
Department of Informatics
University of Bergen

Master Thesis

Coded communication on the
Internet

By: Ketil Mikalsen Kvifte
Supervisor: Øyvind Ytrehus

June 3, 2019

Abstract

The Internet is giving people many opportunities to interact, but for latency-sensitive
activities, there is still room for improvement. It is not always good enough that messages
arrive; some times they should arrive quickly. The User Diagram Protocol does not give
any guarantees that the messages will arrive, and the Transmission Control Protocol only
guarantees that it will arrive, not how fast it will arrive.

In this thesis, we explore how the combination of convolutional codes and Automatic
Repeat-reQuests can help reduce the latency in our communications, and how memory
maximum distance separable codes give better results than comparable random codes.

Acknowledgements

I want to thank my supervisor, Øyvind Ytrehus, for suggesting the topic, his patience
and guidance during my project and for the help in wrapping it up for this master thesis.

Additionally, I would also like to thank Simula UiB for accepting me as a part of the
group. I am grateful for all the stimulating conversations I have had with the people
there.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Outline . 2

2 Theory 3
2.1 Abstract algebra . 3

2.1.1 Groups . 3
2.1.2 Rings . 4
2.1.3 Fields . 4
2.1.4 Linear Algebra . 5

2.2 Coding theory . 6

3 Methods 11
3.1 Transport protocol . 11

3.1.1 Network Coded TCP . 11
3.1.2 Our protocol . 12

3.2 Software . 12
3.2.1 Data generator . 13
3.2.2 Encoder . 13
3.2.3 Channel/ARQ Sender . 14
3.2.4 Decoder/ARQ Receiver . 14

4 Results 16
4.1 Error Patterns . 16
4.2 Simulations . 19

4.2.1 Comparison with random code . 21
4.2.2 Different erasure rates . 23

5 Conclusion 25

ii

List of Figures

2.1 Shift register describing an encoder for a convolutional code 8

4.1 Trellis of erasure patterns for a (3,2) code with erasure probability ε 17
4.2 Plot of simulation on an optimal code . 20
4.3 Comparison of simulation random coefficients and optimal coefficients . . . 22

(a) Optimal code . 22
(b) Random code . 22

4.4 Comparison of simulation with different erasure rates 24
(a) Erasure rate 0.08 . 24
(b) Erasure rate 0.12 . 24

iii

List of Tables

4.1 Recorded statistics on the latency distribution 20
4.2 Table comparing expected results with measured results 20
4.3 Table of erasure pattern lengths . 20
4.4 Table comparing latency of random code and optimal code 21
4.5 Table comparing erasure pattern lengths of different codes 21
4.6 Table comparing latency for different erasure rates 23
4.7 Table comparing erasure pattern lengths with different erasure rates 23

iv

Acronyms

ARQ Automatic Repeat-reQuest.

CDP Column Distance Profile.

CTCP Network Coded TCP.

mMDS Memory Maximum Distance Separable.

RTT Round-trip time.

TCP Transmission Control Protocol.

v

Chapter 1

Introduction

1.1 Motivation

Sending information over the Internet has become quite important. It is essential that any
information sent is received correctly, and that it does not take too much time. There are
several situations where latency plays a significant role. First, there are video conferences.
If two people are talking, they generally want the communication to be two-way. If the
time between someone saying something, until they see the listeners reaction to it is too
high, the value of the conversation decreases. Second, there is trading stock in stock
exchanges online. Generally, the buyer wants to buy when the price is low, and the seller
wants to sell when the price is high. If the latency on the buy request or the sell request
is too high, then the chance of trading at a bad rate increase.

In order to transfer information, we use a transport protocol. The User Diagram
Protocol does not guarantee that the transmitted information arrives at all. Reliable
transport protocols like the Transmission Control Protocol (TCP) keeps track of trans-
mitted data, and retransmit lost packets if needed, but on channels with a high round-trip
time, the time required to recover from erasures or errors can be too high.

TCP sees data as a stream of bytes[1]. To transmit data over a channel, the sender di-
vides this sequence of bytes into variable sized chunks and label each chunk by a sequence
number identifying where the first data byte in the chunk belongs in the data stream.
Together with a TCP header containing this sequence number and other important infor-
mation, this is sent as an IP-packet over the Internet. The receiver keeps track of received
packets and sends accumulative acknowledgements denoting the sequence number of the
next byte that they have not received yet.

One of the mechanisms for deciding when to retransmit a packet is a timeout. If the

1

sender has not received an acknowledgement for it within some time, then it is retransmit-
ted. This timeout needs to be larger than the round-trip time because there is no way for
the receiver to acknowledge packets faster than this. Another mechanism for scheduling
retransmission is when it receives multiple acknowledgements for the same packet. In this
case, the receiver has received multiple packets out of order.

To get faster recovery than the round-trip time, the communicating parties need to
do something not based on communicating back and forth. With the use of forward error
correcting codes, the sender adds redundancy to ensure the receiver can recover from most
erasures. Combining this with an Automatic Repeat-reQuest (ARQ) ensures that they
get full reliability, also when there are more erasures than what the code is able to correct.

1.2 Objective

This thesis aims to investigate the latency impact of convolutional codes when combined
with ARQ, for transmitting information over the Internet when we look at it as an erasure
channel with a nonzero round-trip time. We also want to compare optimal codes with
similar codes using random coefficients.

1.3 Outline

This thesis has the following structure:

Chapter 2 introduces the abstract algebra and coding theory needed to understand
the thesis.

Chapter 3 introduces transport protocols and explains how we designed our software
for performing our experiments.

Chapter 4 presents our results, discussing erasure patterns and latency.

Chapter 5 gives a conclusion to the thesis, with ideas for future work.

2

Chapter 2

Theory

In this chapter, we will give some theoretical background for the content of this thesis.
We start with a basic introduction to abstract algebra and follow up with some basic
coding theory.

2.1 Abstract algebra

This section contains definitions for groups, rings and fields, and vector spaces. We also
discuss polynomial rings and finite vector spaces over finite fields. The definitions in the
subsections are based on the definitions in [2].

2.1.1 Groups

Definition 2.1. A group 〈G, ∗〉 is a set G closed under a binary operation * satisfying
the following conditions:

1. Associativity: For all a, b, c ∈ G, we have that (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. Identity element: There exist an identity element e ∈ G, such that for all x ∈
G, e ∗ x = x ∗ e = x

3. Inverse element: For each x ∈ G there exist an inverse element x−1 ∈ G such that
x ∗ x−1 = x−1 ∗ x = e

Definition 2.2. A group 〈G, ∗〉 is abelian if the operation ∗ is commutative.

3

The integers modulo n forms a group over addition, 〈Zn,+n〉, where we have the set
Zn = {0, 1, ..., n− 1} and the operation +n defined by a+n b = a+ b (mod n), a, b ∈ Zn.
+ is the normal addition over the integers.

2.1.2 Rings

Definition 2.3. A ring 〈R,+, ·〉 is a set R closed under two binary operations + and ·
which we call addition and multiplication satisfying the following conditions

1. 〈R,+〉 is an abelian group with identity 0.

2. Multiplication · is associative

3. Addition and multiplication are distributive. (a + b) · c = (a · c) + (b · c) and
a · (b+ c) = (a · b) + (a · c).

We will often denote multiplication with juxtaposition, so that ab will mean a · b. The
integers modulo n form a ring over addition and multiplication. We have 〈R,+n, ·n〉 over
the set Zn and ·n is defined by a · b = a · b (mod n).

If R is a ring, then a polynomial over R is an infinite formal sum
∑∞

i=0 aix
i, ai ∈ R

where we have a finite number of nonzero ai coefficients. The highest i, such that ai
is nonzero is the degree of this polynomial. Together with the operations polynomial
addition and polynomial multiplication, the set of all these polynomials form the polyno-
mial ring we call R[x]. Polynomial addition is defined as follows: Let a, b ∈ R[x], where
n = deg(a) ≥ deg(b) = m, then a + b =

∑n
i=0(ai + bi)x

i. Polynomial multiplication is
defined as a · b = d0 + d1x+ ...+ dnx

n + ... where dn =
∑n

i=0 aibn−i

If multiplication in R is commutative, then polynomial multiplication in R[x] is com-
mutative as well, and if R has a multiplicative identity 1 6= 0, then R[x] has the same
multiplicative identity 1. We will not use any rings without multiplicative identity.

2.1.3 Fields

Definition 2.4. A field F = 〈F,+, ·〉 is a ring where the multiplicative operation is com-
mutative, a multiplicative identity exist, and every nonzero element has a multiplicative
inverse.

We will focus on finite fields, fields with finitely many elements. There are two types:
prime fields and extension fields.

4

Prime fields are fields with p elements, where p is prime and can be constructed by
the integers modulo p. We call them Fp.

Extension fields have q = pm elements and consist of polynomials of degree strictly
smaller than m in Fp[x]. First, we need to find an irreducible polynomial P of degree m
in Fp[x]. A polynomial P is irreducible in Fp[x] when it cannot be factorised into two
non-constant polynomials in Fp[x] of lower degree. When we have chosen a polynomial
P, we define x as a zero of P, in other words, P(x)=0, and we generate all the nonzero
elements of Fq by multiplying x by itself mod P.

Two different irreducible polynomials P1 and P2 of degree m, will yield slightly different
fields, but they are isomorphic, so we will not be too concerned about which irreducible
polynomial we choose as long as we are consistent. Two fields, Fq = 〈F,+, ·〉 and F′

q =
〈F ′,+′, ·′〉 are isomorphic when there exists a bijective map φ : Fq → F′

q such that
φ(a+ b) = φ(a) +′ φ(b) and φ(a · b) = φ(a) ·′ φ(b) for all a, b ∈ F .

For F2[x] we can store our polynomials efficiently as integers. We start by representing
the polynomials as

∑m
i=0 aix

i, ai ∈ F2,m ∈ N. We then let ai be the i-th digit counting
from least significant to most significant digit in the base-2 representation of an integer.
For example 19 = (10011)2 will represent 1 + x + 0x2 + 0x3 + x4 = 1 + x + x4 in F2[x].
We can now add two polynomials by using xor on the integers. For Fp, p > 2 we can still
convert our polynomials to integers, but our additions won’t be simple xors any more, so
we should should probably store our polynomials Fp[x] as vectors over Fp instead.

2.1.4 Linear Algebra

Definition 2.5. A vector space V over a field F is an abelian group V together with a
scalar multiplication mapping · : F × V → V so that a, b ∈ F, α, β ∈ V the following
conditions are satisfied

• aα ∈ V

• a(bα) = (ab)α

• (a+ b)α = (aα) + (bα)

• a(α + β) = (aα) + (aβ)

• 1α = α

We call the elements of V vectors, and the elements of F scalars. We will use 0 for both
the zero-vector and the additive identity of F.

5

We will most of the time talk about finite vector spaces that consist of an ordered
list(n-tuples) of elements from a field F. Let α = [a1, a2, ..., an], and β = [b1, b2, ..., bn] for
α, β ∈ V and ai, bi ∈ F. We define scalar multiplication a1β = [a1b1, a1b2, ..., a1bn] and
vector addition as α + β = [a1 + b1, a2 + b2, ..., an + bn].

A k-dimensional vector space has k linear independent vectors that span the space,
and these form a basis β. This means that any vector α ∈ V can be described as
α = c1b1 + c2b2 + ...+ ckbk for bi ∈ β. The vectors of β are linear independent if and only
if α = 0 =⇒ c1 = c2 = ... = ck = 0. If the vectors has length n, then the vector space
has dimension k ≤ n. If a vector space V1 contains all the vectors of another vector space
V2 then we say that V2 is a subspace of V1

A linear map f : V1 → V2 between two vector spaces V1, V2 defined over the same
field F is a mapping that preserves addition and scalar multiplication. In other words
f(a1α1 + a2α2) = f(a1α1) + f(a2α2) = a1f(α1) + a2f(α2) for a1, a2 ∈ F, α1, α2 ∈ V1.If V1

has degree n and V2 has degree m, then any linear map V1 → V2 can be described by an
m× n matrix.

2.2 Coding theory

In this section, we will give a short overview of linear codes in general and convolutional
codes defined over finite fields in particular. This section is for the most part based on
a combination of [3] and [4]. We are mainly interested in convolutional codes over finite
fields GF (2m) with m ≤ 14, but the theory presented here should still work for any finite
field.

Given an information sequence u, we want to generate a sequence v from u in such a
way that when we transmit it over a specific channel, the receiver can reconstruct u as
quickly and accurately as possible from the received sequence. We do this by dividing the
sequence u into blocks of length k and encode them into blocks of length n.

A k-dimensional code over a finite field Fq is a set of codewords consisting of qk n-
tuples over Fq for k < n such that there exist a mapping from the set of k-tuples into the
set of n-tuples. If this mapping is linear, then we have a linear code, and the codewords
form a k-dimensional vector space over Fq. We say that these codes have rate R=k/n.

We have two main classes of linear codes, linear block codes, and convolutional codes.
For block codes we use the notation u = (u1, u2, ..., uk) to denote a single block. An
encoder for a given linear block code is given by an k × n generator matrix G such that
uG = v = (v1, ..., vn). The code described by G will then be the set of all possible v given
all possible u. Equivalently we can also describe the same code as an (n− k)× n parity

6

check matrix H with the property that vH> = 0 for all codewords v in the code.

For convolutional codes we have multiple ways of denoting the sequences. We can
either consider them as a semi-infinite vectors u = (u

(0)
1 , u

(0)
2 , ..., u

(0)
k , u

(1)
1 , u

(1)
1 , ...) and

v = (v
(0)
1 , v

(0)
2 , ..., v

(0)
n , v

(1)
1 , v

(1)
2 , ...) or polynomials over the polynomial ring of a finite field

Fq[x]. The corresponding polynomials will then be u(x) = (
∑

i u
(i)
1 xi, ...,

∑
i u

(i)
k xi), and

v(x) = (
∑

i v
(i)
1 xi, ...,

∑
i v

(i)
n xi).

We still encode blocks of k symbols at a time, but this time the generated sequence
depends on the previous D information blocks as well. We say that a code consists of all
possible sequences v generated by a corresponding encoder.

An encoder can be described as a shift register with k inputs and n outputs. With
memory D, we need at most kD shift register stages. For binary codes, we only need
exclusive-or gates, shift register stages and multiplexers. For non-binary codes, we use
more generic addition gates instead of exclusive-or and also need gates for multiplying
our inputs with elements from the finite field our code is defined over.

The shift register for an example code collected from [4] is drawn in Figure 2.1. Because
the information only moves forward and never backwards through the shift registers, we
call it a feed-forward convolutional code. Because each input sequence is identical to a
corresponding output sequence, we call it systematic. If it is not systematic, then it is
non-systematic. For the example code u1 = v1 and u2 = v2.

We can also describe our encoder by a k×n transform-domain generator matrix G(x),
a matrix where our elements are polynomials in Fq[x], and encode as v(x) = u(x)G(x). We
can then interpret our indeterminate x as a delay operator, i.e. α4x2 can be interpreted
as α4 multiplied by the element we multiplied this polynomial with two time-steps ago.
We have that x2 at time t in row i is u(t−2)

i , which means that for k ≥ 2 x2 in one row of
our polynomial matrix does not have to represent the same element as x2 in another row.

Example: The code in Figure 2.1 can be represented as a polynomial matrix over
F16[x] with primitive element α. We will refer to this code again throughout this thesis.

G(x) =

(
1 0 1 + αx+ x2 + α7x3

0 1 1 + x+ α4x2 + αx3

)
(2.1)

Any systematic encoder contains the identity matrix Ik in the columns of G(x). From
Equation 2.1, we see that our transform domain generator matrix G(x) is on the form (I |
-R(x)) where I is the identity matrix, which means that it is systematic. Because we have
characteristic 2, we have that -R(x)=R(x). The corresponding transform domain parity
check matrix is on the form (R(x)>|I) giving us Equation 2.2

H(x) =
(
1 + αx+ x2 + α7x3 1 + x+ α4x2 + αx3 1

)
(2.2)

7

u1

u2

v1

v2

v3

Shift
register
stage

+

Add
gate

·αn

Multiply
element
by αn

Multiplexer

+

·α ·α7

·α4 ·α

Figure 2.1: Shift register describing an encoder for a convolutional code defined over F16

with k=2, n=3, D=3. These shift registers are normally drawn with v3 below v2, but v3
is drawn in the middle to make it easier to follow the arrows

8

The time-domain parity check matrix H for a convolutional code is a matrix over the
finite field Fq such that vH> = 0 where v is the output sequence of the encoder and 0
is the all-zero sequence. This matrix is semi-infinite and we add rows to it until it fits
the length of our output sequence. We construct H as in Equation 2.3. A semi-infinite
time-domain generator matrix G also exist, but we will not use it, so we will not describe
it here.

H0

H1 H0
...

HD HD−1 . . . H1 H0

HD HD−1 . . . H1 H0

. . .
HD HD−1 . . . H1 H0

(2.3)

Each Hi is an (n− k)× n matrix and is shifted n position to the right compared with
the previous n − k rows. To simplify the description of the construction we will limit
ourselves to systematic feedforward encoders where n=k+1. This simplification means
that R(x) = (

∑D
i=0 ri,1x

i, ...,
∑D

i=0 ri,n−1x
i). We then have that Hi = (ri,1, ..., ri,n). The

last column of H0 is 1, and the last column of Hi is 0 for i > 0. We can then construct
the parity check matrix corresponding to G(x) in Equation 2.4.

H =

1 1 1
α 1 0 1 1 1
1 α4 0 α 1 0 1 1 1
α7 α 0 1 α4 0 α 1 0 1 1 1

α7 α 0 1 α4 0 α 1 0 1 1 1
.

(2.4)

If we let v′ contain the received symbols of D+ i blocks, and let H ′ be the sub-matrix of
H with row D to row D + i from H, we can solve H ′v′ = 0 to find the missing symbols
assuming we don’t have too many erasures.

We can construct an Lth truncated block code C(L) as in Equation 2.5 where HL is
the zero matrix of dimension (n− k)× n.

H(L) =

H0

H1 H0
...

HL HL−1 . . . H0

 (2.5)

9

The free distance dfree of a convolutional code is defined by the minimum distance be-
tween two generated sequences given that the input sequences are different. The Column
Distance Profile (CDP) is a non-decreasing sequence denoting the minimum distance of
a codeword generated by the Lth truncated block matrix. For rate n − 1/n systematic
codes with memory D, we have dfree ≤ D + 2 and the best column distance profile is
[2, 3, .., D + 2, D + 2, ...] with D+2 repeating. Codes with that CDP are Memory Maxi-
mum Distance Separable (mMDS) codes. An important property of these codes is that
we can correct any j erasures in j blocks with a delay of j blocks when j < D+2 [4]. Our
example code G(x) is an mMDS code with column distance profile [2, 3, 4, 5, 5, ...].

10

Chapter 3

Methods

3.1 Transport protocol

3.1.1 Network Coded TCP

The paper [5] introduced a protocol for combining TCP with coding called Network Coded
TCP (CTCP). This subsection gives an introduction to this protocol based on their paper.

Given a fixed packet size, and a fixed number of packets per block, the sender and
receiver negotiate a maximum number of packets to hold in memory at any given time
to ensure that the buffers at either end do not grow too large. The sender divides the
data stream into packets and starts filling the first block until it has the desired number
of packets before they start on the next block. If there is not enough data in the stream,
then the sender can pad the last packet with zeros to make it fit.

This protocol uses a congestion control mechanism controlling the number of packets
the sender is allowed to send. It uses a combination of Round-trip time (RTT) and packet
loss to determine when the sender is permitted to send packets. This combination is done
to distinguish between a packet loss caused by full queues and packet loss caused by
interference on a noisy channel. If the link is underutilised, then the current round-trip
time is likely to equal to the minimum round-trip time.

When the sender is permitted to send a packet, it picks a packet from one of the
blocks in memory, favouring the first block if it estimates that the receiver needs more
packets from that block to decode it. When sending a packet, the sender combines it with
a header denoting the block number, a seed for a pseudo-random number generator used
for generating coding coefficients, and packet sequence number.

11

The receiver sends acknowledgements for the smallest block not yet decoded, along
with information about the number of degrees of freedom in this block, and the sequence
number of the packet it has received.

CTCP uses systematic block codes. It starts by sending uncoded packages first, i.e.,
the information packets, and then add additional linear combinations of these with random
coefficients, the parity check packets. It decides the number of parity check packets by
estimating the packet loss and sends enough that the receiver probably can decode.

3.1.2 Our protocol

Our protocol uses systematic convolutional codes. The advantage convolutional codes
have over block codes, is that we can use the memory to get the desired minimum distance
with smaller block lengths. Because the receiver cannot recover from erasures until they
have received enough parity check symbols, keeping the block size small can be beneficial
for quicker recovery. Keeping it systematic means that we can decode instantly in the
absence of erasures. When the channel only erases a few symbols, the receiver can recover
quickly.

By combining this convolutional code with an ARQ, the code does not have to be
strong enough to correct every likely error pattern, we just have to correct the most
frequent patterns. This ARQ means that the protocol will need sequence numbers so
that the receiver can refer to which symbols they want the sender to retransmit. For
simplicity, these sequence numbers start at 0. The protocol uses selective repeat, where
the receiver sends negative acknowledgements with the sequence number of the symbols
they need to decode.

Another use for sequence numbers is so that the receiver can detect erasures. If there
is an erasure, then they will detect a gap in the sequence number. For channels that
reorder data, the receiver can use these numbers to put the received data in the right
order.

3.2 Software

To test latency, we have been writing software using Python 3.7 and the Numpy library.
We have also made a python module for finite field arithmetic in characteristic 2, and a
module for solving linear equations over these fields, implementing Gaussian elimination.

We have a modular pipeline consisting of multiple processes: a data generator, an

12

encoder, a sender/channel, a receiver/decoder. There is a queue between each process, and
each process is running concurrently. Even though the channel and the ARQ sender are
different concepts, the code for this is running in the same process because the operations
they do are quick enough that it does not slow down the operations. The decoder and the
ARQ receiver are also in the same process because they interact a lot with each other.
In this section, we merge the description of things running in the same process into the
same subsection because it describes the dataflow better.

3.2.1 Data generator

The data generator calculates the arrival time of new data by either a geometric distribu-
tion, a Poisson distribution, an exponential distribution, or at a constant rate satisfying
a given arrival rate λ. The data itself is a random element from a given finite field. The
generator also makes a timestamp. The element and the timestamp are passed on as
input to the encoder.

3.2.2 Encoder

The encoder is set up using a predefined systematic convolutional code over the same
finite field as the data from the generator. It uses the polynomial generator matrix,
represented by a 3-dimensional k × n × (D + 1) array of integers, where each integer
represents elements of the finite field. During the encoding, it calculates the dot product
between the coefficients of each polynomial in the generator matrix and the corresponding
memory. It then sums up the rows. Because this encoder is for systematic codes only, it
does not calculate the systematic part of each block, but rather append the parity check
symbols to our information blocks before they are passed on.

If the encoder process picks up symbols to be encoded but has to wait longer than a
predetermined time to get a full block, then it will add additional zero elements until it fits,
so that it can encode them, and pass them on to the channel. These padding symbols have
timestamp zero so that we can exclude them in our latency measurements, but the symbols
from the data generator are included and delayed by this timeout. In retrospect there
isn’t any good reason for why the encoder can’t pass through the information symbols
immediately and only delay the generation of the parity check symbol, but with the
parameters we run our code with, we don’t add many zeros.

The output symbols are passed on together with the timestamps from before. The
parity check symbol has timestamp zero.

13

3.2.3 Channel/ARQ Sender

The code for the channel logic and the ARQ sender logic run in the same Python process.
It takes elements from the output queue of the encoder. First, it has a given probability
of marking each symbol as erased. It marks the symbol as erased, rather than erase it to
make the code for detecting erasures in the receiver simpler. Second, it adds a constant
delay to each symbol. The constant delay is not ideal, but for simulating underutilised
networks, it should be acceptable.

The channel puts a tuple of the arrival time and the packet in a minimum heap. If the
first packet to arrive has a timestamp than is earlier than the current time it transmits the
packet to the receiver. The packet consists of the timestamp, an element, and a marker
for whether the packet is erased or a retransmission.

There is also a feedback queue from the ARQ-receiver to the ARQ-sender. This
feedback queue is lossless for simplicity. Whenever there is a negative acknowledgement,
it retransmits the requested symbol. Because the feedback channel has no delay, the
channel double the RTT here to compensate, i.e. add a full RTT rather than a half to
arrival time. The heap ensures they are delayed appropriately.

3.2.4 Decoder/ARQ Receiver

The decoder is implemented as an object with a decode method and a state in the ARQ
receiver process. In order to detect retransmissions as early as possible, it processes the
input queue as fast as possible. Retransmissions are processed immediately, updating the
memory of the decoder, while it puts the new symbols into a local queue that is processed
when the input queue is empty. Any information symbol received in sequence outside
an erasure pattern is passed on immediately along with a timestamp saying when it was
passed on.

The decoder is based on the semi-infinite parity check matrix of the code. It is ini-
tialised with the n(D+1) interesting columns of the first full row so that it can construct
the semi-infinite parity check matrix later. The ARQ receiver feeds it one block at a time
in sequence, and each symbol in a block is either the correct element or the separate sym-
bol telling the decoder that the symbol has been erased. If the decoder is in a good state,
and there are no erasures in the information symbols, then it only updates the memory
before it returns.

It keeps track of information debt each time it gets a new block. The debt is increased
by one for each erasure in the information symbols, and decreased by one for each parity
check symbol not being erased, but never below zero. These debt calculations do not

14

check for linear independence. Instead, they tell the decoder when it definitely cannot
decode, preventing it from wasting time trying. It continuously keeps track of how many
rows the parity check matrix would have to be to decode. When it gets a block, the
debt is zero and there is at least 1 unknown information symbol, it then generates the
parity check matrix with the correct number of rows, removes known variables from the
equations, and use Gaussian elimination to see if it can recover the unknown variables. If
the number of rows is at least 30, it tries to solve as little as possible at a time. Otherwise,
it tries to solve everything at once. If it recovers the unknown variables, then it returns
every information symbol it knows about and removes the parts of the memory not needed
for subsequent decoding. If it solves some unknown symbols, but not all, it updates the
memory, so that they will still be known at the start of the next decoding attempt.

If it fails to decode, then it gives the ARQ a list of unknown symbols that would
have solved the equations if they were known. The ARQ receiver then sends negative
acknowledgements back to the ARQ sender over the feedback channel, asking for these
symbols.

When decoding succeeds it pass on the now known information symbols along with
a timestamp of when the decoding finished. It does not check if any of these symbols
were passed on earlier, but it passes on these symbols in a slightly different way so we can
remove the duplicates in post-processing.

15

Chapter 4

Results

4.1 Error Patterns

In this section, we will discuss error patterns and discuss what a decoder can recover
without retransmission.

Assume we receive the output sequence in Equation 4.1, where e means the channel
has erased this symbol. The first and second columns are information symbols, while
the third column consists of parity check symbols that are linear combinations of the
information symbols from the same row, and the three rows above. Each row is a block
encoded by an encoder described by the code in Equation 2.1 and reproduced here in 4.2.

α14 α12 α3

α5 α10 α5

α13 α12 α4

e e e
α14 α3 e
α6 e α6

α e e
α12 α5 α12

α9 α4 α11

α3 α10 α14

(4.1)

G(x) =

(
1 0 1 + αx+ x2 + α7x3

0 1 1 + x+ α4x2 + αx3

)
(4.2)

16

Because we have 7 erasures, we get 7 equations with 7 unknowns. The 23 other symbols
are known so we can remove them from the system of equations. Because the parity check
symbol in the last row is a linear combination of 7 knowns, and 1 unknown information
symbol, we can recover the information symbol in the 7th row. Having recovered that, we
can also recover the information symbol in the 6th row by using the parity check symbol
in the 9th row. We still have 3 parity check symbols and 2 information symbols that are
unrecoverable. However, finding any of these will give us enough information to recover
all of them. If we find the value of one of the missing information symbols, then the
known parity check symbol in the 6th row will allow us to recover the other. If we find
one of the parity check symbols, we will have 2 parity check symbols where both are linear
combinations of 6 known and 2 unknown information symbols. Because this code has a
column distance profile of [2, 3, 4, 5], we know that we can recover any pattern of 4 errors
with a delay of at most 4 blocks.

0 1 2 3 4

2 3 4 5

3 4 5 6

5 6 7

6 7 8

8 9

9 10

11

12

Figure 4.1: Trellis of erasure patterns for a (3,2) code with erasure probability ε
. The bold path is the beginning of the non-recoverable erasure pattern in Equation 4.1

We have a trellis over the erasure patterns of (3,2) codes over a probabilistic erasure
channel with erasure probability ε in Figure 4.1. Starting at a state 0 where we have
decoded everything up to this point, we travel through the trellis based on the presence
or absence of erasures. For each state vertex, we pick the topmost edge if we have an
erasure, or the bottom edge if we do not. Notice that the parity check vertices on the
bottom row only have one edge. We follow the same edge in both situations because the

17

parity check symbol does not give us anything new. Whenever we reach a node marked t
on the bottom, we have finished the current error pattern and go back to state 0.

We can then calculate the erasure probabilities for decoding an error pattern in time
t: Pe(t = T), T < dfree. For t=1 we have 3 alternatives with 1 erasure and 2 non-erasures,
and 1 alternative without erasures. For t > 1 we count all paths from the zero state to
the t on the bottom that does not visit the bottom after the first erasure, so 2 or 3 of
the first 3 symbols must be erased. If t > dfree, we will have to check if the parity check
symbols are linear independent of the symbols we have from before.

For t = 2 we have two ways of reaching the second row, and 1 way to reach the third
row counting from the bottom, so we get Pe(t = 2) = 3ε2(1 − ε)4. Counting the other
paths the same way as t=2 gives us the following:

Pe(t = 1) = 3ε(1− ε)2 + (1− ε)3 = 2ε(1− ε)2 + (1− ε)2

Pe(t = 2) = 3ε2(1− ε)4

Pe(t = 3) = 10ε3(1− ε)6

Pe(t = 4) = 42ε4(1− ε)8

Pe(t = 5) = 198ε5(1− ε)10

So far, this match the following pattern:

Pe(t) =
2

t

(
3t− 3

t− 1

)
εt(1− ε)2t, t ≥ 2 (4.3)

Using software to count the paths the the erasure trellis for n ∈ {2, 3, 4, 5, 6} we see
that the formula 4.4 looks correct for any code with k = n− 1 as long as t is lower than
dfree. With n=2, k=1, we see that the Catalan number Ct−1 =

1
t

(
2(t−1)
t−1

)
shows up as one

of the factors.
Pe(t) =

k

t

(
n(t− 1)

t− 1

)
εt(1− ε)kt, t ≥ 2 (4.4)

18

4.2 Simulations

In this section, we will present some results from some simulation. We perform all simu-
lations on a laptop with Intel i5-4210H processor and 8GB ram.

Our first simulation uses a data generator generating symbols at a constant rate 4400
symbols/second with a constant erasure probability 0.1. We use a constant channel delay
of 25ms using an optimal code over F16 with the following generator matrix.

G(x) =

(
1 0 1 + αx+ x2 + α7x3

0 1 1 + x+ α4x2 + αx3

)
(4.5)

The data generator terminates after 30.076 seconds after generating a total of 132,176
elements. The decoder finish decoding them after 30.090s. Our simulated channel trans-
mits 178,511(90.04%) symbols successfully and erase 19,753(9.96%) when we we do not
count retransmissions.

Information about the latency distribution of the run is given in Table 4.1 and plotted
in Figure 4.2. During this simulation, we have 14 retransmitted symbols. These are
plotted as red dots in our latency plots, using the latency measured for this symbol.

Notice that one of the red dots has lower latency than 1.5RTT=75ms. This means that
we requested a retransmission, but managed to decode the symbol we asked for before
the retransmitted symbol arrived.

We also measure the discrete recovery time by counting how many information symbols
the decoder gives us for each block. We compare this with the calculated results from
Equation 4.3 in the previous section giving us the erasure probabilities in Table 4.2 and
the counts in Table 4.3. We see that the values we calculate are relatively close to the
formula for small t, but when t grows larger there are two sources of error. One is
that for t > dfree = 5 we do not consider the linearly dependent parity check symbols
in our formula. This means our probabilities are likely to be too optimistic. We also
have a decreasing number of observations when t gets larger. Just because we measure
equally many error patterns recovered in time 8 as 10 does not mean they are equally
likely. Finally, these measurements does not distinguish between an error pattern that was
recovered by a retransmission and an error pattern that was recovered by parity checks
in the code.

19

u1 u2

min latency 25.597 25.434
max latency 275.421 275.194
avg latency 44.578 44.443
median latency 37.693 37.574

Table 4.1: Recorded statistics on the latency distribution

Pe(1) Pe(2) Pe(3) Pe(4) Pe(5) Pe(6)
simulated 0.972104 0.020000 0.005091 0.001576 0.000536 0.000299
calculated 0.972000 0.019683 0.005314 0.001808 0.000690 0.000283

Pe(7) Pe(8) Pe(9) Pe(10) Pe(11) Pe(12)
simulated 0.000189 0.000047 0.000032 0.000047 0.000063 0.000000
calculated 0.000121 0.000054 0.000025 0.000011 0.000005 0.000003

Table 4.2: Table comparing expected results with measured results

Length 1 2 3 4 5 6 7 8 9 10 11 12-15 16
Count 61681 1269 323 100 34 19 12 3 2 3 4 0 1

Table 4.3: Table of erasure pattern lengths

0 10000 20000 30000 40000 50000 60000
Index of block

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

La
ten

cy
 in

 m
s

Latency per information symbol in the first information sequence
latency
1.5RTT
0.5RTT
retransmit this symbol

Figure 4.2: Plot of simulation on an optimal code

20

4.2.1 Comparison with random code

We also have a way to run our simulations for codes with random coefficients. In the
following simulations, we use identical parameters with the exception of the code coeffi-
cients used. Both codes are defined over the same field F16. We simulate a channel with
a constant one-way latency of 25ms. The latency distributions are plotted in Figure 4.3.
We use the mMDS code from Equation 4.5 in Figure 4.3a while we use a code with ran-
dom coefficients in Figure 4.3b. The generator matrix for this random code is given in
Equation 4.6. Further results are given in Table 4.4.

random u1 random u2 optimal u1 optimal u2

min latency 26.770 26.645 26.414 26.187
max latency 252.603 252.603 203.429 203.202
avg latency 50.010 49.915 51.297 51.199
median latency 42.213 42.130 44.585 44.496

Table 4.4: Table comparing latency of random code and optimal code

G(x) =

(
1 0 α + α9x+ α9x2 + α3x3

0 1 α10 + α4x+ α10x2 + α3x3

)
(4.6)

As we can see from Figure 4.3, there are more retransmissions for the random code.
This is because our optimal code is chosen for its distance properties given the [n, k,
D] parameters in our chosen field. The random codes are less likely to generate linearly
independent parity check symbols.

In Table 4.5 we see that the simulations with the mMDS code has more of error
patterns of length 1 and 2, while the random code has more error patterns of length 4 to
6. This is what we expect to see, with a good column distance profile, we recover from
erasures faster.

Length 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Count random 61522 1305 336 114 48 20 6 3 1 1 3 1 1
Count mMDS 61697 1258 336 107 43 12 7 2 1 1 1 2 1

Table 4.5: Table comparing erasure pattern lengths of different codes

21

0 10000 20000 30000 40000 50000 60000
Index of block

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

La
ten

cy
 in

 m
s

Latency per information symbol in the first information sequence
latency
retransmit this symbol

(a) Optimal code

0 10000 20000 30000 40000 50000 60000
Index of block

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

La
ten

cy
 in

 m
s

Latency per information symbol in the first information sequence
latency
retransmit this symbol

(b) Random code

Figure 4.3: Comparison of simulation random coefficients and optimal coefficients

22

4.2.2 Different erasure rates

We can also run our simulations with different erasure rates. Again we use the mMDS
code in our simulations. We compare the performance with erasure rate ε = 0.08 with the
performance with erasure rate ε = 0.12. The ε = 0.08 plot is smoother than the ε = 0.10
plots from earlier, and the plot with ε = 0.12 has more peaks. As we expect lower erasure
rate give shorter recovery time. We give some statistics in Table 4.6 and we count the
length of the erasure patterns in Table 4.7.

u1 for ε = 0.08 u1 for ε = 0.12
min latency 25.595 26.018
max latency 200.289 367.761
avg latency 41.648 68.234
median latency 37.702 54.500

Table 4.6: Table comparing latency for different erasure rates

Length 1 2 3 4 5 6 7 8 9 10 11 13 14 18
Count ε = 0.12 59636 1655 486 198 62 33 18 13 4 4 2 2 5 1
Count ε = 0.08 63295 889 204 62 18 4 2 3 1

Table 4.7: Table comparing erasure pattern lengths with different erasure rates

23

0 10000 20000 30000 40000 50000 60000
Index of block

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

La
ten

cy
 in

 m
s

Latency per information symbol in the first information sequence
latency
1.5RTT
0.5RTT
retransmit this symbol

(a) Erasure rate 0.08

0 10000 20000 30000 40000 50000 60000
Index of block

25
50
75

100
125
150
175
200
225
250
275
300
325
350
375

La
ten

cy
 in

 m
s

Latency per information symbol in the first information sequence
latency
1.5RTT
0.5RTT
retransmit this symbol

(b) Erasure rate 0.12

Figure 4.4: Comparison of simulation with different erasure rates

24

Chapter 5

Conclusion

In this thesis, we have tested the performance of some rate 2/3 convolutional codes on a
relatively simple erasure channel with a few different erasure rates. We have seen that the
mMDS code offer better latency, and require fewer retransmissions compared to similar
random codes on channels with relatively high erasure rates.

There are a few improvements that would have made this project better. First, it
would be a good idea to replace the flags marking data as erased or retransmitted and
instead detect it at the receiver. With this fixed, we could split our software into two
separate programs, a sender and a receiver that can run on different computers. Testing
this on a real, realistic network with at least one wireless link between them would have
given more relevant results. For this, we would not have a lossless feedback channel any
more, so we would need a bit more logic to handle this. The main reason we did not
do this was that implementing the decoder took more time than expected. For realistic
networks, we should also implement a congestion algorithm, probably something similar
to the one in CTCP.

Another potential improvement is to improve the way we decide when to ask for
retransmissions. Because we had a few retransmissions that were not needed, we wasted
bandwidth, but considering that the number of retransmissions was relatively low, this is
not too important.

25

Bibliography

[1] Keith W. Ross James F. Kurose. Computer Networking: A Top-Down Approach, In-
ternational ed of 6th revised ed. Pearson Education Limited, 2012. isbn: 9780273768968.

[2] John B. Fraleigh. First Course in Abstract Algebra, A: Pearson New International
Edition, Seventh Edition. Pearson Education Limited, 2013. isbn: 9781292024967.

[3] Shu Lin and Daniel J. Costello. Error Control Coding, Second Edition. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 2004. isbn: 0130426725.

[4] Á. Barbero and Ø. Ytrehus. “Rate (n−1)/n Systematic Memory Maximum Distance
Separable Convolutional Codes.” In: IEEE Transactions on Information Theory 64.4
(Apr. 2018), pp. 3018–3030. issn: 0018-9448. doi: 10.1109/TIT.2018.2802540.

[5] Kim Minji et al. “Network Coded TCP (CTCP).” In: (Dec. 2012).

26

