
2019/1113

64. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In: 22nd ACM STOC. pp. 427–437. ACM Press (May 1990)

65. Nuida, K.: Candidate constructions of fully homomorphic encryption on finite sim-
ple groups without ciphertext noise. Cryptology ePrint Archive, Report 2014/097
(2014), http://eprint.iacr.org/2014/097

66. Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt, M., Smith,
A.D. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 217–238. Springer, Heidel-
berg (Oct / Nov 2016)

67. Peng, Z.: Danger of using fully homomorphic encryption: A look at microsoft
SEAL. CoRR abs/1906.07127 (2019), http://arxi .org/abs/1906.07127

68. Pereira, H.V.L.: Efficient agcd-based homomorphic encryption for matrix and vec-
tor arithmetic. In: International Conference on Applied Cryptography and Network
Security. pp. 110–129. Springer (2020)

69. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy
homomorphisms. Foundations of secure computation 4(11), 169–180 (1978)

70. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2), 120–126 (1978)

71. Rohloff, K., Cousins, D.B.: A scalable implementation of fully homomorphic en-
cryption built on NTRU. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
FC 2014 Workshops. LNCS, vol. 8438, pp. 221–234. Springer, Heidelberg (Mar
2014)

30

72. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (May 2010)

73. Smart, N.P., Vercauteren, F.: Fully homomorphic simd operations. Designs, codes
and cryptography 71(1), 57–81 (2014)

74. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.)
ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (Dec 2010)

75. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (May 2011)

76. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol.
6110, pp. 24–43. Springer, Heidelberg (May / Jun 2010)

77. Vaudenay, S.: Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 534–546. Springer, Heidelberg (Apr / May 2002)

78. Wang, B., Wang, X., Xue, R.: CCA1 secure FHE from pio, revisited. Cybersecurity
1(1), 11 (2018), https://doi.org/10.1186/s42400-018-0013-8

79. Yasuda, S., Kitagawa, F., Tanaka, K.: Constructions for the IND-CCA1 secure
fully homomorphic encryption. In: Mathematical Modelling for Next-Generation
Cryptography: CREST Crypto-Math Project, pp. 331–347 (2017)

80. Zhang, Z., Plantard, T., Susilo, W.: On the cca-1 security of somewhat homomor-
phic encryption over the integers. pp. 353–368 (04 2012)

81. Zhang, Z., Plantard, T., Susilo, W.: Reaction attack on outsourced computing with
fully homomorphic encryption schemes. In: Kim, H. (ed.) ICISC 11. LNCS, vol.
7259, pp. 419–436. Springer, Heidelberg (Nov / Dec 2012)

A Background

We give a more thorough explanation of homomorphic encryption, for more
details, see the Guide to FHE by Armknecht et al. [6].

Group Homomorphic Encryption (GHE) refers to schemes that are
homomorphic in a single group operation, i.e., Dec(Enc(m1) · Enc(m2)) = m1 ◦
m2, where · is a binary operation in the ciphertext space, and ◦ is a binary
operation in the plaintext space. If the operation is addition, the scheme is
called additively homomorphic encryption (AHE), and similarly multiplicatively
homomorphic encryption (MHE) if the operation is multiplication.

Examples of GHE schemes are RSA [70] and ElGamal [42]. It is worth not-
ing that for these schemes, there is no limit to how much a ciphertext may
be evaluated with respect to the homomorphic operation. The product of two
(decryptable) RSA ciphertexts will always result in a decryptable ciphertext.

This is not the case when the scheme is homomorphic with respect to both
addition and multiplication, as these are typically limited in what circuits they
are able to evaluate homomorphically. This is because all suggested *HE schemes
employ noise to encrypt ciphertexts, which grows during evaluation. Typically,
the growth is substantially bigger during multiplication than for addition. Unlike
in the GHE case, there is a risk of decryption error if ciphertexts are processed

31

too much, as the plaintext may ‘drown’ in too much noise. At this point, there
is no guarantee that the message output by the decryption is indeed the correct
message, i.e., there is a non-negligible probability that Dec(C(Enc(m))) ̸= C(m)
for some circuit C and message m.

The key difference between the various types of homomorphic encryption
is how much control they have over the noise growth, and the limits on the
circuits they are able to evaluate correctly. We define an encryption scheme E =
(KeyGen, Enc, Dec, Eval) to evaluate a circuit C correctly if

Pr[Dec(sk,Eval(evk, C, c1, . . . , cn)) = C(m1, . . . ,mn)] = 1− negl(λ),

where (sk, pk, evk) ← KeyGen(λ), and ci ← Enc(pk,mi). We allow for a negli-
gible probability of decryption error.

Somewhat Homomorphic Encryption (SHE) refers to schemes that
are homomorphic in both addition and multiplication, but may only perform
a limited number of these operations before the noise becomes unmanageable.
There is little to no means of reducing the noise in these schemes, only stunting
the growth. Furthermore, the noise growth is not predictable enough to estimate
precisely when the noise will become unmanageable. The number of operations
performed on ciphertexts is therefore limited, but the limit may not be explicitly
set. More formally, an SHE scheme correctly evaluates some circuits, though
there is no formal requirement as to what schemes it is able to evaluate correctly.

Leveled Homomorphic Encryption (LHE) schemes are similar to SHE
schemes in that these schemes also only allow for a limited amount of additions
and multiplications. However, unlike SHEs, for leveled schemes the number of
operations that can be performed before decryption could fail may be explicitly
set. The desired level is a separate parameter, L, in the key generation, and
corresponds to the maximum depth of an arithmetic circuit C the scheme is
able to evaluate correctly.

Fully Homomorphic Encryption (FHE) schemes are able to evaluate
any arithmetic circuit correctly.

So far, the only known way to achieve a scheme which is fully homomor-
phic is to apply bootstrapping to an SHE or LHE scheme. Bootstrapping entails
evaluating the decryption circuit homomorphically. This removes all the ‘old
noise’ built up in the ciphertext during evaluation, but introduces more noise
in the process of the homomorphic evaluation of the decryption circuit. How-
ever, as long as the noise introduced is small enough to still allow for just a
single additional homomorphic operation, it is possible to perform any number
of operations, and therefore evaluate any circuit correctly.

It is required that LHE and FHE schemes also achieve compactness, which
we define as follows:

Definition 1 (Compactness). A scheme is compact if there is a polynomial p
such that for all ciphertexts ci, and all circuits C the scheme is able to evaluate
correctly, it is the case that |Eval(C, c0, c1, . . . , cn)| < p(λ).

32

In other words: the size of any evaluated ciphertext is independent on the size of
the circuit. In the case of LHE, we also require that the length of the evaluation
output is independent of the level parameter L [6].

Whilst compactness is a requirement for both LHE and FHE schemes, this
is not necessarily the case for SHE schemes. However, it is preferable for these
schemes to be compact as well, as it implies a somewhat stunted and controlled
noise growth.

B Plaintext Awareness

This section is based on Section 5 of [60].
Let the polynomial time adversary A be the ciphertext creator, which takes a

public key as input, and may query ciphertexts to an oracle. Then, an algorithm
A∗ is called a successful extractor for A if it can provide responses to A which
are computationally indistinguishable from those provided by the decryption
oracle. A scheme is said to be PA-1 if there exists a successful extractor for any
ciphertext creator that makes a polynomial number of queries. The extractor A∗

gets the same public key as A, and also has access to the random coins used by
A. We define it formally as follows:

Definition 2 (PA-1). Let E be a public key encryption scheme, and A be an
algorithm with access to an oracle O taking input pk and returning a string. Let
D be an algorithm that takes as input a string and returns a single bit, and let
A∗ be an algorithm which takes as input a string and some state information and
returns either a string or the symbol ⊥, plus a new state. We call A a ciphertext
creator, A∗ a PA-1 extractor, and D a distinguisher. For security parameter λ
we define the (distinguishing and extracting) experiments below, and define the
PA-1 advantage as:

AdvPA−1
E,A,D,A∗(λ) = |Pr(ExpPA−1−d

E,A,D (λ) = 1)− Pr(ExpPA−1−
E,A,D,A∗ (λ) = 1)|.

We say A∗ is a successful PA-1 extractor for A if for every polynomial time
distinguisher the above advantage is negligible.

ExpPA−1−d
E,A,D (λ) ExpPA−1−x

E,A,D,A∗ (λ)

(pk, sk)← KeyGen(λ) (pk, sk)← KeyGen(λ)
x← ADecrypt(·,sk)(pk) Choose coins coins[A] and coins[A∗]
d← D(x) St ← (pk, coins[A])
Return d x ← AO, replying to oracle queries

O(c):
(m,St)← A∗(c,St; coins[A∗])
Return m to A

d← D(x)
Return d

33

Article IV

2.4 Vetted Encryption

Martha Norberg Hovd and Martijn Stam

The development of the systems, writing and editing was split equally between the

authors.

A shorter version of the paper appeared in Karthikeyan Bhargavan, Elisabeth Oswald

and Manoj Prabhakaran, editors, INDOCRYPT 2020, volume 12578 of LNCS, pages

488-507. Springer, Heidelberg, December 2020. Presented by the candidate at Indocrypt

in December 2020.

Version reproduced here in Cryptology ePrint Archive, Report 2020/1348, 2020. https:

//eprint.iacr.org/2020/1348.

Vetted Encryption

Martha Norberg Hovd1,2 and Martijn Stam1

1 Simula UiB
Merkantilen (3rd �oor)
Thormøhlensgate 53D

N-5006 Bergen, Norway.
martha,martijn@simula.no

2 University of Bergen
Høyteknologisenteret i Bergen

Thormøhlensgate 55
N-5008 Bergen, Norway.

Abstract. We introduce Vetted Encryption (VE), a novel cryptographic primitive, which addresses the following
scenario: a receiver controls, or vets, who can send them encrypted messages. We model this as a �lter publicly
checking ciphertext validity, where the overhead does not grow with the number of senders. The �lter receives one
public key for veri�cation, and every user receives one personal encryption key.
We present three versions: Anonymous, Identi�able, and Opaque VE (AVE, IVE and OVE), and concentrate on formal
de�nitions, security notions and examples of instantiations based on preexisting primitives of the latter two. For
IVE, the sender is identi�able both to the �lter and the receiver, and we make the comparison with identity-based
signcryption. For OVE, a sender is anonymous to the �lter, but is identi�ed to the receiver. OVE is comparable to
group signatures with message recovery, with the important additional property of con�dentiality of messages.

Keywords: Encryption · Group Signatures · Signcryption

1 Introduction

Spam and phishing messages are a bane of modern communication methods, especially email. These days,
most email still happens in the clear without end-to-end cryptographic protection. Yet, there are standards,
such as S/MIME and OpenPGP, that aim to secure email using a combination of public key and symmetric
key con�dentiality and authentication primitives. Intuitively, the primitive that best models secure email is
signcryption [46, 28]. Although signcryption allows receivers to verify locally whether an email was from
its purported sender or not, this ability does not immediately lead to an e�cient mechanism to �lter spam
centrally.

A di�erent, though not completely unrelated, scenario arrises with electronic voting systems and eligibil-
ity veri�ability. This notion informally states that it should be possible to publicly verify that only those with
the right to vote have done so. For obvious reasons, voters should still be anonymous, and so whitelisting is
not a viable option to prevent ballot stu�ng by the bulletin board, for instance.

In this work we propose an alternative primitive called vetted encryption, which is closely related to both
signcryption and group signatures. Vetted encryption lets a user, the recipient, to restrict who can send them
encrypted messages by enabling an outside �lter to detect which users are and are not vetted. The key features
of vetted encryption are that a recipient only needs to vet each sender once (with out-of-band communication),
yet does not need to tell the �lter which users they have vetted.

Vetted encryption comes in di�erent �avours, depending on whether senders should be identi�ed and
authenticated or, in contrast, should remain anonymous. This choice of authentication versus anonymity can
be made with respect to the outside �lter and the intended receiver independently of each other, leading
to a total of four possible con�gurations. One con�gurarion, where the �lter would learn the identity of a
ciphertext, yet the receiver could not, runs counter to our perspective that the �lter is working on behalf of
the recipient. Thus, only three settings remain:
1. Anonymous vetted encryption (AVE) where the sender remains anonymous to both the �lter and the re-

cipient; this scenario can be relevant for a voting system using a bulletin board, on which only eligible
users should be able to post, anonymously. For example, the system Belenios [24] applies signatures and
credentials to attain eligibility veri�ability, which is not too dissimilar from AVE.

2. Identi�able vetted encryption (IVE) where the sender is identi�ed for both the �lter and the recipient; this
scenario is typical for email spam, where the �lter gets to see the email-address (or other identifying
information) of the sender.

2 M. Hovd and M. Stam

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥ ID/⊥

EK C C

Fig. 1. The algorithms and options involved in vetted encryption for the three options: anonymous includes neither dashed nor solid
blue lines; identi�able adds the dashed blue lines only; opaque adds the solid blue lines only and distinguishes between the two red
“secret” master keys for derivation resp. decryption.

3. Opaque vetted encryption (OVE) where the sender is anonymous to the �lter, yet can be identi�ed by
the recipient. This primitive is relevant for identi�able communication over an anonymous channel, for
example between a trusted anonymous source and a journalist, where the source is anonymous to the
newspaper, but identi�able to the reporter. OVE may also be used in an auction setting, where the seller
vets who gets to bid. During bidding, the auctioneer may �lter the bids, only forwarding bids from vetted
participants. However, only the seller knows the identity of the active bidders in the auction.

Our contribution. Fig. 1 provides an overview of the algorithms that constitute a vetted encryption scheme,
where we endeavoured to surface all three variants in the picture. The private key material from the key
generation (the red lines emanating at the bottom) feeds into two distinct functionalities: �rstly to vet users
by issuing them an encryption key, and secondly to decrypt ciphertexts. Thus one consideration to make is
the possible orthogonality of the corresponding private keys. For both AVE and IVE (Def. 2) we opted for the
simplest scenario where both keys are identical, whereas for OVE (Def. 3) we opted for the more challenging
scenario where the keys are separate. This choice a�ects the security de�nitions and the design space for
suitable constructions.

AVE is the simplest variant of vetted encryption and we present it in Appendix B, where we also discuss
similarities with signcryption. It turns out all senders can be given the same signing key to encrypt then sign
a message. Although this mechanism ensures full anonymity, a malicious sender could make everybody a
vetted sender by simply forwarding her key. We therefore focus on IVE and OVE here.

IVE is most closely related to a simpli�ed form of identity-based signcryption with public veri�a�bility.
As far as we are aware, the related signcryption �avour is virtually unstudied. We give a full comparison of
IVE and signcryption in Section 3.3. Our use case for IVE allows us in Section 3 to navigate carefully through
the possible de�nitional choices, esp. quite how much power is available to an adversary trying to break con-
�dentiality, resp. integrity. Our choice allows us to use the novel primitive of “outsider-unique” identity-based
signatures, which we show can be constructed by a combination of derandomization and unique signatures
(see Appendix A). The unique property is fundamental to provide non-malleability and hence con�dentiality
against chosen ciphertext attacks for our encrypt-then-IBsign construction (Fig. 6).

OVE bears similarities with group signatures with message recovery, where additionally the message
should remain con�dential. However, as we will argue in Section 4, our use case allows us to relax secu-
rity slightly, which in turn enables a slight simpli�cation of the well-known sign-encrypt-proof paradigm
for group signatures [13] which we dub veri�ably encrypted certi�cates (Fig. 13). We also give a thorough
comparison with group signatures in Section 4.3.

1.1 Related Work

Comparison with signcryption. Both AVE and IVE are most closely related to signcryption in its various guises.
For the original signcryption concept [46], two users Anna and Bob might want to communicate together in
a manner that is simultaneously con�dential and authenticated. In a public key setting, if Anna knows Bob’s
public encryption key and Bob knows Anna’s public veri�cation key, then Anna can combine digital signing
and public encryption of a message using the signcryption primitive.

Signcryption security is best studied in the multi-user setting, but let us consider just the two user sce-
nario [4]. Con�dentiality can be captured by left-or-right indistinguishability under adaptive chosen cipher-

Vetted Encryption 3

text attacks, where an important modelling choice has to be made with respect to the adversary’s control over
keys. If the adversary is an outsider, only public key information is available. If the adversary knows private
keys (e.g. Anna’s signing key when attacking con�dentiality or Bob’s decryption key when attacking au-
thenticity), we speak of insider security. Insider-secure con�dentiality is essential to achieve forward secrecy,
that is if Anna’s signing key gets compromised, past messages should still remain con�dential. Insider-secure
authenticity is needed for non-repudiation, where receiver Bob can convince a third party a message really
originated from Anna (and wasn’t cooked up by Bob himself). Indeed, for most realistic use cases, insider
security is required [8].

Clearly insider security is harder to achieve than outsider security. The natural way for Anna and Bob to
attempt signcryption would be to combine a public key encryption scheme with a digital signature scheme
using generic composition. There are essentially two ways of doing so sequentially: either �rst encrypt and
then sign the ciphertext (encrypt-then-sign) or �rst sign and then encrypt both message and signature (sign-
then-encrypt). The third, parallel alternative of encrypting the message and signing the message is more
problematic from a generic composition perspective.

Signcryption with public veri�ability [32] could be used as an alternative solution to anonymous vetted
encryption, but the precise �avour of signcryption needed is not immediate (see Appendix B.3 for details).
Signcryption appears to be unsuitable for OVE (Section 4.3): although it is possible to achieve for instance
IB-signcryption with anonymity [20, 22] [10, Section 5.4], crucially these schemes cannot support public ver-
i�ability, ruling out the ability to outsource their veri�cation to a �lter. Signcryption with public veri�ability
and explicit whitelisting could be used as a less e�cient alternative to IVE, in addition to identity based sign-
cryption with transferable public veri�ability, see Section 3.3 for further discussions.

Comparison with group signatures. The setting for group signatures is the following: a group, with a single
manager, consist of various members, all with their own secret signing key to sign messages. It may be publicly
veri�ed that a signature belongs to a member of the group without revealing which member has signed the
message. Only the group manager, who possesses a secret opening key, may identify the signer, given a
signature on a message.

The classic security notions of group signature schemes encompass both anonymity and traceability [13].
Informally, this means that a signature does not reveal the identity of a signer to anyone who does not possess
the opening key, and that one cannot forge someone’s signature unless one has their secret key.

With regards to AVE and IVE, the comparison is somewhat natural in the big picture: in both cases, the
sender has to verify membership of a group (of vetted senders). The similarities end here, though, as the notion
of revealing the identity of the sender runs counter to AVE, and hiding the identity from the �lter does not
line up with the intention of IVE. However, the setting overlaps to a great extent with desireable features of
OVE, with the important exception of con�dentiality of messages.

A straightforward, but naive, �x to this would be to simply encrypt the message, then sign the ciphertext
using the group signature scheme. Although this seems to add con�dentiality to the scheme, it also introduces
the following weakness: any group member Eve may intercept a ciphertext, (group)signature pair from Alice,
sign the ciphertext using her own key, and thus pass Alice’s con�dential message o� as her own. In particular,
if Eve has access to a decryption oracle, she may ask to have the ciphertext decrypted, and by that read the
message Alice sent. Thus, we provide a construction of OVE motivated by group signatures, rather than using
them as a primitive.

Comparison with matchmaking encryption. Matchmaking encryption (ME) allows, in a sense, for a sender and
receiver to vet each other: both may specify policies the other party must satisfy in order for the sent message
to be revealed to the recipient. The sender may specify what properties the receiver must have in order to
read the message, and the receiver may specify the requirements a sender must meet in order to send the
receiver a message. Furthermore, the only information leaked is whether or not a policy match occured, that
is: whether or not the recipient received the decrypted message [7].

The set up relies on a trusted authority to generate both encryption and decryption keys for the sender
and receiver, respectively, both associated with attributes. In addition, there is a decryption key associated
with the policy a sender should satisfy, which is also generated by the trusted authority. Finally, a sender can
specify a policy which a reciever must satisfy to be able to decrypt the sent message.

4 M. Hovd and M. Stam

There is an identity based version of ME, which bears some reseblance to OVE. In this version, the more
general attributes of the sender and receiver are replaced with a simple identity, so that the sender speci�es the
identity of the desired recipient, and the identity of the sender is an explicit input of the decryption procedure.

The latter point is an important di�erence to the OVE primitive, where the identity of the sender is an
output of decryption, rather than an input. In other words: we do not assume that the reciever knows who has
sent a message before it has been decrypted. Another important di�erence is that we do not allow the sender
to demand any certain attributes of the receiver, though the identity of the receiver is indirectly determined
by the sender during encryption, as this involves an encryption key unique to the recipient. We also note that
in OVE, the keys are derived and distributed by the recipient, not a third party.

Finally: in ME, determining whether or not a match will occur, that is, if the recipient and sender have
vetted each other, is not publicly veri�able. This requires the decryption key of the recipent and the key related
to the policy of the sender. This is in contrast with OVE, where determining whether a message has been sent
from a vetted sender is possible using only a public key.

Comparison with access control encryption. Access control encryption (ACE) allows for di�erent reading and
writing rights to be assigned to di�erent senders and receivers, for example the right to read messages classi-
�ed as ’Secret’, and ensuring a sender with clearance ’Top Secret’ cannot send messages classi�ed as ’Public’.
This is achieved by introducing a sanitizer into the network, who manipulates every message before it is pub-
lished on the network, we note in particular that a message is not sent directly to its intended recipient. Now,
if a recipient tries to decrypt a message he does not have the right to read, the ciphertext will decrypted into
a random string [26].

Although both ACE and OVE in some sense deal with the notion of vetting senders, there are several
di�erences. First of all: an honest �lter in OVE does not change the ciphertext in any way, it simply checks
whether a sender has been vetted. In particular, if a received ciphertext decrypts to gibberish, it is because
the sender intended it so. Furthermore: the sender is always identi�able to the receiver, assuming a message
was received. Finally, a sent message is forwarded to the intended recipient, as opposed to published on a
network.

We also note that the power dynamic in the two primitives di�er. In ACE, the sanitizer enforces a security
protocol, typically on behalf of a third party, and determines which subset of a public set of messages anyone
is able to read. In OVE, however, all power lies with the recipient, by generating and distributing all the keys.
The �lter is merely doing the recipient’s bidding, as it were, by only allowing messages from vetted senders
to reach the recipient.

2 Preliminaries

When de�ning security, we will use concrete advantages throughout. Moreover, these advantages are de�ned
in terms of an adversary interacting with a game or experiment. While these experiments depend on the
schemes at hand, there will be no additional quanti�cations (e.g. over high entropy sources, simulators, or
extractors). We use Pr[Code : Event] to denote probabilities where the Code is used to induce a probability
distribution over which Event is de�ned (not to be confused with conditional probabilities). We writeAO for
an adversaryA having access to oracle(s) O in security games and reductions.

We use a number of standard primitives and their associated security notions. For completeness, and for
the avoidance of any ambiguities in our notation, these are recapitulated below.

– A public key encryption scheme PKE consists of a triple of algorithms (Pke.Kg, Pke.Enc, Pke.Dec). The
default security notion we consider is single-user multi-query left-or-right indistinguishability under cho-
sen ciphertext attacks (IND-CCA).

– A signature scheme SIG consists of a triple of algorithms (Sig.Kg, Sig.Sign, Sig.Verify). The default se-
curity notion we consider is single-user strong existential unforgeability under chosen message attacks
(EUF-CMA). We often require the SIG to be unique (USS), which means that given the veri�cation key,
for every message there is only a single signature that veri�es.

– A signcryption schemeSCR consist of six algorithms (Scr.Kgr, Scr.Kgs, Scr.Signcrypt, Scr.Verify, Scr.Unsigncrypt),
where Scr.Kgr generates the receiver’s keys and Scr.Kgs the sender’s keys.

– An identity-based signature scheme IBS consists of the four algorithms (Ibs.Kg, Ibs.Derive, Ibs.Sign, Ibs.Verify),
where Ibs.Kg derives a master signing key MSK and a veri�cation key VK . The derivation algorithm

Vetted Encryption 5

Ibs.Derive takes the master signing key and an identity ID as input, and outputs a user signing keyUSK .
The signing takes a message M , an identity ID and a user signing keyUSK as input, and outputs a signa-
ture σ . Finally, veri�cation takes the veri�cation key VK , a message M , an identity ID and a signature σ
as input, and outputs > or ⊥. As with signature schemes, we consider EUF-CMA as the default security
notion for IBS schemes.

QA-NIZKs. Non-Interactive Zero-Knowledge (NIZK) proofs are de�ned for families of languages with asso-
ciated binary relations R, such that for pairs (ϕ,ω) ∈ R a prover may convince a veri�er that the statement
ϕ is part of the language, without revealing anything else (such as the witness ω). For the proof to be non-
interactive, we require that the only necessary communication between the prover and veri�er is the sending
of the proof π . This non-interaction requirement disregards the communication required for the set-up of the
scheme, which involves the prover and veri�er sharing a common reference string (CRS). For Quasi-Adaptive
NIZKs (QA-NIZKs) [35], we allow this CRS to depend on the parameters de�ning the language and its witness
relation R. In the following, we let the relation R be given as input to the set-up algorithm and various adver-
saries, this is to be understood as the parameters de�ning said relation. Moreover, we let R be a distribution
over the family of languages for which the NIZK is suited.

De�nition 1 (Quasi-AdaptiveNon-Interactive Zero-Knowledge (QA-NIZK) proofs).An e�cient prover
publicly veri�able Quasi-Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) for R is a quadruple of proba-
blilistic algorithms (Nizk.Setup,Nizk.Prove,Nizk.Verify,Nizk.Sim) such that

– Nizk.Setup produces a CRS σ and a simulation trapdoor τ for the relation R: (σ , τ) ←$ Nizk.Setup(R).
– Nizk.Prove takes as input a CRS σ and a tuple (ϕ,ω) ∈ R and returns a proof π :
π ←$ Nizk.Prove(σ ,ϕ,ω)

– Nizk.Verify either rejects (⊥) or accepts (>) a proof π for a statement ϕ when given these, as well as a CRS σ :
>/⊥← Nizk.Verify(σ ,ϕ, π).

– Nizk.Sim takes as input a simulation trapdoorτ , and a statementϕ and returns a proofπ :π ←$ Nizk.Sim(τ ,ϕ).

Completeness. The notion of perfect completeness states that, for any true statementϕ, an honest prover should
be able to convince an honest veri�er. More formally, we require that for all R ∈ R and (ϕ,ω) ∈ R:

Pr[(σ , τ) ←$ Nizk.Setup(R);π ←$ Nizk.Prove(σ ,ϕ,ω) : Nizk.Verify(σ ,ϕ,ω) → >] = 1 .

Soundness. For a QA-NIZK to achieve computational soundness, we require that it is computationally infeasible
for an adversary A given the relation R and the CRS σ , to output a pair (ϕ, π) that satisfy the following
conditions: 1) ϕ does not lie in the language de�ned by R, that is: there does not exist a witness ω̄ such that
(ϕ, ω̄) ∈ R, and 2) Nizk.Verify(σ ,ϕ,ω) → >. Formally, we de�ne the advantage:

Advsound
QANIZK(A) = Pr


R←$R

(σ , τ) ←$ Nizk.Setup(R)
(ϕ, π) ←$A(R,σ)

: ϕ < LR ∧ Nizk.Verify(σ ,ϕ,ω) → >

.

Zero-knowledge. Informally, a QA-NIZK is zero-knowledge if nothing other than the truth of the statement may
be inferred by the proof. We formally de�ne the distinguishing advantage using a real and a sim experiment
(Fig. 2), and de�ne the advantage of the adversaryA as

Advzk
QANIZK(A) = Pr

[
Expzk-real

QANIZK(A) : b̂ = 0
]
− Pr

[
Expzk-sim

QANIZK(A) : b̂ = 0
]
.

We speak of perfect zero-knowledge if Advzk
QANIZK(A) = 0 for all adversaries. Perfect zero-knowledge can

alternatively be characterized with a single query and a universal quanti�er for the choice of language and
statement to prove. Many known NIZKs achieve perfect zero-knowledge, facilitating their composability.

6 M. Hovd and M. Stam

Expzk-real/sim
QANIZK

(A)

R←$R
(σ , τ) ←$Nizk.Setup(R)
b̂ ← AO(R,σ)

prove-real(ϕ,ω)

require (ϕ,ω) ∈ R
π ←$Nizk.Prove(σ ,ϕ,ω)
return π

prove-sim(ϕ,ω)

require (ϕ,ω) ∈ R
π ←$Nizk.Sim(τ ,ϕ)
return π

Fig. 2. The real and simulated zero-knowledge experiments.

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥

EK C C

Fig. 3. The algorithms and their inputs/outputs for identi�able vetted encryption.

Unbounded simulation-soundness. A QA-NIZK achieves unbounded simulation-soundness if an adversaryA is
unable to simulate proofs of any false statement, even after having seen such proofs of arbitrary statements.
We de�ne the advantage of the adversaryA as

Advuss
QANIZK(A) = Pr


R←$R

(σ , τ) ←$ Nizk.Setup
(ϕ, π) ← A

Nizk.Sim(σ ,τ , ·)(R,σ)
: (ϕ, π) < Q ∧ ϕ < LR
∧Nizk.Verify(σ ,ϕ, π) → >


,

where Q is the set of query–response pairs (ϕ, π) to the simulator.
After the introduction of QANIZK protocols [35], a large number of protocols for a large variety of

languages (or distributions thereof) has appeared in the literature. They are particularly e�cient for linear
subspaces, which facilitates pairing based constructions (see [3] and the references contained therein).

3 Identi�able Vetted Encryption (IVE)

3.1 Syntax and Security of IVE

The algorithms. For identi�able vetted encryption, both the �lter and the recipient may learn the identity
of the sender, which we assume have received the identity via out-of-band communication. An IVE scheme
consists of �ve algorithms, see Def. 2. The identity ID is not only an explicit input to the derivation algo-
rithm, but also to both the veri�cation and decryption algorithm, modelling the out-of-band communication.
However, encryption does not take ID as an input, instead relying on a user’s encryption key EK implicitly
encoding said identity.

We allow encryption to fail, modelled by ⊥ as output. As we will see, for honestly generated encryption
keys, we insist encryption never fails, but for adversarially generated encryption keys, allowing for explicit
encryption failure turns out to be useful. One could alternatively introduce a separate algorithm to verify
the validity of a private encryption key for a given public encryption/veri�cation key; our approach looks
simpler.

De�nition 2 (Identi�able Vetted Encryption (IVE)). An identi�able vetted encryption scheme IVE con-
sists of a 5-tuple of algorithms (Ive.Kg, Ive.Derive, Ive.Enc, Ive.Verify, Ive.Dec), which behave as follows:

– Ive.Kg generates a key pair (PK, SK), where PK is the public encryption (and veri�cation) key and SK
is the private derivation and decryption key. We allow Ive.Kg to depend on paramaters param and write
(PK, SK) ←$ Ive.Kg(param). Henceforth, we will assume that PK can be uniquely and e�ciently computed
given SK .

– Ive.Derive derives an encryption key EK based on the private derivation key SK and a user’s identity ID.
Thus, EK←$ Ive.DeriveSK (ID).

Vetted Encryption 7

– Ive.Enc encrypts a messageM given the public encryption key PK and using the private encryption key EK ,
creating a ciphertextC or producing a failed encryption symbol ⊥. So,C←$ Ive.EncPK ,EK (M) where possibly
C =⊥.

– Ive.Verify veri�es the validity of a ciphertextC given the public veri�cation key PK and a user’s identity ID.
With a slight abuse of notation, >/⊥← Ive.VerifyIDPK (C).

– Ive.Dec decrypts a ciphertext C using the private key SK , given the user’s identity ID. The result can either
be a messageM or the invalid-ciphertext symbol ⊥. In short,M/⊥← Ive.DecIDSK (C).

The �rst three algorithms are probabilistic, the �nal two deterministic.

Correctness and consistency. For correctness, we require that all honestly generated ciphertexts are re-
ceived as intended, that is, for all parameters param, identities ID and messages M , we have that

Pr

(PK, SK) ←$ Ive.Kg(param)
EK←$ Ive.DeriveSK (ID)
C←$ Ive.EncPK ,EK (M)

:
C ,⊥

∧ Ive.VerifyIDPK (C) = >
∧ Ive.DecIDSK (C) = M


= 1 .

Conceptually, a ciphertext may be rejected at two di�erent stages: the �lter using Ive.Verify might reject
or decryption using Ive.Dec might fail. Thus, we can consider two possible sets of ‘valid’ ciphertexts: those
accepted by veri�cation, and those accepted by decryption. Ideally, these sets coincide, but a priori this cannot
be guaranteed. We call a scheme consistent if any ciphertext accepted by decryption will also be accepted by
the �lter veri�cation, whereas we say the scheme is strict if any ciphertext that passes the �lter, will decrypt
to a message.

Formally, we de�ne both strictness and consistency in terms of rejected ‘invalid’ ciphertexts, thus �ipping
the order of Ive.Verify and Ive.Dec in the implications below (compared to the intuitive notion described
above). That is for all possible keys (PK, SK) output by Ive.Kg and all ciphertexts C , we have

– Consistency: Ive.VerifyIDPK (C) =⊥⇒ Ive.DecIDSK (C) =⊥ ;
– Strictness: Ive.DecIDSK (C) =⊥⇒ Ive.VerifyIDPK (C) =⊥ .

Fortunately, it is relatively easy to guarantee consistency; the trivial transformation that runs veri�cation
as part of decryption takes care of this. Henceforth we will concentrate on consistent schemes.

On the other hand, strictness is harder to guarantee a priori. Thus we will allow ciphertexts to pass the
�lter that are subsequently deemed invalid by decryption. Note that, for honestly generated ciphertexts, cor-
rectness ensures that decryption will actually succeed, so this scenario can only occur for ‘adulterine’ cipher-
texts.

Security. The security of IVE comprises of two components: integrity to ensure the �lter cannot be fooled,
and con�dentiality of the messages to outsiders. With reference to the games de�ned in Fig. 4 and Fig. 5, the
advantages are de�ned as follows:

– Integrity:

Advint
IVE(A) = Pr

[
Expint

IVE(A) :
ˆID < E ∧ (ˆID, Ĉ) < C
∧ Ive.Verify ˆID

PK (Ĉ) = >

]
.

– Con�dentiality:

Advconf
IVE(A) = Pr

[
Expconf-0

IVE (A) : b̂ = 0
]
− Pr

[
Expconf-1

IVE (A) : b̂ = 0
]
.

Integrity. A server running the veri�cation algorithm to �lter out invalid ciphertexts should not be easily
fooled by an adversary: unless one is in possession of an encryption key (i.e. has been vetted), it should not
be possible to construct a valid ciphertext. Even a vetted sender should not be able to construct a ciphertext
which is considered valid under a di�erent identity. We formally capture integrity in a game (Fig. 4) where
we use the output of the veri�cation algorithm as an indication of validity. For consistent schemes this choice
is the strongest, as a forgery with respect to decryption will always be a forgery with respect to veri�cation.

8 M. Hovd and M. Stam

Expint
IVE
(A)

(PK, SK) ←$ Ive.Kg

h ← 0;C ← ∅; E ← ∅
(ˆID, Ĉ) ← AO(PK)
winif ˆID < E ∧ (ˆID, Ĉ) < C

∧ Ive.Verify ˆID
PK (Ĉ) = >

derive(ID)

EK[h] ← Ive.DeriveSK (ID)
h ← h + 1
return h

corrupt(H)

E ← E ∪ H .ID
return EK[H]

encrypt(H ,M)

C ←$ Ive.EncPK ,EK [H](M)
C ← C ∪ {(H .ID,C)}
return C

decrypt(ID,C)

M ← Ive.DecIDSK (C)
returnM

Fig. 4. The integrity game for IVE.

The adversary is given the veri�cation key as well as encryptions of messages of her own choosing under
honest encryption keys. We use handles to grant an adversary control over the encryption keys that are used:
an adversary can trigger the creation of an arbitrary number of keys for chosen identities and then indicate
which key (by order of creation) should be used for a particular encryption query.

Additionally, an adversary can adaptively ask for encryption keys from a corruption oracle. Obviously, a
corrupted encryption key trivially allows for the construction of further valid ciphertexts for the underlying
identity, so we exclude corrupted identities from the win condition. Similarly, ciphertexts resulting from an
encryption query do not count as a win under the original query’s identity.

Finally, an adversary has access to a decryption oracle. This oracle is super�uous for uncorrupted encryp-
tion keys, but an adversary could potentially use it to her advantage by querying it with ciphertext created
under a corrupted identity. These ciphertexts will, of course, not help her win the integrity game directly,
as the corresponding identity is corrupted. Yet, the oracle response might leak information about SK , which
could help the adversary construct a valid ciphertext for an uncorrupted identity, hence giving an advantage
in winning the integrity game. Constructing a non-strict pathological IVE scheme exploiting this loophole
is easy: simply allow ciphertexts outside the support of the encryption algorithm to gradually leak the secret
key based on their validity under decryption. We stress that in our instantiation of IVE we do not face this
issue.

Con�dentiality. We adopt the CCA security notion for public key encryption to the setting of identi�able
vetted encryption (Fig. 5). An adversary can, repeatedly, ask its challenge oracle for the encryption of one
of two messages under an adversarially chosen encryption key. We give the adversary an oracle to derive
and immediately learn encryption keys; moreover these known honest keys may be fed to the challenge
encryption oracle.

We want to avoid the decryption oracle being used by an adversary to win trivially, namely by simply
querying a challenge ciphertext under the corresponding identity. But what is this corresponding identity?
The encryption algorithm only takes as input an encryption key EK that may or may not allow easy extraction
of an identity ID. One solution would be to only allow the adversary to ask for challenge encryptions on
honestly derived encryption keys (so the game can keep track of the identity when EK is derived). Instead,
we opted for a stronger version where the adversary provides the challenge encryption oracle with both an
encryption key EK and a purported identity ID. If veri�cation shows that the freshly generated challenge
ciphertext does not correspond to ID, which can only happen for dishonestly generated pairs (EK, ID), then
the encryption oracle rejects the query by outputting ⊥G .

Intuitively, the decryption oracle is mainly relevant for identities that the adversary has previously queried
to its derivation oracle: after all, if the decryption oracle would return anything but ⊥ for a fresh ciphertext
under a fresh identity, this would constitute a break of the integrity game.

3.2 Encrypt-then-IBS

An obvious �rst attempt to create an identi�able vetted encryption scheme is to combine the con�dential-
ity provided by a public key encryption scheme with the authenticity of that of an identity based signature
scheme. There are three basic methods for the generic composition: sign-then-encrypt, encrypt-then-sign, and
encrypt-and-sign. For the �rst option, the signature ends up being encrypted, which destroys public veri�a-
bility as required for the �lter to do its work. The parallel encrypt-and-sign is well-known to be problematic,

Vetted Encryption 9

Expind-cca-b∗
IVE

(A)

(PK, SK) ←$ Ive.Kg

C ← ∅
b̂ ← AO(PK)

derive(ID)

EK ← Ive.DeriveSK (ID)
return EK

encrypt(ID, EK,M0,M1)

C∗ ←$ Ive.EncPK ,EK (Mb∗)
if Ive.VerifyIDPK (C∗) =⊥ then

return ⊥G
C ← C ∪ {(ID,C∗)}
return C∗

decrypt(ID,C)

require (ID,C) < C
M ← Ive.DecIDSK (C)
returnM

Fig. 5. The con�dentiality game for IVE.

Ive.Kg()

(PK,DK) ← Pke.Kg

(MVK,MSK) ← Uibss.Kg

return ((PK,MVK), (DK,MSK))

Ive.Enc(PK ,MVK),U SK ,ID (M)

C ← Pke.EncPK (M ‖ID)
σ ← Uibss.SignU SK (C)
if Uibss.VerifyIDMVK (C,σ) =⊥ then

return ⊥
return (C,σ)

Ive.VerifyIDPK ,MVK (C,σ)

return Uibss.VerifyIDMVK (C,σ)

Ive.Derive(DK ,MSK)(ID)

USK ← Uibss.DeriveMSK (ID)
returnUSK

Ive.DecIDDK ,MSK (C,σ)

if Uibss.VerifyIDMVK (C,σ) =⊥ then

return ⊥
if Pke.DecDK (C) =⊥ then

return ⊥
if Pke.DecDK (C) → M ‖ ¯ID ∧ ¯ID , ID then

return ⊥
returnM

Fig. 6. Encrypt-then-IBSign (EtIBS): A straightforward composition of public key encryption and an identity-based signature scheme.

as the unencrypted signature directly on the message inevitably leaks information on the message, even when
the signatures are con�dential [27] (as the signature allows for an easy check whether a given plaintext was
encrypted or not). Thus only encrypt-then-sign remains as option, and we specify the construction in Fig. 6.

We show the scheme achieves integrity and con�dentiality in Lemmas 1 and 2, respectively. Integrity of
the construction follows from the unforgeability of the underlying signature scheme. However, for IVE to
inherit the con�dentiality of the encryption scheme, we use an identity-based signature scheme with outsider
unique signatures.

Without unique signatures, an adversary who has received a challenge ciphertext (C,σ) could simply
create a new tuple (C,σ ′) with a secondary valid signature σ ′. This tuple will be accepted by a decryption
oracle, and hence the adversary will learn the encrypted message, breaking con�dentiality. To the best of our
knowledge, unique identity-based signatures have not been studied before. It turns out that for our purposes,
a computational version of uniqueness su�ces (the details are in Appendix A).

Correctness and consistency. Both correctness and consistency follow easily by inspection. The signature
veri�cation as part of decryption is needed for consistency, cf. the transformation mentioned previously.

Integrity. Integrity of the Encrypt-then-IBS construction boils down to the unforgeability of the underlying
identity-based signature scheme. As the decryption key of the underlying encryption scheme is unrelated to
the issuing key of the signature scheme (so an adversary cannot hope to learn any useful information about
the issuing key by querying the decryption oracle with ciphertexts of corrupted identities), the reduction is
fairly straightforward.

10 M. Hovd and M. Stam

Expint
IVE
(A)

(PK,DK) ←$Pke.Kg

(VK,MSK) ←$Uibss.Kg

h ← 0;C ← ∅; E ← ∅
(ˆID, Ĉ) ← AO(PK)
winif ˆID < E ∧ (ˆID, Ĉ) < C
∧ Ive.Verify ˆID

PK (Ĉ) = >

derive(ID)

IDh ← ID

h ← h + 1
return h

corrupt(H)

EKH ← Uibss.DeriveMSK (IDH)
E ← E ∪ IDH

return EKH

encrypt(H ,M)

C ←$Pke.EncPK (M ‖IDH)
σ ← Uibss.SignEKH

(C)
C ← C ∪ {(C,σ), IDH }
return (C,σ)

decrypt((C,σ), ID)

if Uibss.VerifyIDVK (C,σ) =⊥
return ⊥

M ‖ID ← Pke.DecDK (C)
if decryption or parsing fails
return ⊥

returnM

Fig. 7. The game for the proof of integrity for the Encrypt-then-IBS construction

Lemma 1 (Integrity of Encrypt-then-IBS). For all adversariesAint there exists a similarly e�cient adversary
Beuf-cma such that

Advint
IVE(Aint) ≤ Adveuf-cma

UIBSS (Beuf-cma) .

Proof. The integrity game de�ned in Fig. 4 applied to our construction is shown in Fig. 7. Based on this
game, we may construct a reduction to a forging game of the underlying identity based signature scheme.
An adversaryBeuf-cma is given the veri�cation keyVK of the signature scheme. She constructs an encryption
scheme and generates the keys (PK,DK) ←$ Pke.Kg, and sends (PK,VK) to Aint. Whenever Aint makes a
derivation query on an identity ID, Beuf-cma simply does the administrative work herself, by ascribing the
identity with a handle, and returning this. Any encryption queries on a message M under a handle H is
managed by Beuf-cma �rst producing C←$ Pke.EncPK (M ‖IDH), and then querying her own signature oracle
on (C, IDH), receiving the signature σ . She then sends (C,σ) toAint. Any corruption queries onH is answered
by Beuf-cma querying her own corruption oracle on IDH , and forewarding the given signing key. Finally, all
decryption queries fromAint are handled solely byBeuf-cma, as she can perform all the checks and decryptions
herself. WhenAint outputs ((Ĉ, σ̂), ˆID),Beuf-cma simply copies this as her own answer. It is clear thatBeuf-cma
will win in precisely the same cases asAint, and so the claim follows.

ut

Con�dentiality. The con�dentiality of the Encrypt-then-IBS hinges on both the con�dentiality of the en-
cryption scheme and the computational hardness of �nding a signature collision in the IBS scheme. As the
IVE adversary does not have access to the master private key of the underlying IBS scheme, it su�ces that
signatures are unique with respect to individual signing keys (that can be obtained through the derive oracle).
That allows us to rule out mauling of a challenge ciphertext (C,σ) through the signature component, leaving
the adversary with the only option of breaking the con�dentiality of the encryption scheme.

Lemma 2 (Con�dentiality of Encrypt-then-IBS). For all adversaries Aconf there exist similarly e�cient
adversaries Bcca and Bou such that

Advconf
IVE(Aconf) ≤ Advconf

PKE(Bconf) + Advou
UIBSS(Bou) .

Proof. We introduce a series of games for the adversary Aconf to play, gradually changing the original game
into a distinguishing game against the underlying encryption scheme.

Game Gb∗
0 : This is the original game applied to our construction, presented in Fig. 8.The advantage of

Aconf may be expressed as Advconf
IVE(Aconf) = Pr

[
G0
0 : Aconf → 1

] − Pr
[
G1
0 : Aconf → 1

]
.

Game Gb∗
1 : Here, we change the decryption procedure, so that instead of demanding that a query ((C,σ), ID) <

C, we require only thatC has not been part of a challenge recieved from the encryption oracle. An adversary
able to distinguish between these two games would also be able to �nd two distinct and verifying signatures

Vetted Encryption 11

Game G0
b∗

(PK,DK) ←$Pke.Kg

(VK, SK) ← Uibss.Kg

C ← ∅
b̂ ← AO((PK,VK)

encrypt((M0, ID,USK), (M1, ID,USK))

Cb∗ ←$Pke.EncPK (Mb∗ ‖ID)
σb∗ ←$Uibss.SignU SK (Cb∗)
C∗ ← ((Cb∗ ,σb∗), ID)
C ← C ∪ {C∗}return C∗

derive(ID)

USK ← Uibss.DeriveMSK (ID)
returnUSK

decrypt(C, π)

require (C,σ) < C
if Uibss.VerifyIDVK (C,σ) =⊥

return ⊥
M ‖ID ← Pke.DecDK (C)
if decryption or parsing fails

return ⊥
returnM

Fig. 8. Game Gb∗
1 for the con�dentiality proof of the Encrypt-then-IBS construction.

on the same message. It follows that the di�erence between Gb∗
0 and Gb∗

1 may be bounded by the advantage
an adversary has of breaking the outsider unicity of the underlying signature scheme.

Given this, we may construct a reduction from Gb∗
1 to a standard indistinguishability game of the un-

derlying public key encryption scheme in the following way: an adversary Bcca given the public key PK
of an encryption scheme generates the keys (VK,MSK) for an unique identity based signature scheme, and
sends (PK,VK) to the adversary Aconf . Any derivation queries may be answered by Bcca alone, seeing as
she possesses MSK . WheneverAconf sends a challenge query (M0,M1, ID,USK),Bcca sends (M0‖ID,M1‖ID)
to her encryption oracle, and when she gets the challenge ciphertext back, she signs it using the user se-
cret key USK before sending the tuple to Aconf . Any decryption query is handled by Bcca �rst verifying the
signature σ , and sending C to her own decyrption oracle if the signature veri�es, and passing on the re-
sponse from the oracle toAconf . OnceAconf guesses b̂, Bcca copies it, and so it follows that Advconf

IVE(Aconf) ≤
Advconf

PKE(Bconf) + Advou
UIBSS(Bou).

ut

3.3 Discussion of IVE

IVE resembles identity-based signcryption in many ways, as both primitives o�er con�dentiality of messages
and integrity of communication between two individuals identi�able to each other. In both cases, this concerns
insider security: reading the message requires nothing less than the secret key/decryption key of the recipient,
and forging the signature of a sender requires the user key/private key of that particular sender. There is also
a notion of veri�cation in identity based signcryption, which guarantees that a decrypted message was in fact
written by the sender [21].

In addition, it is common for identity based signcryption to satisfy the security notion of ciphertext un-
linkability: it is not possible to link a sender to a speci�c ciphertext, even if the ciphertext decrypts to a
message signed by the sender in question. Another security notion relevant for identity based signcryption is
insider ciphertext anonymity, which informally means that deducing either the sender or recipient of a given
ciphertext requires the private key of the recipient [21].

It is obvious that the two latter security notions do not combine with a central feature of IVE, namely
public veri�cation that a sender has in fact been vetted, seeing as the veri�cation algorithm takes the sender
identity as input. To �lter out messages sent from unvetted individuals is an essential part of IVE, and this
does require a public veri�cation algorithm.

There are identity based signcryption schemes that o�er such public veri�cation. However, several of the
schemes require the receiver to collaborate by supplying the veri�cation algorithm with additional informa-
tion. For example, in the signcryption scheme proposed by Libert and Quisquater, the receiver has to supply
the veri�er with an ephemeral key [38]. Again, this runs counter to the idea of IVE, namely that the �lter
is able to do the �ltering without assistance from the recipient. Querying the recipient to check whether a
message is sent from a vetted sender renders the �lter pointless.

Finally, there does exist identity based signcryption schemes which o�er transferable public veri�cation. In
these schemes, it is possible for a third party to verify that a ciphertext has indeed been signed by the alleged
sender, without help from the receiver. To the best of our knowledge, there are only two such schemes, and
both of them adopt an encrypt-and-sign approach [42, 44], where the former does not have a proof of security.

12 M. Hovd and M. Stam

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥ ID/⊥

EK C C

Fig. 9. The algorithms and their inputs/outputs for opaque vetted encryption.

The scheme which is provably secure is based on bilinear pairings, requires very large public parameters, and
produces ciphertexts of a large size. We believe that our more general approach might result in a concrete
scheme with more favourable sizes, both with regards to parameters and ciphertext size.

4 Opaque Vetted Encryption (OVE)

4.1 Syntax and Security of OVE

The algorithms. For opaque vetted encryption, we are in the most challenging, ‘asymmetric’ scenario where
the �lter does not learn the identity of the sender, yet the recipient does. In the de�nition below, we model this
change by letting the identity be output as part of decryption, in addition to the message of course. Having
two outputs also a�ects how invalid ciphertexts are dealt with: for our syntax and security we deal with the
general case where either component can lead to rejection, independently of each other. Thus we allow a
large number of error messages, unlike the AVE or IVE case, where only a single error message was modeled.

As we will see, OVE is quite similar to a group signature with message recovery, which seems to be an
overlooked primitive. In line with the literature on group signatures, in De�nition 3 we split the private key in
two: an issuing key IK to derive identity-speci�c encryption keys and a master decryption key SK to decrypt
ciphertexts. Throughout we will also borrow group signature terminology, for instance by referring to the
derivation of an encryption key as ’issuing’ (of course, in the group signature setting, said key would be a
signing key instead), or use ‘opening’ to extract the identity from a ciphertext as part of decryption.

De�nition 3 (Opaque Vetted Encryption (OVE)). An opaque vetted encryption scheme OVE is a 5-tuple
of algorithms (Ove.Kg,Ove.Derive, Ove.Enc,Ove.Verify,Ove.Dec) that satisfy

– Ove.Kg generates a key triple (PK, SK, IK), where PK is the public encryption (and veri�cation) key, SK is
the private decryption key, and IK is the issuing key. We allow Ove.Kg to depend on parameters param and
write (PK, SK, IK) ←$ Ove.Kg(param). Henceforth, we will assume that PK can be uniquely and e�ciently
computed given either SK or IK .

– Ove.Derive issues an encryption key EK based on the issuing key IK and a user’s identity ID. We write
EK←$ Ove.DeriveIK (ID).

– Ove.Enc encrypts a messageM given the public encryption key PKand private encryption key EK , producing
a ciphertext C or a failed encryption symbol ⊥. So, C←$ Ove.EncPK ,EK (M) with maybe C =⊥.

– Ove.Verify veri�es the validity of a ciphertextC given the public veri�cation key PK . With a slight abuse of
notation, >/⊥← Ove.VerifyPK (C).

– Ove.Dec decrypts a ciphertextC using the private key SK , resulting in a message–identity pair (M, ID). Both
the message M and the identity ID may, independently of each other, result in a rejection, ⊥. Again, with a
slight abuse of notation, (M/⊥, ID/⊥) ← Ove.DecSK (C).

The �rst three algorithms are probabilistic, the �nal two deterministic.

Correctness and consistency. As is the case for AVE and IVE, correctness captures that honest usage of the
scheme ensures that messages are received as intended, and assigned to the actual sender. For all parameters
param, identities ID and messages M we have

Vetted Encryption 13

Exptrac
OVE
(A)

(PK, SK, IK) ←$Ove.Kg

h ← 0;C ← ∅
CU ← {⊥}
Ĉ ← AO(PK)
(M, ID) ← Ove.DecSK (Ĉ)
winif Ĉ < C ∧ ID < CU
∧Ove.VerifyPK (Ĉ) = >

derive(ID)

EK[h] ← Ove.DeriveIK (ID)
h ← h + 1
return h

corrupt(H)

CU ← CU ∪ {H .ID}
return EK[H]

encrypt(H ,M)

C ←$Ove.EncPK ,EK [H](M)
C ← C ∪ {C}
return C

decrypt(C)

(M, ID) ← Ove.DecSK (C)
return (M, ID)

Fig. 10. The traceability game for OVE.

Expint
OVE
(A)

(PK, SK, IK) ←$Ove.Kg

Ĉ ← AO(PK, SK, IK)
(M, ID) ← Ove.DecSK (Ĉ)
winif Ove.VerifyPK (Ĉ) = > ∧ (M =⊥ ∨ID =⊥)

Fig. 11. The integrity game for OVE.

Pr

(PK, SK, IK) ←$ Ove.Kg(param)

EK←$ Ove.DeriveIK (ID)
C←$ Ove.EncPK ,EK (M)

:
C ,⊥

∧ Ove.VerifyPK (C) = >
∧ Ove.DecSK (C) = (M, ID)


= 1.

As with the previously presented schemes, consistency means that any ciphertext which decrypts to a
valid message and identity, will also pass the �lter. Thus we treat any occurrence of ⊥ in the decryption,
as either message or identity, as an invalid ciphertext. Again, we can easily transform a correct scheme into
one that is consistent as well: as part of decryption, run the veri�cation, and if veri�cation returns ⊥, then
decryption returns (⊥,⊥).

Security. The security of OVE is an amalgam of the vetted encryption notions we have encountered so far
and those for group signatures, primarily the static “BMW” notions [13]. The integrity component we saw
earlier now splits into two: on the one hand, we want that ciphertexts that pass the �lter (so verify) can
be pinned to a user after decryption, yet on the other hand we want to avoid users being falsely suspected
of spamming (by an honest recipient). We relabel the �rst notion integrity and strengthen it slightly, so it
becomes essentially a computational equivalent of strictness. The second notion is traceability, known from
group signatures. We also require con�dentiality of the messages and anonymity of the senders, but it turns
out we can fold these two concepts into a single notion, dubbed privacy. Formally, we de�ne the following
advantages, with speci�cations and explanations of the corresponding experiments described below:

– Traceability: Advtrac
OVE(A) = Pr

[
Exptrac

OVE(A) : A wins
]
.

– Integrity: Advint
OVE(A) = Pr

[
Expint

OVE(A) : A wins
]
.

– Privacy: Advpriv
OVE
(A) = Pr

[
Exppriv-0

OVE
(A) : b̂ = 0

]
− Pr

[
Exppriv-1

OVE
(A) : b̂ = 0

]
.

Traceability. This notion (Fig. 10) ensures that a colluding group of vetted users cannot successfully create a
ciphertext that opens to the identity of another user (outside the collusion). As we do not incorporate a PKI
in our model (cf. the dynamic “BSZ” notions for group signatures [16]), we need to exclude the issuing key
IK from the adversary’s grasp. Furthermore, in contrast to BMW’s traceability, we also do not provide the
decryption key DK to the adversary. Our weakening is motivated by the intended use case: the main purpose
of the scheme is to trace messages which pass the �lter back to an identity and the recipient has no motive
to try and create ciphertexts that it will then subsequently open and trace incorrectly. Of course, in order to
provide forward security, one could also consider strong traceability, where an adversary does have access to
the decryption key SK .

14 M. Hovd and M. Stam

Exppriv-b∗
OVE

(A)

(PK, SK, IK) ←$Ove.Kg

C ← ∅
b̂ ← AO(PK, IK)

decrypt(C)

require C < C
(M, ID) ← Ove.DecSK (C)
return (M, ID)

encrypt(EK0, EK1,M0,M1)

C0 ←$Ove.EncPK ,EK 0 (M0)
C1 ←$Ove.EncPK ,EK 1 (M1)
if C0 ,⊥ ∧C1 ,⊥ then

C∗ ← Cb∗

C ← C ∪ {C∗}
else

C∗ ←⊥
return C∗

encryptx (EK0, EK1,M0,M1)

C0 ←$Ove.EncPK ,EK 0 (M0)
C1 ←$Ove.EncPK ,EK 1 (M1)
Cx ←$Ove.EncPK ,EK 1 (M0)
if C0 ,⊥ ∧C1 ,⊥ then

if Cx =⊥ then set bad
C∗ ← Cx

C ← C ∪ {C∗}
else

C∗ ←⊥
return C∗

Fig. 12. The privacy game for OVE (�rst three columns); the �nal column is used in the proof of Lemma 3.

Finally, we initialize CU to contain ⊥ as we consider the case where the ciphertext opens to an invalid
identity, so Ove.DecSK (C) = (M,⊥), only as a breach of integrity, not of traceability. Again, this �ts the
intended use case: an adversary being able to pass the �lter without being identi�ed afterwards can e�ectively
“spam” the receiver, who then does not know which sender to have a word with. As the protection against
spamming is the raison d’être of our scheme, we will put much stronger guarantees in place to prevent it (as
part of integrity).

Integrity. In stark contrast to traceability, integrity ensures that even an adversary in possession of all the keys
of the scheme cannot create a message which veri�es, so Ove.VerifyPK (C) = >, yet does not open to a valid
message–identity pair, i.e. leads to Ove.DecSK (C) = (⊥, ID), Ove.DecSK (C) = (M,⊥) or Ove.DecSK (C) = (⊥
,⊥). Thus any ciphertext that passes the veri�cation, is opened without a failure message.

We reiterate that we treat Ove.DecSK (C) = (M,⊥) as a breach of integrity rather than traceability. One
interpretation is that C decrypted successfully to an anonymous message. Yet allowing for anonymous mes-
sages would clearly defeat the purpose of opaque vetted encryption, namely that any ciphertext which veri�es
can be attributed to a vetted sender.

Privacy, con�dentiality, and anonymity. Any party not in possession of the decryption key should be unable
to determine who is the sender of a ciphertext, and also what the ciphertext decrypts to. Note that we allow
an adversary access to the issuing key IK . This is seemingly a contradiction to the discussed honest use case,
where the recipient both issues keys and decrypts messages, which was after all the reasoning for denying the
adversary the opening key in the traceability case. However, there is a possible separation of authorities, and
even though we regard the recpient as the "owner" of the scheme, they may choose to delegate the authority
of issuing keys to another authority. We require that even this party should not be able to infer the sender or
the content when given a ciphertext.

We formalize this notion as privacy (Fig. 12), which we model with a challenge encryption oracle that an
adversary can query on two pairs of encryption keys and messages: (EK0,M0) and (EK1,M1). The oracle either
returns an encryption of the left, 0-subscripted or the right, 1-subscripted key–message pair; the adversary
should �gure out which one. To avoid trivial wins based on faulty encryption keys, we encrypt both pairs,
and reject the query if one of the encryptions fail. Privacy should hold even against adversaries knowing the
issuing key IK . Our notion of privacy encompasses both anonymity and con�dentiality of encryption schemes.
We de�ne anonymity as the privacy game with the restriction that for all challenge queries M0 = M1, and
con�dentiality as the privacy game where we insist EK0 = EK1 for all challenge queries.

The resulting anonymity game resembles anonymity known from group signatures. One notable di�er-
ence is the additional mechanism we put in place by encrypting under both encryption keys and only output
the ciphertext if both encryptions are successful. We are not aware of a similar mechanism to de�ne anonymity
of group signatures, i.e. where you would sign under both user signing keys and only release the group sig-
nature if both are successful: BMW only deal with honestly generated keys and BSZ have a join protocol that
alleviates the need for an additional check.

Vetted Encryption 15

For con�dentiality, arguably one could consider a stronger game where one directly encrypts the relevant
challenge message under the adversarially chosen key. Yet, this strenghtening is not entirely without gain
of generality, as one could concoct a pathological counterexample where for some fake encryption key some
messages are more likely to result in an encryption error than others. Henceforth, we will ignore this subtlety.

By de�nition, privacy obviously implies anonymity and con�dentiality (with a small caveat for the latter,
as explained above). The converse is true as well, namely that jointly anonymity and con�dentiality imply
privacy. However, in general this is not true, as can be shown by a simple, pathological counterexample.

Consider a scheme that is secure, now modify the scheme so that key derivation prepends keys with a
0-bit. Encryption with a key starting with a 0-bit removes this bit and behaves as before. This fully describes
the honest behaviour of the scheme and we proceed to describe behaviour that could only be triggered by an
adversary: namely, our modi�ed scheme’s encryption with a key starting with a 1-bit outputs the message
i� that message equals the key, and rejects otherwise. Essentially, all 1-keys are fake, but it is possible to
make each key accept on a single message (and each message can only be used for a single fake key). For the
con�dentiality and anonymity games, these fake keys cannot be exploited as the reject-�ltering mechanism
causes the oracle to reject; for the privacy game however it’s easy to win exploiting these fake keys.

For schemes that behave nicely however, we show in Lemma 3 that the privacy game is implied by combi-
nation of anonymity and con�dentiality. Here ’nicely’ refers to the property that an encryption key is either
always successful on the full message space, or it always rejects.

Lemma 3 (OVE-Anonymity + OVE-Con�dentiality implies OVE-Privacy). Let OVE sport encryption
keys EK with the property that for all messagesM in the message space,Ove.EncPK ,EK (M) =⊥, or every message
encrypts to a ciphertext with probability 1. Then for any privacy adversaryApriv against anOVE scheme, there
exist anonymity and con�dentiality adversaries Bconf and Banon of comparable e�ciency such that

Advpriv
OVE
(Apriv) ≤ Advanon

OVE(Banon) + Advconf
OVE(Bconf) .

Proof. First, we de�ne the games we will use throughout the proof. In all cases, the challenge oracle receives
((EK0,M0), (EK1,M1)), but di�erent inputs are selected for encryption as the challenge ciphertext:

– G0: the challenge oracle chooses (EK0,M0);
– G1: the challenge oracle chooses (EK1,M1);
– Gx: the challenge oracle chooses (EK1,M0).

Furthermore all three games, including Gx use the �rst two cases to decide whether to reject a query (output
⊥) or not. In the case of Gx, if the encryption itself fails but the check is passed, we set a �ag bad. The code
for the encryption oracle of Gx is provided in Fig. 12.

We may express the advantage ofApriv as:

Advpriv
OVE
(Apriv) = Pr

[
G0 : Apriv → 0

] − Pr
[
G1 : Apriv → 0

]
= Pr

[
G0 : Apriv → 0

] − Pr
[
Gx : Apriv → 0

]
+ Pr

[
Gx : Apriv → 0

] − Pr
[
G1 : Apriv → 0

]
.

We claim existence of Banon and Bconf such that

Pr
[
G0 : Apriv → 0

] − Pr
[
Gx : Apriv → 0

] ≤ Advanon
OVE(Banon)

as well as
Pr

[
Gx : Apriv → 0

] − Pr
[
G1 : Apriv → 0

] ≤ Advconf
OVE(Bconf) .

We prove the �rst claim: given a privacy adversary Apriv, we may construct an anonymity adversary in
the following way:Banon gets input (PK, IK), which she passes along toApriv. WhenApriv sends her challenge
request ((EK0,M0), (EK1,M1)),Banon �rst encrypts (EK1,M1) herself. If this results in ⊥, she sends a rejection
to Apriv, simulating the response from a privacy encryption oracle. If Ove.EncPK ,EK 1(M1) ,⊥, then Banon
sends the requests ((EK0,M0), (EK1,M0)) to her challenge oracle. By the assumption that an encryption key
will either encrypt all messages or none, this cannot result in the bad event Ove.EncPK ,EK 1(M0) =⊥. Thus,
if the encryption oracle returns ⊥, this is caused by (EK0,M0), and the rejection is therefore in line with a
privacy encryption oracle. OnceBanon receives the challenge ciphertext, she passes it toApriv. Any decryption

16 M. Hovd and M. Stam

query made by Apriv is answered by Banon’s decryption oracle. When Apriv outputs a bit b, Banon answers
the same, and will thus have the same advantage in her game asApriv has in hers. The claim follows.

The second claim is proven anologously: given a privacy adversary Apriv, we may construct a con�den-
tiality adversary as follows: Bconf gets input (PK, IK), which she passes along to Apriv. When Apriv queries
a challenge by sending ((EK0,M0), (EK1,M1)), Bconf encrypts (EK0,M0) herself, and rejects the query if the
encryption results in ⊥. This simulates the rejection from a privacy encryption oracle. If she does not reject,
Bconf sends the requests ((EK1,M0), (EK1,M1) to her challenge oracle, and sends the challenge ciphertext she
receives to Apriv. Again, if the encryption oracle rejects, this is caused by (EK1,M1), and is in line with the
behaviour of a privacy encryption oracle. Given the assumption of valid or invalid encryption keys, the bad
event Ove.EncPK ,EK 1(M0) =⊥ does not happen. Any decryption query made byApriv is answered by Bconf ’s
decryption oracle. WhenApriv outputs a bit b,Bconf answers the same, and will thus have the same advantage
in her game asApriv has in hers. The claim follows.

Based on these steps, we have:

Advpriv
OVE
(Apriv) ≤ Advanon

OVE(Banon) + Advconf
OVE(Bconf) .

ut

4.2 Generic Construction: Veri�ably Encrypted Certi�cates

Our construction is inspired by the sign-encrypt-proof construction for group signature schemes [13]. This
provenance is natural, given the close relationship between OVE and group signatures (albeit with message
recovery). The most important di�erence, aside from having to keep the message con�dential, is our weaken-
ing of traceability, by not availing the adversary with the decryption key. We re�ect on the di�erence between
our scheme and known group signature schemes in Section 4.3.

Our scheme uses an IND-CCA securePKE, an EUF-CMA secure SIG and a simulation-soundQANIZK;
the construction is �eshed out in Fig. 13. The key generation algorithm generates the key pairs (PK,DK),
(VK, SK) for the PKE and SIG respectively, as well as the crs σ and trapdoor τ for the QANIZK scheme.
The public key for the OVE is the triple (PK,VK,σ), the derivation key is SK , and �nally the decryption key
is DK . We stress that the trapdoor τ is discarded after derivation: it is used only in the security reductions,
not in the actual scheme itself, and accidentally including it in the private derivation or decryption key would
actually invalidate integrity!

For a given user with identity ID, the derivation issues a certi�cate CERT ID by signing ID using the
signature scheme. The certi�cate may then be regarded as the encryption key of the user with identity ID.

To encrypt a message M , on input the public key of the OVE as well as the identity ID and certi�cate
CERT ID of the encryptor, �rst the validity of the certi�cate is checked to guard against dishonest certi�-
cates. If the certi�cate passes, the concatenated string M ‖CERT ID ‖ID is encrypted toC using the underlying
encryption scheme. Next, a QANIZK proof π is generated for the statement that the ciphertext is created
honestly, speci�cally that it contains a valid ID,CERT ID pair. The OVE encryption algorithm �nally outputs
(C, π).

Formally, for the QANIZK proof, the language L(PK ,VK) is determined by the public key (PK,VK) and
consists of valid ciphertexts, i.e.,

L(PK ,VK) = {C : ∃M ,r ,CERT ID ,ID C = Pke.EncPK (M ‖CERT ID ‖ID; r) ∧ Sig.VerifyVK (ID,CERT ID) = >}.
Thus the message M and the randomness r used to encrypt are additional witnesses used to create the
QANIZK proof π ; the full witness is the tuple (r ,M,CERT ID, ID).

For the �lter to verify a pair (C, π), it simply runs the veri�cation algorithm of the QANIZK scheme,
with the public key of the OVE scheme as well as (C, π) as input.

Finally, in order to decrypt an OVE ciphertext (C, π), the receiver �rst veri�es the proof π using the
veri�cation algorithm of the QANIZK. If the QANIZK veri�cation fails, the receiver rejects. Otherwise,
it decrypts C and attempts to parse the output as M ‖CERT ID ‖ID ← Pke.DecDK (C). If either decryption or
parsing fails, the receiver rejects. If both succeed, it returns (M, ID). There is no need to explicitly run the
veri�cation algorithm of the signature scheme on the certi�cate as its validity is already implicitly checked
by the QANIZK veri�cation. Note that we output the rejection symbol (⊥,⊥) in all cases (failure of the
veri�cation, decryption, or parsing), and in particular that we do not distinguish between a failure to decrypt
the message M or the identity ID, as the syntax (Fig. 9) allows for.

Vetted Encryption 17

Ove.Kg()

(PK,DK) ←$Pke.Kg

(VK, SK) ←$ Sig.Kg

(σ , τ) ←$Nizk.Setup

return ((PK,VK,σ),DK, SK)

Ove.DeriveSK (ID)

CERT ID ←$ Sig.SignSK (ID)
return CERT ID

Ove.VerifyPK ,VK (C, π)

return Nizk.VerifyPK ,VK ,σ (C, π)

Ove.EncIDPK ,VK ,σ ,ID ,CERT ID
(M)

if Sig.VerifyVK (ID,CERT ID) =⊥, return ⊥
C ←$Pke.EncPK (M ‖CERT ID ‖ID; r)
π ← Nizk.ProvePK ,VK ,σ (r ,M,CERT ID , ID)
return (C, π)

Ove.DecDK (C, π)

if Nizk.VerifyPK ,VK ,σ (C, π) =⊥
return (⊥,⊥)

M ‖CERT ID ‖ID ← Pke.DecDK (C)
if decryption or parsing fails

return (⊥,⊥)
return (M, ID)

Fig. 13. Our “Veri�ably Encrypted Certi�cate” construction for OVE.

Game G0

(PK,DK) ←$Pke.Kg

(VK, SK) ← Sig.Kg

(σ , τ) ←$Nizk.Setup

h ← 0;C ← ∅
CU ← ∅
(Ĉ, π̂) ← AO(PK,VK,σ)
(M, ID) ← Ove.DecPK (Ĉ)
winif (Ĉ, π̂) < C ∧ ID < CU∧

Ove.VerifyPK ,VK ,σ (Ĉ, π̂) = >

derive(ID)

IDh = ID

CERT IDh ← Sig.SignSK (IDh)
h ← h + 1
return h

corrupt(H)

CU ← CU ∪ {IDH }
return CERT IDH

encrypt(H ,M)

C ←$Pke.EncPK (M ‖CERT IDH ‖IDH ; r)
π ← Nizk.ProvePK ,VK ,σ (r ,M,CERT IDH , IDH)
C ← C ∪ {(C, π)}
return (C, π)

decrypt(C, π)

if Nizk.VerifyPK ,VK ,σ (C, π) =⊥
return (⊥,⊥)

M ‖CERT ID ‖ID ← Pke.DecDK (C)
if decryption or parsing fails

return (⊥,⊥)
return (M, ID)

Fig. 14. The initial traceability game G0 for our Veri�ably Encrypted Certi�cate construction for OVE.

Correctness and consistency. Correctness follows from the correctness of the underlying PKE and SIG,
as well as the completeness of the QANIZK. Consistency is guaranteed by checking the proof in decryption,
as this ensures that any ciphertext which decrypts also passes the �lter.

Traceability. Intuitively, the traceability of the scheme boils down to the unforgeability of the signature
scheme used as a building block. The other properties of the PKE and QANIZK ensure that the encryption
oracle is harmless, i.e. that the returned components (C, π) do not leak any information about the valid and
potentially honest certi�cate used.

Lemma 4 (Traceability of OVE). For all adversaries Atrac, there exist similarly e�cient adversaries Bsound,
Bzk, Bcca and Beuf-cma such that

Advtrac
OVE(Atrac) ≤Advsound

QANIZK(Bsound) + Advzk
QANIZK(Bzk)

+ Advcca
PKE(Bcca) + Adveuf-cma

SIG (Beuf-cma).

Proof. We introduce a series of games which the adversary Atrac plays, rendering the encryption oracle less
and less potent. We bound the advantage between the games using various reductionsB... , to �nally conclude
with a reduction linking the advantage in the �nal game to the EUF-CMA-advantage against the signature
scheme.

18 M. Hovd and M. Stam

Game G0: This is the original traceability game as presented in Fig. 10, see Fig. 14 for the adaption to our
OVE scheme. We note that

Advtrac
OVE(Atrac) = Pr[Atrac wins G0]

= Pr
[
Atrac wins G0 ∧C ∈ L(PK ,VK)

]
+ Pr

[
Atrac wins G0 ∧C < L(PK ,VK)

]
,

where the �nal probability can be bounded by the advantage of a soundness adversaryBsound attacking the un-
derlying QANIZK scheme. Henceforth we assume thatAtrac only wins with a valid ciphertext,C ∈ L(PK ,VK).

Game G1: This is the same as G0, except for the generation of π during the encryption query. Instead of
generating it using Nizk.Prove, the challenger now uses a simulator. The di�erence in the perception of G0
and G1 for the adversary may be bounded by the advantage of a zero-knowledge adversaryBzk attacking the
underlying QANIZK scheme: Pr

[
Atrac wins G0 ∧C ∈ L(PK ,VK)

] − Pr[Atrac wins G1] ≤ Advzk
QANIZK(Bzk).

GameG2: For this game, we change the decryption oracle so that after theNizk.Verify check is performed,
it checks to see whether there is a π ′ such that (C, π ′) ∈ C. If so, the oracle also knows which query (H ,M)
this was a result of, and so outputs (M, IDH) (without further processing of C). If C is not part of a previous
output of the encryption oracle, then decryption proceeds as normal. This modi�cation does not change the
adversary’s view, so Pr[Atrac wins G2] = Pr[Atrac wins G2].

Game G3: This game di�ers from the previous games in the encryption oracle. Instead of encrypting
the plaintext M ‖CERT IDH ‖IDH , it encrypts a plaintext of the same length drawn at random from the mes-
sage space. The di�erent views of the adversary in G2 and G3 is then bound by Advror−cca

PKE (Bror−cca), where
ror-cca denotes the real-or-random security notion for public key encryption schemes. Real-or-random se-
curity is well-known to be implied by left-or-right indistinguishability [12], namely Advror−cca

PKE (Bror−cca) ≤
Advcca

PKE(Bcca). It follows that Pr[Atrac wins G2] − Pr[Atrac wins G3] ≤ Advcca
PKE(Bcca).

We may now create a reduction from EUF-CMA to traceability by constructing an adversary Beuf-cma
playing G3 withAtrac, and using the output to solve her own challenge.Beuf-cma is given the veri�cation key
VK of a signature scheme, and she generates (PK,DK) ←$ Pke.Kg and (σ , τ) ←$ Nizk.Setup herself, and �nally
sends (PK,VK,σ) to Atrac. Whenever Atrac queries the derivation oracle on an identity, Beuf-cma queries her
signing oracle, and forwards the signature toAtrac. Any other query she makes,Beuf-cma can answer using the
decryption key DK and QANIZK trapdoor τ . WhenAtrac outputs (Ĉ, π̂) as her answer,Beuf-cma decrypts Ĉ ,
parses M ‖CERT ‖ID ← Pke.DecDK (Ĉ), and passes (CERT , ID) as her forgery. Whenever Atrac wins, so does
Beuf-cma.

From all this, it follows that

Advtrace
OVE(Atrace) ≤ Advsound

QANIZK(Bsound) + Advzk
QANIZK(Bzk) + Advcca

PKE(Bcca) + Adveuf-cma
SIG (Beuf-cma).

ut

Integrity. The integrity of the OVE scheme follows from the zero-knowledge property of the QANIZK
scheme, as well as the correctness of the PKE scheme. Informally, there are only two ways the adversary can
win the game: either C has a witness, or it does not. If it does not, the adversary has been able to generate a
veri�able proof for an invalid statement, which breaches the soundness of the QANIZK scheme. If C has a
witness, it is generated by encrypting a plaintext, and such a ciphertext will decrypt correctly by correctness
of PKE, so winning this way is not possible.

Lemma 5 (Integrity of OVE). For all adversaries Aint, there exist an equally e�cient adversary Bsound such
that

Advint
OVE(Aint) ≤ Advsound

QANIZK(Bsound) .

Proof. We present the integrity game for the OVE scheme in Fig. 15. The advantage ofAint is

Pr
[
Expint

OVE(Aint) = 1
]
= Pr

[
Expint

OVE(Aint) = 1 ∧ Ĉ ∈ L(PK ,VK)
]

+ Pr
[
Expint

OVE(Aint) = 1 ∧ Ĉ < L(PK ,VK)
]
,

where the latter probability may be bounded by the advantage of a soundness adversary against theQANIZK
scheme, as the de�nition of the two adversaries match.

With regards to the former probability, Ĉ ∈ L(PK ,VK) implies that, for some M,CERT ID, and ID, Ĉ =
Pke.EncPK (M ‖CERT ID ‖ID; r). Correctness of the encryption scheme ensure that decryption will uniquely
recover M,CERT ID, and ID, and Ove.Dec will not reject. Thus the corresponding probability is zero. ut

Vetted Encryption 19

Expint
OVE
(A)

(PK,DK) ←$Pke.Kg

(VK, SK) ← Sig.Kg

(σ , τ) ←$Nizk.Setup

h ← 0;C ← ∅
CU ← ∅
(Ĉ, π̂) ← AO((PK,VK,σ), SK,DK)
Ove.VerifyPK (Ĉ) = > ∧ Ove.DecDK (Ĉ, π̂) = (⊥,⊥)

Fig. 15. The integrity game for our Veri�ably Encrypted Certi�cate construction for OVE.

Game G1
b∗

(PK,DK) ←$Pke.Kg

(VK, SK) ← Sig.Kg

(σ , τ) ←$Nizk.Setup

C ← ∅
b̂ ← AO((PK,VK,σ), SK)

encrypt((M0,CERT ID0 , ID0), (M1,CERT ID1 , ID1))

Cb∗ ←$Pke.EncPK (Mb∗ ‖CERT IDb∗ ‖IDb∗ ; r)
πb∗ ← Nizk.ProvePK ,VK ,σ (r ,Mb∗ ,CERT IDb∗ , IDb∗)
C∗ ← (Cb∗ , πb∗)
C ← C ∪ {C∗}return C∗

decrypt(C, π)

require (C, π) < C
if Nizk.VerifyPK ,VK ,σ (C, π) =⊥

return (⊥,⊥)
M ‖CERT ID ‖ID ← Pke.DecDK (C)
if decryption or parsing fails

return (⊥,⊥)
return (M, ID)

Fig. 16. Game Gb∗
1 for the privacy proof of our Veri�ably Encrypted Certi�cate construction for OVE.

Privacy. The notion of privacy for the OVE rests on the security of the underlying encryption scheme and
QANIZK protocol. In essence, the CCA notion of the PKE ensures that theC component does not leak any
information about the message or the identity, whilst the zk notion of the QANIZK protocol guards against
the proof π revealing anything useful to an adversary. Finally, the simulation soundness of the QANIZK
helps guarantee that the adversary cannot forge a proof π ′, and thus take advantage of a decryption oracle.

Lemma 6 (Privacy of OVE). For all adversariesApriv, there exist similarly e�cient adversariesBuss,Bzk and
Bcca such that

Advpriv
OVE
(Apriv) ≤ 2Advzk

QANIZK(Bzk) + 2Advuss
QANIZK(Buss) + 3Advcca

PKE(Bcca) .
Proof. Just as in the traceability game, we introduce a series of games for the adversary Apriv to play, which
gradually changes the original game into a reduction to the CCA game against the underlying encryption
scheme.

Game Gb∗
0 : This is the original game, presented in Fig. 12, applied to our construction. The advantage of

Apriv may be expressed as Advpriv
OVE
(Apriv) = Pr

[
G0
0 : Apriv → 1

] − Pr
[
G1
0 : Apriv → 1

]
.

Game Gb∗
1 : In this game, we assume that the adversary will only forward valid encryption queries, i.e., all

queried certi�cates validates as signatures for identities. We therefore do not need any checks of the validity of
signatures in the game and can simplify accordingly, see Fig. 16. The restriction is without loss of generality, as
an adversary can check the validity of the certi�cates. Thus, for b∗ ∈ {0, 1}, we have Pr

[
Gb∗
0 : Apriv → 1

]
=

Pr
[
Gb∗
1 : Apriv → 1

]
.

Game Gb∗
2 : Here, we change the generation of π during the encryption query, so that π ← Nizk.Simτ (C).

For both possible values of b∗, the di�erence in the adversary’s view between Gb∗
1 and Gb∗

2 may be bounded
by the advantage of an adversary Bzk attacking the zero-knowledge property of the underlying QANIZK
scheme, i.e., Pr

[
Gb∗
1 : Apriv → 1

] − Pr
[
Gb∗
2 : Apriv → 1

] ≤ Advzk
QANIZK(Bzk).

Game Gb∗
3 : In the �nal game, we replace the decryption procedure, so that any decryption query of the

format (C, π)whereC has been part of a challenge output, yet π was not, is rejected. In other words: we do not
allow the privacy adversary to query challenge ciphertexts with new, valid proofs (obviously invalid proofs
would be rejected regardless). The games Gb∗

2 and Gb∗
3 are therefore identical-until-bad, and we will analyse

the probability of the bad event in the �nal step of the proof.
Given an adversary distinguishing between G0

3 and G1
3, we may construct a reduction to the CCA-security

of the PKE as follows. An adversaryB2
cca who is given the public key PK of an encryption scheme PKE sets

20 M. Hovd and M. Stam

up a signature scheme with keys (VK, SK) ←$ Sig.Kg and a QANIZK with (σ , τ) ←$ Nizk.Setup, and sends
((PK,VK,σ), SK) to Apriv. Encryption queries for ((M0,CERT ID0, ID0), (M1,CERT ID1, ID1)) are answered by
Bcca querying her decryption oracle with (M0‖CERT ID0 ‖ID0,M1‖CERT ID1 ‖ID1) then simulating a proof π
on the received challenge ciphertext C , and sending (C, π) to Apriv. For any decryption query of (C ′, π ′) by
Apriv, B2

cca rejects the query if π ′ does not verify, or C = C ′. Otherwise, she sends C ′ to her decryption
oracle: if it returns ⊥, then B2

cca returns (⊥,⊥); if not, B2
cca parses the received plaintext as M ‖CERT ID ‖ID

and returns (M, ID). When Apriv outputs b̂, B2
cca copies it, and thus it follows that Pr

[
G1
3 : Apriv → 1

] −
Pr

[
G0
3 : Apriv → 1

] ≤ Advcca
PKE(B2

cca).
Finally, we bound the probability of the bad event in gameGb∗

3 , where the adversary queries the decryption
oracle with a tuple consisting of a challenge ciphertextC and a new, valid proof π ′. We introduce a new game,
Gb∗
x where any encryption query is answered as follows: draw a plaintext at random from the plaintext space,

of the same length as a plaintext from an honest query. The plaintext is then encrypted toC , and a proof π for it
is simulated, and (C, π) is sent toApriv. For both values of b∗, we then have Pr

[
Gb∗
3 : Bad

]−Pr
[
Gb∗
x : Bad

] ≤
Advror−cca

PKE (Bror−cca), where ror-cca denotes the real-or-random security notion for public key encryption
schemes. It is well-known that real-or-random security is implied by left-or-right indistinguishability [12]:
Advror−cca

PKE (Bror−cca) ≤ Advcca
PKE(Bcca). Furthermore, Pr

[
Gb∗
x : Bad

] ≤ Advuss
QANIZK(Buss), and so the follow-

ing inequality Pr
[
Gb∗
3 : Bad

] ≤ Advcca
PKE(Bb∗

cca) + Advuss
QANIZK(Buss) holds for both values of b∗.

A �nal detail is combining the three di�erent CCA adversaries from game G3, B0
cca, B1

cca and B2
cca by

constructing a ‘master’ adversary Bcca. This adversary plays the CCA game by uniformly at random pick-
ing which sub-reduction to run. We therefore have: Advcca

PKE(Bcca) = 1
3Adv

cca
PKE(B0

cca) + 1
3Adv

cca
PKE(B1

cca) +
1
3Adv

cca
PKE(B2

cca). We �nally conclude that:

Advpriv
OVE
(Apriv) ≤ 2Advzk

QANIZK(Bzk) + 2Advuss
QANIZK(Buss) + 3Advcca

PKE(Bcca).
ut

We note that our bound is not as tight as the corresponding one for anonymity in BMW. The di�erence
is primarily due to the proof strategy: instead of game hops, Bellare et al. directly provided the code of two
CCA adversaries that integrated a bad event and a hop between two games G0 and G1, coupled with a re�ned
analysis of the relevant advantages. The integrated approach allowed for some terms in the derivation to
cancel, leading to the slighlty tighter bound. We opted for simplicity instead, also as we deal with multi-
query games as opposed to the single-query games in the BMW construction. Thus we can potentially avoid
a tightness loss as a result of a hybrid argument by plugging in appopriate multi-query secure primitives.

4.3 Discussion of OVE

To the best of our knowledge, OVE schemes o�er a combination of functionality and security hitherto un-
studied. However, as mentioned before, there are great similarities with group signatures, with the crucial
distinction that group signatures do not o�er message recovery, nor con�dentiality of messages. Our con-
struction was directly inspired by the BMW construction for group signatures [13], with some notable di�er-
ences. In the following, we explore these di�erences and also address how ideas from other group signature
schemes might apply to OVE. Finally, we brie�y compare signcryption to OVE.

A signi�cant di�erence between our construction and BMW’s sign-encrypt-proof is the use of signatures.
In the BMW group signature scheme, the user signing key consists of a personal key pair for the signature
scheme in addition to a certi�cate binding the personal veri�cation key to the identifying index. When signing
a message, the sender �rst signs the message using their personal signing key, and then encrypts this signature,
along with the certi�cate and personal veri�cation key. This may be regarded as a signature tree of depth two,
as the certi�cate is a signature on the veri�cation key. This indirection enables full traceability, so that even
an adversary with access to the group master opening key is unable to forge a signature of an uncompromised
group member.

We �attened the construction by removing the personal signature key-pair. The gain in e�ciency results
in our weaker notion of traceability: an adversary in possession of the secret key of our scheme can readily
decrypt a ciphertext to learn the identity and certi�cate of an honest user, and subsequently send any message
in the name of this user. As discussed previously, this weaker notion suits the intended use of the OVE
scheme, where the recipient who holds the secret key has no motivation of sending spam to themselves. Our

Vetted Encryption 21

perspective is that the recipient, holding the decryption key “owns” the system yet might wish to delegate the
vetting: thus we introduce separate keys and insist privacy holds against the issuer, but traceability need not
hold against the decryptor. A further weakening would completely identify issuer and decryptor as Kiayias
and Yung considered for group signatures [36]. If the stronger version of traceability is deemed desirable for
OVE, a closer �t with BMW should work.

One di�erence between OVE and the BMW framework is how the identity of the sender, resp. group
member, is treated. For OVE, the identity itself, as input to the key derivation, is retrieved during decryption.
For BMW, the identity is linked to an index instead, and it is this index which is part of the various algorithms.
In order to get the actual identity of the group member, an additional look up table is required, necessitating
further coordination between the issuing of keys and the opening of signatures. With some abuse of naming,
we will nevertheless refer to this index i as (part of) the identity in what follows. A side-e�ect of BMW’s use
of indices is that they do not model a separate key derivation algorithm, instead generating all user keys as
part of the initial key generation. One implication is that, syntactically, users can no longer be added to the
group after set-up: this would require regenerating new keys for everyone. Obviously for the construction, it
is straightforward to isolate an issuing algorithm, and adding users on the �y is not an issue.

Separate key derivation, or issuing, algorithms are known from dynamic group signature schemes [16,
19], where a useful distinction can be made between partially dynamic schemes where users can join but may
never leave, and fully dynamic where a user’s credentials may be revoked. A noticeable di�erence between the
dynamic group signatures and OVE is that the former binds signatures to a PKI, providing non-repudiation
and requiring the opener to output a proof to demonstrate publicly that the purported identity of signer of the
message is correct. These di�erences render adaptation of the known group signature schemes less immediate
as simpli�cations can likely be made—with the appropriate care. For instance, Groth [33] suggests increasing
the depth of the signature tree to three by incorporating an additional one-time secure signature scheme. The
advantage of his approach is much more e�cient instantiations of the underlying primitives, including the
NIZK, resulting in constant size group signatures. Similar ideas might be useful for optimizing OVE.

A more challenging inspiration for OVE arises from a brand new paradigm to construct compact and e�-
cient group signatures based on structure preserving signatures (SPS) and signatures of knowledge (SoK) [2,
37, 29]. Here the signing algorithm does not involve an encryption scheme. Instead, the SPS is used to �nd a
new representative of the user key, which is then signed along with the message using a SoK. Adaption to the
OVE setting likely requires some additional tweaking, for example letting the SoK sign an encryption of the
desired message, rather than the message itself.

So far we have only looked at the Hotel California situation where users are added dynamically, but they
can never leave. The most challenging scenario for OVE is one where senders may become unvetted, such that
their ciphertexts no longer pass the �lter. This corresponds to fully dynamic group signatures [19], which can
be achieved based on an accountable ring signature scheme (the signing of the message is simply applying
the signing algorithm of said ring signature scheme). Adding unvetting would be a useful feature to OVE,
but ideally without incurring the overhead of ring signatures: black listing at the �lter is probably easier to
achieve than the white listing at the senders (implicit when using ring signatures).

Finally, we note that generic transforms from either group signatures or signcryption to OVE are less
obvious. For signcryption schemes, as we observed before, the combination of hiding the sender while still al-
lowing for public veri�cation appear mutually exclusive. On the other hand, a simple encrypt-then-groupsign
transform fails privacy, as user Eve can simply intercept user Anna’s ciphertext and supplant the group sig-
nature with one of her own, and ask for it to be decrypted. Where for IVE, unicity of signatures prevented
such an attack, here no such protection is possible. Also a group signature’s implicit encryption capacity [1,
31] appears hard to unlock generically to serve OVE.

5 Conclusion

We introduced vetted encryption, which allows a recipient to specify who is allowed to send them messages
and outsource the �ltering to any third party. We concentrated on only a single receiver in two distinct sce-
narios: the �lter would or would not learn the identity of the sender. Either way, the sender would remain
identi�able to the recipient. OVE has the potential to facilitate con�dential communication with whistle-
blowers, sources for journalists and other scenarios for anonymous communication where an organization
wants to �lter the anonymous tra�c, yet the individual needs to be identi�ed to the recipient in a way that
is convincing to the recipient while allowing repudiation by the sender.

22 M. Hovd and M. Stam

When considering multiple receivers, a possible extension would be to allow a single �lter in such a way
that the intended recipient remains anonymous to the �lter as well. Such an extension could be relevant for
all three types of vetted encryption, though it is possibly more natural in the AVE and OVE setting. We have,
after all, already lifted anonymity from the �lter altogether in the IVE setting, which at the very least opens
up the possibility to use the recipient’s identity.

For identi�able vetted encryption we made the link with signcryption; one could further try to extend this
link by considering an alternative multi-recipient scenario where a single sender wants to transmit the same
message to multiple recipients simultaneously. This is quite common in email applications and one expects
some performance bene�ts due to amortization (though the security de�nitions might become more complex,
cf. multi-user signcryption).

Finally, for our constructions we concentrated on proofs of concepts. For both IVE and OVE we leave open
the challenge of designing the most e�cient scheme, either by suitably instantiating our generic construction
or by taking further inspiration from, respectively, signcryption and group signatures, and beyond. Another
possible feature for either primitive would be to revoke the right to send.

Vetted Encryption 23

References

1. Michel Abdalla and Bogdan Warinschi. On the minimal assumptions of group signature schemes. In Javier López, Sihan Qing,
and Eiji Okamoto, editors, ICICS 04, volume 3269 of LNCS, pages 1–13. Springer, Heidelberg, October 2004.

2. Masayuki Abe, Georg Fuchsbauer, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. Structure-preserving signatures and
commitments to group elements. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 209–236. Springer, Heidelberg,
August 2010.

3. Masayuki Abe, Charanjit S. Jutla, Miyako Ohkubo, Jiaxin Pan, Arnab Roy, and Yuyu Wang. Shorter QA-NIZK and SPS with
tighter security. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 669–
699. Springer, Heidelberg, December 2019.

4. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In Lars R. Knudsen, editor,
EUROCRYPT 2002, volume 2332 of LNCS, pages 83–107. Springer, Heidelberg, April / May 2002.

5. Jee Hea An and Tal Rabin. Security for signcryption: The two-user model. In Dent and Zheng [28], pages 21–42.
6. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan Yasuda. How to securely release unveri�ed

plaintext in authenticated encryption. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 105–125. Springer, Heidelberg, December 2014.

7. Giuseppe Ateniese, Danilo Francati, David Nuñez, and Daniele Venturi. Match me if you can: Matchmaking encryption and
its applications. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
701–731. Springer, Heidelberg, August 2019.

8. Christian Badertscher, Fabio Ban�, and Ueli Maurer. A constructive perspective on signcryption security. In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 102–120. Springer, Heidelberg, September 2018.

9. Feng Bao and Robert H. Deng. A signcryption scheme with signature directly veri�able by public key. In Hideki Imai and Yuliang
Zheng, editors, PKC’98, volume 1431 of LNCS, pages 55–59. Springer, Heidelberg, February 1998.

10. Paulo S. L. M. Barreto, Benoît Libert, Noel McCullagh, and Jean-Jacques Quisquater. Signcryption schemes based on bilinear
maps. In Dent and Zheng [28], pages 71–97.

11. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-key encryption. In Colin Boyd,
editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidelberg, December 2001.

12. Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. A concrete security treatment of symmetric encryption. In 38th
FOCS, pages 394–403. IEEE Computer Society Press, October 1997.

13. Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal de�nitions, simpli�ed re-
quirements, and a construction based on general assumptions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 614–629. Springer, Heidelberg, May 2003.

14. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for identity-based identi�cation and signature
schemes. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 268–286. Springer,
Heidelberg, May 2004.

15. Mihir Bellare and Phillip Rogaway. The exact security of digital signatures: How to sign with RSA and Rabin. In Ueli M. Maurer,
editor, EUROCRYPT’96, volume 1070 of LNCS, pages 399–416. Springer, Heidelberg, May 1996.

16. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group signatures: The case of dynamic groups. In Alfred Menezes,
editor, CT-RSA 2005, volume 3376 of LNCS, pages 136–153. Springer, Heidelberg, February 2005.

17. Tor E. Bjørstad. Hybrid signcryption. In Dent and Zheng [28], pages 121–147.
18. Tor E. Bjørstad and Alexander W. Dent. Building better signcryption schemes with tag-KEMs. In Moti Yung, Yevgeniy Dodis,

Aggelos Kiayias, and Tal Malkin, editors, PKC 2006, volume 3958 of LNCS, pages 491–507. Springer, Heidelberg, April 2006.
19. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghada�, and Jens Groth. Foundations of fully dynamic group signatures.

In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 117–136. Springer,
Heidelberg, June 2016.

20. Xavier Boyen. Multipurpose identity-based signcryption (a swiss army knife for identity-based cryptography). In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 383–399. Springer, Heidelberg, August 2003.

21. Xavier Boyen. Identity-based signcryption. In Dent and Zheng [28], pages 195–216.
22. Liqun Chen and John Malone-Lee. Improved identity-based signcryption. In Serge Vaudenay, editor, PKC 2005, volume 3386 of

LNCS, pages 362–379. Springer, Heidelberg, January 2005.
23. Jean-Sébastien Coron. On the exact security of full domain hash. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,

pages 229–235. Springer, Heidelberg, August 2000.
24. Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Belenios: A simple private and veri�able electronic voting system. In

Foundations of Security, Protocols, and Equational Reasoning, volume 11565 of Lecture Notes in Computer Science, pages 214–238.
Springer, 2019.

25. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen
ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

26. Ivan Damgård, Helene Haagh, and Claudio Orlandi. Access control encryption: Enforcing information �ow with cryptography.
In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 547–576. Springer, Heidelberg,
October / November 2016.

27. Alexander W. Dent, Marc Fischlin, Mark Manulis, Martijn Stam, and Dominique Schröder. Con�dential signatures and determin-
istic signcryption. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 462–479. Springer,
Heidelberg, May 2010.

28. Alexander W. Dent and Yuliang Zheng, editors. Practical Signcryption. ISC. Springer, Heidelberg, 2010.
29. David Derler and Daniel Slamanig. Highly-e�cient fully-anonymous dynamic group signatures. In Jong Kim, Gail-Joon Ahn,

Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo Kim, editors, ASIACCS 18, pages 551–565. ACM Press, April 2018.
30. Yevgeniy Dodis and Aleksandr Yampolskiy. A veri�able random function with short proofs and keys. In Serge Vaudenay, editor,

PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005.

24 M. Hovd and M. Stam

31. Keita Emura, Goichiro Hanaoka, and Yusuke Sakai. Group signature implies PKE with non-interactive opening and threshold
PKE. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC 10, volume 6434 of LNCS, pages 181–198. Springer,
Heidelberg, November 2010.

32. Chandana Gamage, Jussipekka Leiwo, and Yuliang Zheng. Encrypted message authentication by �rewalls. In Hideki Imai and
Yuliang Zheng, editors, PKC’99, volume 1560 of LNCS, pages 69–81. Springer, Heidelberg, March 1999.

33. Jens Groth. Simulation-sound NIZK proofs for a practical language and constant size group signatures. In Xuejia Lai and Kefei
Chen, editors, ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Heidelberg, December 2006.

34. Ik Rae Jeong, Hee Yun Jeong, Hyun Sook Rhee, Dong Hoon Lee, and Jong In Lim. Provably secure encrypt-then-sign composition
in hybrid signcryption. In Pil Joong Lee and Chae Hoon Lim, editors, ICISC 02, volume 2587 of LNCS, pages 16–34. Springer,
Heidelberg, November 2003.

35. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In Kazue Sako and Palash Sarkar,
editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Heidelberg, December 2013.

36. Aggelos Kiayias and Moti Yung. Group signatures: Provable security, e�cient constructions and anonymity from trapdoor-
holders. Cryptology ePrint Archive, Report 2004/076, 2004. http://eprint.iacr.org/2004/076.

37. Benoît Libert, Thomas Peters, and Moti Yung. Short group signatures via structure-preserving signatures: Standard model security
from simple assumptions. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 296–316. Springer, Heidelberg, August 2015.

38. Benoît Libert and Jean-Jacques Quisquater. New identity based signcryption schemes from pairings. Cryptology ePrint Archive,
Report 2003/023, 2003. http://eprint.iacr.org/2003/023.

39. Benoît Libert and Jean-Jacques Quisquater. E�cient signcryption with key privacy from gap Di�e-Hellman groups. In Feng
Bao, Robert Deng, and Jianying Zhou, editors, PKC 2004, volume 2947 of LNCS, pages 187–200. Springer, Heidelberg, March 2004.

40. Benoît Libert and Jean-Jacques Quisquater. Improved signcryption from q-Di�e-Hellman problems. In Carlo Blundo and Stelvio
Cimato, editors, SCN 04, volume 3352 of LNCS, pages 220–234. Springer, Heidelberg, September 2005.

41. Anna Lysyanskaya. Unique signatures and veri�able random functions from the DH-DDH separation. In Moti Yung, editor,
CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, August 2002.

42. Noel McCullagh and Paulo S. L. M. Barreto. E�cient and forward-secure identity-based signcryption. Cryptology ePrint Archive,
Report 2004/117, 2004. http://eprint.iacr.org/2004/117.

43. Kenneth G. Paterson and Jacob C. N. Schuldt. E�cient identity-based signatures secure in the standard model. In Lynn Margaret
Batten and Reihaneh Safavi-Naini, editors, ACISP 06, volume 4058 of LNCS, pages 207–222. Springer, Heidelberg, July 2006.

44. S. Sharmila Deva Selvi, S. Sree Vivek, Dhinakaran Vinayagamurthy, and C. Pandu Rangan. ID based signcryption scheme in
standard model. In Tsuyoshi Takagi, Guilin Wang, Zhiguang Qin, Shaoquan Jiang, and Yong Yu, editors, ProvSec 2012, volume
7496 of LNCS, pages 35–52. Springer, Heidelberg, September 2012.

45. Shiuan-Tzuo Shen, Amir Rezapour, and Wen-Guey Tzeng. Unique signature with short output from CDH assumption. In Man Ho
Au and Atsuko Miyaji, editors, ProvSec 2015, volume 9451 of LNCS, pages 475–488. Springer, Heidelberg, November 2015.

46. Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) � cost(signature) + cost(encryption). In
Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages 165–179. Springer, Heidelberg, August 1997.

A Unique Identity Based Signature Scheme

We construct an identity based signature scheme with unique signatures (UIBSS) by using the known certi�-
cate based transformation on an unique signature scheme [14]. We generate a master signing and veri�cation
key for a USS scheme, as well as set up a PRF. Given an identity ID we use the PRF to derive randomness,
which is then fed into the key generation algorithm of a USS scheme. In other words: the key generation
of the USS is derandomised, with the given randomness depending on a given identity. The resulting key
pair (SK,VK) are components of the user key USK of ID. The key USK also includes a certi�cate, which
is VK ‖ID signed under the master signing key. A signature of a message M in the UIBSS scheme is sim-
ply (σ ,VK,CERT ID), where σ ← Uss.Sign(SK,M). Finally, veri�cation requires that both signatures σ and
CERT ID veri�es on M and VK ‖ID, respectively. We present the construction of our UIBSS in Fig. 17, see 2
for the syntax of IBS schemes.

We adopt the security notion of existential unforgeability of identity based signature schemes to our
scheme [43]. Informally, the notion states that given access to a signing oracle and a corruption oracle, an
adversary should not be able to �nd a tuple (M, ID,σ) which passes the veri�cation algorithm, where she has
not asked to corrupt ID, and not asked for a signature on (M, ID). Since the general certi�cate construction
has been proven to produce identity-based signature schemes that satisfy this notion of security, it follows
that our scheme is secure with respect to existential unforgeability [14].

For unique signature schemes Uss.VerifyVK (M,σ) = Uss.VerifyVK (M,σ ′) implies σ = σ ′ [45]. However,
we will relax this requirement, and rather require that it is computationally hard for an adversary to win the
following game: given the veri�cation key, and access to a derivation oracle, �nd a tuple (M, ID, ς, ς ′) such
that Uibss.VerifyVK ,ID (M, ς) = > = Uibss.VerifyVK ,ID (M, ς ′), yet ς , ς ′. We de�ne this security notion as
outsider unicity, with the game formally de�ned in Fig. 18. As always, the advantage of the adversary is her
probability of winning the game.

Vetted Encryption 25

Uibss.Kg()

(MSK,MVK) ← Uss.Kg()
k ← Prf.Kg()
return ((MSK,k),MVK)

Uibss.Derive(MSK ,k)(ID)

R ← PRF(k, ID)
(SK,VK) ← Uss.Kg(;R)
CERT ID ← Uss.Sign(MSK,VK ‖ID)
returnUSK ← (SK,VK,CERT ID)

Uibss.SignU SK ,ID (M)

σ ← Uss.Sign(SK,M)
return ς ← (σ ,VK,CERT ID)

Uibss.VerifyMVK ,ID (M, ς)

if Uss.VerifyMVK (VK ‖ID,CERT ID) =⊥
return ⊥

if Uss.VerifyVK (M,σ) =⊥
return ⊥

else

return >

Fig. 17. The construction of an identity based signature scheme with unique signatures using a unique signature scheme (USS)
and a psuedo random function (PRF). Note that we denote the signing and veri�cation key generated by Uss.Kg during Uibss.Kg as
(MSK,MVK) solely to distinguish these keys from the signing and veri�cation keys that constitute the USK of a particular ID.

Expou
UIBSS

(A)

(MSK,VK) ← Uibss.Kg

(ˆID, M̂, σ̂ , σ̂ ′) ← AO(PK)
winif Uibss.VerifyVK (ˆID, M̂, σ̂) = >∧

Uibss.VerifyVK (ˆID, M̂, σ̂ ′) = > ∧ σ̂ , σ̂ ′

deriveMSK (ID)

returnUSK ← Uibss.DeriveMSK (ID)

Fig. 18. The outsider unicity game for unique identity based signature schemes.

Our certi�cate based UIBSS scheme achieves outsider unicity due to the unicity property of the under-
lying unique signature scheme, as well as it’s notion of unforgeability. Informally, the unicity of signatures
forces an adversary to �nd a forgery on VK ‖ID.

Lemma 7 (Outsider unicity of UIBSS construction). For all adversaries Aou, there exists an adversary
Beuf-cma such that

Advou
UIBSS(Aou) ≤ Adveuf-cma

USS (Beuf-cma).
Proof. The adversaryBeuf-cma is given a veri�cation key MVK , which she passes on toAou, and creates a key
k from Prf.Kg. WheneverAou sends a derivation query for an identity ID,Beuf-cma generates R ← PRF(k, ID),
which she uses to derive (SK,VK) ← Uss.Derive(;R). She then queries her signing oracle with the message
VK ‖ID, and uses the received signature as CERT ID . She then sends (SK,VK,CERT ID) to Aou. Eventually,
Aou will output a tuple (M, ID, ς, ς ′), where ς = (σ ,VK,CERT ID). Assuming ς , ς ′, at least one of the three
components must di�er. Due to the unicity of signatures in USS, we cannot have that ς = (σ ,VK,CERT ID),
ς ′ = (σ ′,VK,CERT ID). Similarly, we cannot have ς = (σ ,VK,CERT ID), ς ′ = (σ ,VK,CERT ′ID), as this would
meanVK ‖ID has two distinct signatures. It must therefore be the case that there are two di�erent veri�cation
keys VK and VK ′, and that at most one of them has been issued by Beuf-cma, meaning she has queried her
signing oracle at most one ofVK ‖ID,VK ′‖ID. Assuming she queriedVK ‖ID, she outputs (VK ′‖ID,CERT ′ID)
as the answer to her challenge. It is clear that Beuf-cma wins with the same probability asAou. ut

B Anonymous Vetted Encryption (AVE)

B.1 Syntax and Security of AVE

The algorithms. For anonymous vetted encryption, neither the �lter nor the recipient should be able to
identify who encrypted a message. An AVE scheme consists of �ve algorithms, as listed in De�nition 4 below.
We remark on two slightly less obvious de�nitional choices.

Firstly, the input of the identity ID to Ave.Derive is not really needed, and any decent anonymous system
would simply ignore this input. However, for full generality and ease of comparison with IVE and OVE

26 M. Hovd and M. Stam

ID M

Kg Derive Enc Verify Dec

>/⊥ M/⊥

EK C C

Fig. 19. The algorithms and their inputs/outputs for anonymous vetted encryption.

that do require ID as input in order to derive an encryption key, we allow Ave.Derive to depend on a user’s
identity ID.

Secondly, we allow encryption to fail, as captured by the ⊥ output. As we will see, for honestly generated
encryption keys, we insist encryption never fails, but for adversarially generated encryption keys, it turns
out useful to allow for explicit encryption failure. Of course, one could alternatively introduce a separate
algorithm to verify the validity of a private encryption key for a given public encryption/veri�cation key, but
our approach appears simpler.

De�nition 4 (Anonymous Vetted Encryption (AVE)). An anonymous vetted encryption scheme AVE
consists of a 5-tuple of algorithms (Ave.Kg,Ave.Derive,Ave.Enc,Ave.Verify,Ave.Dec) that satisfy
– Ave.Kg generates a key pair (PK, SK), where PK is the public encryption (and veri�cation) key and SK

is the private derivation and decryption key. We allow Ave.Kg to depend on parameters param and write
(PK, SK) ←$ Ave.Kg(param). Henceforth, we will assume that PK can be uniquely and e�ciently computed
given SK .

– Ave.Derive derives an encryption key EK based on the private derivation key SK and a user’s identity ID.
We write EK←$ Ave.DeriveSK (ID).

– Ave.Enc encrypts a messageM given the public encryption key PKand using the private encryption key EK ,
creating a ciphertext C or producing a failed encryption symbol ⊥. In other words, C←$ Ave.EncPK ,EK (M)
where possibly C =⊥.

– Ave.Verify veri�es the validity of a ciphertextC given the public veri�cation key PK , leading to either accept
‘>’ or reject ‘⊥’. With a slight abuse of notation, >/⊥← Ave.VerifyPK (C).

– Ave.Dec decrypts a ciphertext C using the private key SK . The result can either be a message M or the
invalid-ciphertext symbol ⊥. In short,M/⊥← Ave.DecSK (C).

The �rst three algorithms are probabilistic, whereas we assume that the �nal two algorithms are deterministic.

Correctness and consistency. Correctness captures that honest usage results in messages being received as
intended. That is, for all parameters param, identities ID and messages M , we have that

Pr

(PK, SK) ←$ Ave.Kg(param)
EK←$ Ave.DeriveSK (ID)
C←$ Ave.EncPK ,EK (M)

: C ,⊥ ∧Ave.VerifyPK (C) = > ∧ Ave.DecSK (C) = M


= 1

As with IVE and OVE, consistency ensures that any ciphertext which decrypts to a valid message also
passes the �lter. We guarantee consistency of an AVE scheme by running veri�cation as part of decryption,
which is the same transformation we applied to IVE. We note here as well that correctness ensures that all
honestly generated ciphertexts will decrypt to a valid message

Security. The security of AVE comprises three components: integrity to ensure the �lter cannot be fooled,
con�dentiality of the message to outsiders, and �nally sender anonymity even from the recipient. With ref-
erence to the games de�ned in Figures 20, 21, and 22, the relevant advantages are de�ned as follows:

– Integrity
Advint

AVE(A) = Pr
[
Expint

AVE(A) : Ĉ < C ∧ Ave.VerifyPK (Ĉ) = >
]
.

Vetted Encryption 27

Expint
AVE
(A)

(PK, SK) ←$Ave.Kg

h ← 0;C ← ∅
Ĉ ← AO(PK)
winif Ĉ < C ∧ Ave.VerifyPK (Ĉ) = >

derive(ID)

EK[h] ← Ave.DeriveSK (ID)
h ← h + 1
return h

encrypt(H ,M)

C ←$Ave.EncPK ,EK [H](M)
C ← C ∪ {C}
return C

decrypt(C)

M ← Ave.DecSK (C)
returnM

Fig. 20. The integrity game for AVE.

Expind-cca-b∗
AVE

(A)

(PK, SK) ←$Ave.Kg

C ← ∅
b̂ ← AO(PK)

derive(ID)

EK ← Ave.DeriveSK (ID)
return EK

encrypt(EK,M0,M1)

C∗ ←$Ave.EncPK ,EK (Mb∗)
C ← C ∪ {C∗}
return C∗

decrypt(C)

require C < C
M ← Ave.DecSK (C)
returnM

Fig. 21. The con�dentiality game for AVE.

– Con�dentiality

Advconf
AVE(A) = Pr

[
Expconf-0

AVE (A) : b̂ = 0
]
− Pr

[
Expconf-1

AVE (A) : b̂ = 0
]
.

– Anonymity
Advanon

AVE(A) = Pr
[
Expanon-0

AVE (A) : b̂ = 0
]
− Pr

[
Expanon-1

AVE (A) : b̂ = 0
]
.

Integrity. Integrity may informally be stated as: unless one has been vetted and is in possession of an encryp-
tion key, it should not be possible to furnish a valid ciphertext. We capture this integrity security notion in a
game (Fig. 20), where the goal of the adversary is to create a valid ciphertext. As with IVE, we use the output
of the veri�cation algorithm as the indicator of validity. We note that for consistent AVE schemes, this choice
of integrity is the strongest, as a forgery w.r.t. decryption will always be a forgery w.r.t. veri�cation.

The adversary is given the veri�cation key and additionally can ask for encryptions of messages of its
choosing. We use the same handle mechanism as previously, so the adversary has some control over the
encryption keys that are used: an adversary can trigger the game into the creation of an arbitrary number of
keys (given an identity) and then indicate which key (by order of creation) to use for a particular encryption
query. Obviously, the adversary does not receive any encryption keys themselves.

For full generality, we also grant access to a decryption oracle. One could also consider a weaker �avour
of integrity without this oracle access. For consistent schemes, the decryption oracle is essentially pointless:
if querying it on a fresh ciphertext C were to result in some message (so not ⊥), then Ave.VerifyPK (C) = >
would already constitute a valid forgery.

Note that if decryption would somehow leak information—say when there are multiple possible decryp-
tion failures [25, Remark 14] or unveri�ed plaintext is released early [6]—the decryption oracle would increase
an adversary’s power. As became evident in the treatment of IVE and OVE, the introduction of identities for
the decryption algorithm also renders the corresponding decryption oracle more powerful and relevant.

Con�dentiality. In Fig. 21, we adapt the well-trodden IND–CCA notion for public key encryption to the setting
of anonymmous vetted encryption. An adversary can (repeatedly) ask its challenge oracle for the encryption
of one of two messages. However, our new syntax requires an encryption key in addition to the veri�cation
key. We allow the adversary to specify the encryption key to use, which may or may not be honestly generated.
In contrast to the integrity game, the key derivation oracle here does provide the adversary with encryption
keys for its chosen identities.

Weaker de�nitions are possible by insisting an adversary can only query the challenge encryption oracle
on honest encryption keys (as provided by the derivation oracle), or even hiding said keys using a similar
handle-based mechanism as for the integrity game. We believe the stronger notion with adversarially chosen

28 M. Hovd and M. Stam

keys is easier to deal with and, as we will see in B.2, still relatively easy to achieve based on standard public
key primitives. For IVE and especially OVE, the stronger notion is the more natural one as well.

Anonymity. The idea of anonymity is that a recipient has no clue from which of the vetted people a ciphertext
originated, as anonymity towards the recipient implies anonymity towards the �lter. Here anonymity extends
beyond not being able to extract or link a speci�c identity ID to a ciphertext: we also want to ensure that
ciphertexts created using the same encryption key EK remain unlinkable.

We model our notion of anonymity using a distinguishing game, where the adversary knows the private
key SK and gets to choose the encryption keys EK to use. If it cannot tell apart which encryption key EK was
used (by the challenge encryption oracle), we deem the scheme anonymous. There is one caveat though: the
game is likely winnable by deriving one true encryption key EK0 (using knowledge of SK) and creating one
fake EK1. Assuming integrity, the challenge ciphertext will verify i� b∗ = 0. To avoid these trivial wins, we
only output a challenge ciphertext if it is valid irrespective of the challenge bit. Our game implements this
mechanic by creating possible ciphertexts for both challenge bits and, rather than check based on veri�cation,
we put the onus on the encryption itself.

Anonymity is reminiscent of key privacy for public key encryption schemes [11] or its “ciphertext anonymity”
adaptation to signcryption (which we will discuss later in B.3).

B.2 Generic Composition: Encrypt-then-Sign

As with IVE, an obvious �rst attempt to create an anonymous vetted encryption scheme is to combine the
con�dentiality provided by a public key encryption scheme with the authenticity of a signature scheme. Based
on the reasoning as for IVE, we opt for the encrypt-then-sign approach.

The general construction is described in Fig. 23. First, the receiving party generates two key pairs: one for
a PKE scheme and one for a signature scheme. It hands out the same signing key to whomever it wants to
vet, so any vetted party can use the public encryption key and the received signing key to �rst encrypt, then
sign. Veri�cation by the �lter consists of a simple signature veri�cation.

The scheme inherits its authenticity from the signature scheme and its con�dentiality from the encryption
scheme. The latter inheritance only works when the signature scheme is unique. The signature is also veri-
�ed as part of encryption and decryptions, which at �rst sight might appear super�uous. However, signature
veri�cation at decryption time is required for consistency (in line with the generic transform to achieve con-
sistency), whereas the signature veri�cation at encryption time is required to ensure anonymity even against
malicious receivers.

Correctness and consistency. Both correctness and consistency follow easily by inspection. The signature
veri�cation as part of decryption is needed for consistency, in line with the transformation from before.

Integrity. Integrity of the scheme follows from the unforgeability of the underlying signature scheme. The
proof is by a simple black-box reductionBeuf-cma where the PKE-ciphertexts in the int-game become messages
in the EUF-CMA game. The overhead ofBeuf-cma is running Pke.Kg once, plus one public-key encryption per
encryption query posed byAint. As EtS is consistent, without loss of generality we assumeAint does not make
any decryption queries.

Expanon-b∗
AVE

(A)

(PK, SK) ←$Ave.Kg

C ← ∅
b̂ ← AO(PK, SK)

encrypt(EK0, EK1,M)

C0 ←$Ave.EncPK ,EK 0 (M)
C1 ←$Ave.EncPK ,EK 1 (M)
if C0 ,⊥ ∧C1 ,⊥ then

C∗ ← Cb∗

else

C∗ ←⊥
return C∗

Fig. 22. The anonymity game for AVE.

Vetted Encryption 29

Lemma 8 (Integrity of EtS). For all adversariesAint, there exists an equallly e�cient adversaryBeuf-cma such
that

Advint
AVE(Aint) ≤ Adveuf-cma

SIG (Beuf-cma) .

Proof. Upon receiving a veri�cation keyVK ,Beuf-cma generates a key pair (PK,DK) ←$ Pke.Kg and runsAint
on input (PK,VK). Whenever Aint makes an encryption query, Beuf-cma performs the public-key encryption
to obtain a ciphertext on which it uses its own signing oracle to obtain a signature. When Aint manages to
create a forgery, then it has to create a valid PKE-ciphertext–signature pair that has not been returned by its
encryption oracle. From Beuf-cma’s perspective, this means a valid message–signature pair that has not been
returned by its signature oracle. The claim follows. ut

Con�dentiality. Con�dentiality of the scheme follows from that of the public key encryption scheme, pro-
vided the signature scheme has unique signatures. Unicity of the signature scheme appears necessary. After
all, an adversary Aconf knows the signing key and thus if there are multiple valid signatures, it will be able
to generate these and knowing a second signature for a challenge ciphertext would lead to a valid ciphertext
to the decryption oracle, learning Mb∗ and thus b∗, breaking con�dentiality. In particular, derandomising a
probabilistic signature scheme would be insu�cient as Aconf could simply ignore the derandomisation and
generate a signature using fresh randomness, exploiting that veri�cation does not—and usually cannot—check
whether the randomness used was constructed deterministically as prescribed by the derandomisation.

With unique signatures in place, the proof is by a simple black-box reductionBind-cca, whose overhead is
running Sig.Kg once, plus one signature per challenge encryption query and one signature veri�cation per
decryption query posed byAconf .

Lemma 9 (Con�dentiality of EtS). Let SIG be a unique signature scheme. Then for all adversaries Aconf ,
there exists an equallly e�cient adversary Bind-cca such that

Advconf
AVE(Aconf) ≤ Advind-cca

PKE (Bind-cca) .

Proof. Upon receiving a public key PK , Bind-cca generates a key pair (VK, SK) ←$ Sig.Kg and runs Aconf on
input (PK,VK). WheneverAconf makes a challenge encryption query,Bind-cca uses its own challenge encryp-
tion query to get a PKE-ciphertext, which it subsequently signs using SK . Thus by design, the challenge bits
in the PKE and AVE games coincide.

The only potential complication is answering decryption queries (C,σ) by Aconf . If (C,σ) was returned
by Bind-cca toAconf as a previous challenge ciphertext, then the query may be ignored. So let us assume that
(C,σ) is fresh. ThenBind-cca �rst veri�es whether σ is a valid signature onC . If not, return ⊥, otherwise there
are two possibilities: eitherC itself if fresh, i.e. it has not been returned by the game as a challenge ciphertext
toBind-cca, or it is not fresh, meaning it is a challenge ciphertext. In the former case,Bind-cca can forwardC to
its own decryption oracle, receive a message M as result, and forward M to Aconf . In the latter case, Bind-cca
cannot realistically forward C to its own decryption oracle (as it would be rejected). Luckily, the latter case
cannot actually occur due to the unicity of signatures. ut

Anonymity. Intuitively, anonymity follows from all encryption keys being the same, so independent of any
identity or any additional randomness. However, in our security model an adversary is allowed to provide

Ave.Kg()

(PK,DK) ←$Pke.Kg

(VK, SK) ←$Uss.Kg

return ((PK,VK), (DK, SK))

Ave.Derive(DK ,SK)(ID)

return SK

Ave.Enc(PK ,VK),SK (M)

C ←$Pke.EncPK (M)
σ ← Uss.SignSK (C)
if Uss.VerifyVK (C,σ) =⊥ then

return ⊥
return (C,σ)

Ave.VerifyPK ,VK (C,σ)

return Uss.VerifyVK (C,σ)

Ave.DecDK ,SK (C,σ)

if Uss.VerifyVK (C,σ) =⊥ then

return ⊥
return Pke.DecDK (C)

Fig. 23. Encrypt-then-Sign (EtS): A straightforward composition of public key encryption and signature scheme.

30 M. Hovd and M. Stam

the encryption keys and thus deviate from honestly generated ones. Luckily, the unique-signatures property
coupled with signature veri�cation as part of the encryption routine, ensures an adversary can gain no bene�t
from such deviations, allowing us to show that anonymity of the scheme holds unconditionally.

Lemma 10 (Anonymity of EtS). Let SIG be a unique signature scheme. Then for all adversariesA,

Advanon
AVE(A) = 0 .

Proof. The standard anonymity game for AVE allows multiple queries, but by a straightforward hybrid ar-
gument we can consider a single query only; as we target advantage 0 anyway, this hybrid will not in-
cur a tightness loss. So consider A’s single query SK0, SK1,M . The �rst part of EtS encryption calculates
C ← Pke.EncPK (M). The resulting random variableC is clearly indepedent of the challenge bit. Next, a signa-
ture onC is produced, using either the signing key SK0 or SK1. If either of the signatures produced is invalid,
the veri�cation step as part of the encryption will notice and the game ensures the challenge oracle will out-
put ⊥ (making distinguishing impossible). Thus assume that both signatures pass the veri�cation step. Then
unicity of the signature scheme implies the signatures are in fact the same, thus the output of the challenge
encryption oracle is independent of the challenge bit b∗: even an information theoretic adversary A cannot
do better than random guessing. ut

Instantiations. There is an abundance of e�cient IND-CCA-secure PKE schemes available, based on a
wide variety of cryptographic hardness assumptions. Unique signatures are rarer, especially in the standard
model [41, 30]. In the random oracle model, an obvious candidate would be RSA-FDH [15, 23].

Remark 1. In practice a sender could of course “precompute” the signature veri�cation by checking whether
the signing key received as part of of the EK-derivation routine is valid for the public veri�cation key. Such
a precomputation is not entirely without loss of generality as it requires a signing-key checking algorithm
that cannot be fooled (namely that once a signing key is accepted, acceptance of the resulting signatures is
guaranteed for all messages).

B.3 Alternative Approaches

Signcryption. In many ways, AVE is reminiscent of signcryption, thus a natural question is whether one
can turn a signcryption scheme into an AVE scheme. In order to answer this question, we need to zoom in on
the right kind of signcryption scheme: which functionality does it need to support and which security does
it need to provide?

From a functional perspective, the main restriction is the need for public veri�ability [9, 32] as for AVE the
�lter needs to be able to verify ciphertexts without access to private key material. Thus, we consider a sign-
cryption scheme to consist of six algorithms (Scr.Kgr, Scr.Kgs, Scr.Signcrypt, Scr.Verify, Scr.Unsigncrypt),
where Scr.Kgr generates the receiver’s keys and Scr.Kgs the sender’s keys. We can transform such a signcryp-
tion scheme into an AVE scheme by simply lettingAve.Kg run both (PK,DK) ←$ Scr.Kgr and (VK, SK) ←$ Scr.Kgs,
and setting (PK,VK) to the public key of the AVE, keeping (DK, SK) private. The sender private key SK will
serve as the encryption key and is therefore returned by Ave.Derive (irrespective of the identity). For the �nal
three algorithms, there is a clean correspondence:

– Ave.Enc(PK ,VK),SK (M) = Scr.Signcrypt(PK ,VK),SK (M);
– Ave.VerifyPK ,VK (C) = Scr.VerifyVK (C);
– Ave.DecDK ,SK (C) = Scr.UnsigncryptDK (C).

For the resulting AVE scheme, correctness is directly inherited from that of the signcryption scheme and
consistency is satis�ed provided the signcryption satis�es a similar notion (between veri�cation and unsign-
cryption). For the security notions, our AVE setting only has two users, which implies the two-user model
for signcryption su�ces [5, Section 2.2]. In that case, integrity is a consequence of strong outsider secure
unforgeability under chosen message attacks [5, Section 2.2.1.2]. Here outside security su�ces as, in the AVE
integrity game, an adversary does not have access to the derived encryption keys (which would correspond to
a sender’s private signcryption key). In contrast, for con�dentiality we do need insider secure indistinguisha-
bility under chosen ciphertext attacks, as the sender’s private signcryption key will be readily available to an
adversary in the corresponding AVE con�dentiality game (through the derive oracle).

Vetted Encryption 31

Expanon-b∗
SCR

(A)

(PKr , SKr) ←$ Scr.Kgr

C ← ∅
b̂ ← AO(PKr , SKr)

signcrypt(SKs0, SKs1,M)

C0 ←$ Scr.SigncryptPK ,SK s0 (M)
C1 ←$ Scr.SigncryptPK ,SK s1 (M)
if C0 ,⊥ ∧C1 ,⊥ then

C∗ ← Cb∗

else

C∗ ←⊥
return C∗

Fig. 24. The anonymity game needed when constructing AVE from signcryption.

Finally, anonymity is hardest to place, so let’s look at anonymity notions for signcryption. The original ci-
phertext anonymity [20] captures only indistinguishability for honestly generated keys; moreover it attempts
to hide both sender and receiver (the latter is irrelevant for us). Later incarnations of ciphertext anonymity [39,
40], do consider adversarially generated sender-keys. However, the syntax does not explicitly allow signcryp-
tion failure (even though signcryption can fail for some constructions). Moreover, the corresponding security
game does not seem to care if challenge signcryption fails for only one of the two “left-or-right” adversarially
provided sender signcryption keys (cf. [10, Section 5.6.2]), as we do in our anonymity game. It is relatively
straighforward to derive the matching anonymity game for signcryption needed for the signcryption-to-AVE
transform to work (see Fig. 24).

As an aside, although encrypt-then-sign has been studied in the signcryption literature, we are not aware
of the potential of using unique signatures in order to achieve insider IND-CCA security (cf. [5, Theorem 2.2]).

Hybrid encryption. The typical operations associated with public key primitives are typically considerably
more expensive than their symmetric counterparts. Hybrid encryption allows one to leverage the speed of
symmetric cryptography, while maintaining the functionality and security of public key cryptography. A
natural question is how applicable the concepts of hybrid encryption are for AVE.

Obviously, in the EtS transform it is possible to use a hybrid PKE. A natural question is whether our
transform could then deal with distinct decryption failures from the KEM, resp. the DEM [25, Remark 14]. As
we mentioned, for the integrity game, the decryption oracle might come into play, but for the EtS construction
they do not cause any trouble (the reduction knows the PKE decryption key and the signing key isn’t use by
the AVE decryption). For the other two security properties, the proofs go through as is.

Potentially even more relevant and potent is the idea of hybrid signcryption [34, 17]. Here the signcryption
KEM takes as input the receiver’s public signcryption key and the sender’s private signcryption key, returning
a signcryptext as well as an ephemeral key for the (standard) DEM. The problem of the resulting construction
is that it does not provide insider security and it is easy to see how the resulting AVE fails to provide proper
integrity: after observing a valid pair (C,C ′) where C is the signcryptext and C ′ the DEM-ciphertext, simply
substitute the second component. An alternative is the use of signcryption tag-KEMs [18], which do provide
insider security. The signcryption scheme with public veri�ability [32] can be cast this way and thus would
be a good candidate for AVE (not entirely surprising given the original design goal).

Graphic design: Com
m

unication Division, UiB / Print: Skipnes Kom
m

unikasjon AS

uib.no

ISBN: 9788230855997 (print)
9788230859438 (PDF)

	103346 Martha Norberg Hovd_SH_Elektronisk
	103346 Martha Norberg Hovd_SH_korrekturfil
	103346 Martha Norberg Hovd_SH_innmat
	103346 Martha Norberg Hovd_SHElektronsk_bakside
	103346 Martha Norberg Hovd_SHElektronsk_bakside

