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Abstract

In this thesis, we are concerned with certain interesting computationally hard prob-
lems and the complexities of their associated algorithms. All of these problems share
a common feature in that they all arise from, or have applications to, cryptography,
or the theory of error correcting codes. Each chapter in the thesis is based on a
stand-alone paper which attacks a particular hard problem. The problems and the
techniques employed in attacking them are described in detail.

The first problem concerns integer factorization: given a positive integer N ,
the problem is to find the unique prime factors of N . This problem, which was
historically of only academic interest to number theorists, has in recent decades
assumed a central importance in public-key cryptography. We propose a method
for factorizing a given integer using a graph-theoretic algorithm employing Binary
Decision Diagrams (BDD).

The second problem that we consider is related to the classification of certain
naturally arising classes of error correcting codes, called self-dual additive codes over
the finite field of four elements, GF (4). We address the problem of classifying self-
dual additive codes, determining their weight enumerators, and computing their
minimum distance. There is a natural relation between self-dual additive codes over
GF (4) and graphs via isotropic systems. Utilizing the properties of the correspond-
ing graphs, and again employing Binary Decision Diagrams (BDD) to compute the
weight enumerators, we can obtain a theoretical speed up of the previously developed
algorithm for the classification of these codes.

The third problem that we investigate deals with one of the central issues in
cryptography, which has historical origins in the theory of geometry of numbers,
namely the shortest vector problem in lattices. One method which is used both
in theory and practice to solve the shortest vector problem is by enumeration al-
gorithms. Lattice enumeration is an exhaustive search whose goal is to find the
shortest vector given a lattice basis as input. In our work, we focus on speeding
up the lattice enumeration algorithm, and we propose two new ideas to this end.
The shortest vector in a lattice can be written as s = v1b1 + v2b2 + . . . + vnbn,
where vi ∈ Z are integer coefficients and bi are the lattice basis vectors. We propose
an enumeration algorithm, called hybrid enumeration, which is a greedy approach
for computing a short interval of possible integer values for the coefficients vi of a
shortest lattice vector. Second, we provide an algorithm for estimating the signs (+
or −) of the coefficients v1, v2, . . . , vn of a shortest vector s =

∑n
i=1 vibi. Both of

these algorithms results in a reduction in the number of nodes in the search tree.

Finally, the fourth problem that we deal with arises in the arithmetic of the
class groups of imaginary quadratic fields. We follow the results of Soleng and
Gillibert pertaining to the class numbers of some sequence of imaginary quadratic
fields arising in the arithmetic of elliptic and hyperelliptic curves and compute a
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bound on the effective estimates for the orders of class groups of a family of imaginary
quadratic number fields. That is, suppose f(n) is a sequence of positive numbers
tending to infinity. Given any positive real number L, an effective estimate is to
find the smallest positive integer N = N(L) depending on L such that f(n) > L for
all n > N .

In other words, given a constant M > 0, we find a value N such that the order of
the ideal class In in the ring Rn (provided by the homomorphism in Soleng’s paper)
is greater than M for any n > N .

In summary, in this thesis we attack some hard problems in computer science
arising from arithmetic, geometry of numbers, and coding theory, which have ap-
plications in the mathematical foundations of cryptography and error correcting
codes.
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Chapter 1

Introduction

1.1 Hard problems and algorithms

In the following, we introduce some basic notions on computational problems, algo-
rithm, and their complexity; see [5] for a more detailed treatment of the topic.

The most basic construct, in theoretical computer science is the concept of an
algorithm. By definition, an algorithm is a finite sequence of operations carried out
in a particular order to solve a given problem. The keyword here is finite, implying
that an algorithm must eventually terminate, however long its running time may
be.

In computer science, a problem is said to be solvable if one can find an algorithm
which produces the desired output for a given set of inputs; here, intuitively, the
inputs represent the statement of a concrete instance of the problem, while the
outputs represent its solution. The inputs for a given algorithm could consist of
numerical or non-numerical parameters like numbers, data structures or even other
algorithms.

We are interested in solving problems efficiently, and how efficiently a problem
can be solved depends on the algorithm that is used to solve it. Clearly, there can be
several algorithms which solve a given problem, and this makes it necessary to com-
pare the relative efficiencies of all algorithms designed to solve the same problem.
For example, there are many algorithms for sorting a given list of elements: Bubble
sort [122], merge sort [122], quick sort [122], etc. All of these exhibit a different
efficiency, i.e. a different worst-case, best-case and average-case computational com-
plexity. These considerations lead to the theory of algorithmic complexity, wherein
algorithms are classified into complexity classes in accordance with the amount of
resources that they consume (usually by representing a resource parameter, like
running time or storage space, as a function of the length of the input).

All these intuitive notions of inputs, efficiency and complexity need to be for-
malized in order to be applied to the analysis of algorithms. One way to handle
these concepts in a rigorous and uniform manner is by means of so-called Turing
machines.

The Turing machine is a conceptual device which models the process of compu-
tation. Informally speaking, a Turing machine consists of an infinite tape of cells
(from which the Turing machine can read and onto which it can write), an initial
state, a set of intermediate states, and a set of final states. Prior to the computation,
the input is placed on the tape. At any given moment, the Turing machine is in
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some particular state; it begins in the initial state, proceeds to different states in
the course of computation, and, finally, terminates once it reaches one of the final
states. At any moment, the Turing machine is processing one particular cell of the
tape. Which state it proceeds to, how it modifies the contents of the cell, and which
cell it moves to next, depends on the contents of the cell that is being processed and
the state that the Turing machine is in. Once computation has finished, the output
is what is written on the tape.

Any algorithm can be implemented on a Turing machine by constructing an
appropriate set of rules dictating how the Turing machine acts on different com-
binations of states and symbols. Let n be an integer and C(n) be the maximum
number of moves made by the Turing machine before coming to a halt on any in-
put of length n. Then C(n) is a measure of the complexity of the algorithm as
implemented on the Turing machine.

The number of moves C(n) performed by the Turing machine is a measure of
the time complexity of the algorithm. However, there can be other measures of
complexity, such as the space complexity which, intuitively, measures how much
memory the implementation of an algorithm will consume; in the case of a Turing
machine, the space complexity is measured by the maximum number of cells S(n)
on the tape that are utilized during the computation for any input of length n.

Of course, the ultimate goal of the framework introduced above is to classify dif-
ferent algorithms into complexity classes based on how efficient they are with respect
to time complexity or space complexity. Since the magnitude of C(n) and S(n) is
most important for large values of n, when analyzing the efficiency of an algorithm,
it is important to consider the asymptotic behaviour of these complexity functions.
The following notion allows us to formally compare the asymptotic behavior of two
functions.

Definition 1.1.1. Let f, g : N+ → R+ be two functions. We say g(n) = O(f(n)) if
there exists some c ∈ R+ and a positive integer m such that for all n ≥ m, g(n) ≤
c · f(n), i.e. c · f(n) bounds g(n) from above as n tends to infinity.

We frequently encounter algorithms whose complexity can be expressed as a
polynomial in n. Since this so-called Big-O notation measures asymptotic growth,
one only needs to consider the fastest growing term of some given polynomial g(n).
For example, if g(n) = 5n2 + log(n) then g(n) = O(n2), because as n approaches
infinity, log(n) becomes negligible compared to 5n2.

The generally accepted convention is that an algorithm is “efficient” if its time
complexity is polynomial in the length of its input. We say that an algorithm is in
the class P (Polynomial) if it is solvable in time O(nk), for some constant k. That
is, P is the complexity class containing decision problems which can be solved by a
Turing machine using polynomially many computational steps.

The class NP (Non-deterministic Polynomial) is the set of decision problems
solvable in polynomial time on a non-deterministic Turing machine, i.e. an un-
bounded number of Turing machines running in parallel. This implies that the class
NP consists of problems for which solutions might be hard to find, but where any
given solution can be verified by a deterministic Turing machine in polynomial time.
Every problem in this class can still be solved in exponential time using exhaustive
search, also known as brute-force. Examples include the Boolean satisfiability prob-
lem (SAT), the Vertex cover problem, etc.
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The most difficult problems in NP form the so-called class of NP-complete
problems. If one were to find an efficient algorithm to solve any given NP-complete
problem, then that algorithm could be used to efficiently solve all problems in NP,
which would imply P = NP. At present, all known algorithms for NP-complete
problems require time that is super-polynomial in the input size. To solve an
NP-complete problem in practice for inputs of a nontrivial size, generally one of
the following approaches is used: approximation, probabilistic computing, heuristic
techniques, etc. Examples of NP-complete problems include: the Boolean satisfia-
bility problem (SAT), the Knapsack problem, the Traveling salesman problem, the
Subgraph isomorphism problem, the Subset sum problem, the Clique problem, the
Minimum vertex cover problem, and the Graph coloring problem.

There is ample evidence that seems to indicate that a polynomial-time algorithm
for solving an NP-complete problem will never be found. However, a formal proof
that P 6= NP has thus far eluded mathematicians, and indeed stands as one of the
great open problems of the century.

1.2 Cryptography and hard problems

1.2.1 A brief history of cryptography

The art of cryptography dates back several thousand years, to a time when kings
and queens had to rely on secret communication to get their messages across while
ensuring that they would not fall into the wrong hands. As such, they developed
techniques to disguise messages so that only the intended recipient could read them.
Cryptology is the art and science of transmitting secret messages. It includes both
the areas of cryptography, which is the art of hiding the meaning of the message by
a process known as encryption; and cryptanalysis, which is the art of unscrambling
the encrypted message without knowledge of the secret key.

There are several ways of achieving secrecy. Early secret communication usually
consisted of simply finding clever ways of hiding messages, known as steganography
[118] (from the Greek words steganos, meaning “covered”, and graphein, meaning
“to write”). Cryptography, derived from the Greek word kryptos meaning “hidden”,
evolved in parallel with the development of steganography.

The history of cryptography is a fascinating subject. As mentioned above, the
aim of cryptography is not to hide the existence of the message, but rather its
meaning. The message is scrambled according to a particular protocol agreed upon
beforehand by the communicating parties. This protocol usually involves the shar-
ing of some secret information (the key) needed to unscramble the message. The
advantage of cryptography is that even if the enemy intercepts the encrypted mes-
sage, he will find it extremely difficult or impossible to retrieve the original message
from the encrypted text without knowing the key.

Classically, encryption was divided into two branches, known as transposition and
substitution. In transposition, the letters of the message are simply rearranged. It is
clear that for short messages, this method will be insecure, because there are only a
limited number of ways one can rearrange a set of letters. A random transposition
could still offer a high level of security for longer messages, but the drawback was that
it was harder for the intended recipient to unscramble them as well. Transposition
techniques are known to have been used as early as the 5th century B.C. for military
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communication. Called Scytales [117], these were objects around which one would
wrap a strip of parchment, resulting in an intelligible message if and only if the
Scytale was of the correct diameter. Thus, one could say that the diameter of
the Scytale served as the key to the cipher, though as with most early methods of
encryption, the security of the message crucially relied on the encryption method
being kept secret.

On the other hand, substitution is a method by which each letter of the alphabet
is replaced by a different letter, or symbol. The earliest known use of a substitution
cipher appears in Julius Caesar’s “Gallic Wars” [117]. Julius Caesar encrypted the
message by shifting each letter of the alphabet by 3 positions: for instance, the letter
“a” is replaced with “D”, the letter “b” is replaced with “E”, and so on. Such simple
substitution ciphers are called shift ciphers, and they provided some basic security in
a time when cryptography was unknown to most people. But as these ciphers rose
in popularity, people quickly figured out how to break them, and cryptographers
had to invent better ways to secure their messages. However, even substituting
every single letter of the alphabet with a different symbol (which need not even
be a letter of the alphabet itself) turned out to be insecure: clever cryptanalysts
realized that the different letters of a given language show up in written form with
a particular frequency, and that even with a rather small sample, the cipher can
usually be broken simply by matching the symbol frequencies of the text with the
known frequencies of the language. This is known as frequency analysis [91].

Substitution ciphers continued to evolve throughout the years, with new meth-
ods, such as the Vigenère cipher, long thought unbreakable. Even though its sim-
plicity meant that anyone could easily use it, it withstood three centuries of attacks,
before an algorithm for breaking it was finally discovered in 1863. The Vigenère
cipher operates as follows: pick an arbitrary codeword, say “CAT”, which will serve
as the key to the cipher. The message is then encrypted by applying a separate shift
cipher to each letter of the message. Since the first letter of the codeword in this
example is “C”, and the letter “C ” is two positions in front of the letter “A”, the
first letter of the message is shifted by two positions; since the second letter in the
key is “A”, the second letter of the message remains unchanged; the third letter of
the key is “T”, and so the third letter of the message is shifted by 19 positions. If
there are more letters in the message than the length of the codeword, the codeword
is simply repeated, and thus the fourth letter is shifted by two positions, the fifth
letter remains the same, and so forth.

At the beginning of the 20th century, as communication was revolutionized by
the introduction of the telegram, the need for secrecy across open channels became
more important than ever before. But with the dawn of electrical machines, cryp-
tographers also saw opportunities for unprecedented levels of secrecy. The most
famous example of such a cryptographic device is the Enigma [51, 117], used by
Nazi Germany during the Second World War. These were devices with keyboards,
that through intricate wiring, cogwheels, and a combination of short term and long
term key settings, automatically encrypted each letter of a message that the oper-
ator would type on the keyboard. On the receiving end, another machine with the
correct settings would be used to decrypt the ciphertext back into plaintext. Even
if an enemy agent were to intercept a given encrypted message, it was assumed to
be impossible for him to learn anything about its contents unless he had a working
copy of the machine and knew the exact settings that were used when encrypting
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the message.

1.2.2 Cryptography based on hard problems

As history had shown, any cryptographic technique tended to be broken sooner or
later. After the Second World War, cryptographers started to ask the question of
what exactly made an encryption algorithm secure, and whether its security could
be proven.

The only encryption scheme now known to be perfectly secure is called the One-
Time Pad [91]. Here, the key is a set of random bits at least as long as the message.
Encryption is then achieved by XOR-ing the bits of the key with the bits of the
message; decryption is performed in the same way, i.e. by XOR-ing the bits of the
key with those of the ciphertext. Given that the key, or “pad”, is used only once,
the One-Time Pad was proven by Claude Shannon in 1945 to achieve perfect secrecy
[24]. The requirement that the key should only be used once is crucial, and reusing
the same key, or even parts of it, already leads to an encryption which can be broken.
Furthermore, this encryption may actually be weaker than that provided by other
encryption schemes that do not possess perfect secrecy.

All historical examples of encryption and decryption schemes thus far have been
what we now call symmetric schemes. The encryption key has to be shared between
the sender and receiver prior to communication, and the same key is used both for
encryption and decryption, meaning that neither can be achieved without access to
it. How to share the key, however, has always been a major obstacle to efficiently
achieving secure communication, requiring the establishment of a separate secure
channel (such as a trusted mail courier). The seminal 1976 paper by Diffie and
Hellman [30] finally proposed a solution to these problems by showing that secure
key sharing can be achieved across insecure channels by means of a new type of
encryption scheme that relies on the computational hardness of certain mathematical
problems. The original problem described by Diffie and Hellman is the following: let
G be a finite cyclic group of order N and g a generator of G. Exponentiation, that
is, computing gn given an integer n, is easy and can be efficiently done with O(log n)
multiplications using the square and multiply algorithm in any cyclic group. On the
other hand, given an element gn, computing n (the so-called discrete logarithm of
gn) might vary from easy to more difficult depending upon the selection of the group
G [55].

In the same paper, Diffie and Hellman introduced the concept of a new type
of cryptosystem called a public-key cryptosystem based on the discrete logarithm
problem. Here, each user has a public key pk, corresponding to an encryption scheme
Epk, and a secret key sk corresponding to a decryption scheme Dsk. Unlike all
previously known cryptographic schemes which are symmetric (in the sense that the
same key is used for both encryption and decryption), in a public-key cryptosystem
one only needs to know the public key pk in order to encrypt, while the private
key sk is needed in order to decrypt. The assumption is that the secret key should
be computationally hard to derive from the public key. Thus, the public keys of
multiple users may be collected in a public directory so that anyone may encrypt a
message using another user’s public key, without the need for any prior sharing of
keys. Once the message is encrypted, however, the only one who can decrypt is the
one who possesses the secret key.
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Figure 1.1: Complexity classes and some hard problems

Diffie and Hellman also showed how any such public key encryption scheme could
be adapted into an unforgeable, yet publicly verifiable, signature scheme [30]. Here,
a user may sign a message using their secret key, and any user wanting to verify that
the message indeed originates from the purported source, may “decrypt” it using
their public key.

Soon afterwards, Rivest, Shamir, and Adelman in 1977 invented another public-
key cryptosystem, named RSA after the initials of its inventors [100]. Their cryp-
tosystem is still widely used today.

Figure 1.1 shows the complexity of some hard problems. Other computationally
hard problems which have been used to design public-key cryptosystems include
solving non-linear equations over finite fields (leading to multivariate cryptography),
finding short and close vectors of lattices (lattice-based cryptography), decoding
general linear codes (code-based cryptography).

In 1981, the celebrated phycisist Richard Feynman suggested the idea of a quan-
tum computer, which he posited might be necessary in order to properly simulate
quantum physics [32]. In 1985, David Deutsch [28] gave the first example of a simple
combinatorial problem whose solution would have a significant speed-up on such a
computer.

In 1994, Peter Shor published a quantum algorithm [113] which would be able to
factor large numbers in polynomial time. If a quantum computer with a sufficient
number of qubits can be built, Shor’s algorithm could be used to break the widely
used RSA public key encryption scheme. Furthermore, the same principle could be
used to break the discrete logarithm problem and therefore the Diffie-Hellmann key
exchange protocol. Until this point, quantum computers had been viewed as a highly
hypothetical curiosity of limited practical interest. Now, however, it was clear that
if it were possible to build such a computer, a number of important and widely used
cryptosystems would be vulnerable to attack. This kickstarted a study of quantum
computing, and the first prototypes of such computers were built already in 1995.
Improvements have occurred and larger quantum computers are now being built in
several facilities around the world.

Meanwhile, cryptographers have been busy finding new problems which may
withstand attacks by quantum computers, an area of research known as post-
quantum cryptography. Potential candidates for cryptographic schemes that can
withstand quantum attacks include multivariate cryptography, code-based cryptog-
raphy, and lattice-based cryptography, the latter of which will be explored in more
detail in Chapter 4.
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1.3 Papers in this thesis

We now take a closer look at the papers making up this thesis. For each paper, we
explain the problem being attacked, the tools used to investigate it, and the results
obtained.

1.3.1 Integer factorization using Binary Decision Diagrams

In the first paper we deal with one of the oldest difficult problems in mathematics -
integer factorization. The fundamental theorem of arithmetic states that any natural
number can be expressed uniquely as a product of prime numbers. This theorem
also exhibits the structure of the natural numbers in relation to multiplication – it
shows that primes are the elements out of which all natural numbers can be built.

Finding prime factors of a given number N has been one of the most fascinating
and formidable problems in mathematics, and dates back to the time of Euclid.
Once the unique factorization property was established, a natural problem was to
find all the prime factors of a given natural number N . Several mathematicians have
developed step by step procedures to factor a given integer N , that is, to find all
distinct prime factors pis such that N = pe11 p

e2
2 . . . penn , where ei are positive integers.

An account of early and modern factorization algorithms is given in Chapter 2,
Section 2.2.

Given a large integer N , there is no known efficient algorithm that can factorize
N in the classical computation model. Nevertheless, there is a quantum algorithm,
namely Shor’s algorithm which was already mentioned above [113], which can fac-
torize N in polynomial time. The fastest methods for factoring a number N in the
classical model take sub-exponential time in the number of bits of N [19]. As some
cryptographic schemes rely on the hardness of finding the factors of large integers,
it is interesting to apply different methods and explore the possibility of factoring
such numbers.

Many problems in computer science, related to the design of both software and
hardware, involve representations and manipulations of Boolean functions, i.e. func-
tions that assume either 0 or 1 as their output value. It is essential that these pro-
cesses are carried out in an efficient manner. One natural method which is widely
used to this end is to represent such functions by means of Binary Decision Dia-
grams (BDD) [59]. In our paper, we apply a particular type of BDD to the integer
factorization problem. We focus primarily on integers that have only two prime
factors p and q of the same bit size. Despite its simplicity, this case is of significant
practical interest since a similar situation occurs in RSA. Here we give a very brief
outline of the paper; please refer to Section 2.4 for more details.

The statements of many problems in digital logic circuits, especially in hardware
and networking, involve switching circuits. Switching circuits exhibit binary state
values ON and OFF. It is natural to represent these conditions in terms of elements
of binary logic. This connection between switching theory and Boolean algebra was
first formulated by Shannon in 1938 [23]. Following his methodology, any switching
circuit can be completely described in terms of Boolean functions of several variables.

Although the Boolean representation of switching circuits has been the foun-
dation on which switching theory was built, ways of compactly representing these
functions in an efficient manner remains an open problem. In 1958, Lee [65] in-
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troduced Binary Decision Programs, which he used to represent Boolean functions.
Compared to Shannon’s method, which is algebraic in nature, binary decision pro-
grams provide a new representation of switching circuits, with the advantage that
they are more suitable for representing circuits with a large number of decision
processes, or transfers.

Binary Decision Diagrams (BDD) were first introduced and analysed by Akers
in 1978 [4]. He was motivated by the same considerations as Lee, that is, to find
representations more compact than the known ones at the time. The purpose of a
BDD is to represent a Boolean function using a diagram or a graph which enables
one to evaluate the output value of the function for given input values.

A BDD is a directed acyclic graph which contains a root-node at the top and
a true-node at the bottom. Every node has at most two outgoing directed edges
labelled 0 or 1. The nodes in a BDD are arranged in horizontal levels, where each
level corresponds to a single input variable or a linear combination of the input
variables. A path in a BDD is a sequence of consecutive edges, where the end node
of one edge is the start node for the next. A complete path starts in the root node
and ends in a true-node. Since each edge is labelled either with 0 or 1, and each level
corresponds to a linear combination of variables, every path naturally corresponds to
an instantiation of the linear combinations. A complete path can be seen as giving a
system of linear equations which may or may not have a solution. Finding a solution
to an equation system represented by a BDD equates to finding a particular path
in the BDD.

We start by building the BDD corresponding to the set of equations obtained
from the binary multiplication of two integers. Having done this, we notice that the
BDD duplicates the input variables. In an attempt to resolve this, we define two
basic operations on BDD: swapping levels and adding levels. The former consists of
exchanging, or swapping, the variables corresponding to two adjacent levels. The
latter involves the addition of variables from a given level to the level directly below
it. The main purpose of these operations is to remove the duplication and thereby
resolve the dependencies among the variables in order to obtain a consistent system
of linear equations and facilitate the solution of the original problem. This process
of removing dependencies is called linear absorption. In the final step, we apply an
operation called reduction to the BDD [104]. This operation removes all the nodes
which have no incoming or outgoing edges, and also the ones where the 0-edge and
1-edge point to the same node. The BDD that we obtain after applying all of these
operations then gives us the solution to the set of equations that we stared with.

Our contribution: [99] We model the problem of integer factorization using a
system of Boolean equations which naturally arises from the multiplication of two
integers represented in binary. Let (pn−1, pn−2, . . . , p1, p0) and (qn−1, qn−2, . . . , q1, q0)
be the binary representations of the integers p and q, respectively. We represent the
number N = pq as the product N = (pn−1, pn−2, . . . , p1, p0)× (qn−1, qn−2, . . . , q1, q0).
We treat the bits pi and qi in the unknown factors as variables, and we obtain
equations by relating the unknown bits of p and q with the known bits of N from the
multiplication operation. We then build the BDD corresponding to these equations.

The constructed BDD encodes a set of binary vectors, which are precisely the
solutions to all linear systems generated by all complete paths in the BDD. To
facilitate the solution of this system of equations, we apply the operations of adding
levels, swapping levels, and reduction described above, and then solve the resulting
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system of equations.
We show that the number of nodes in the BDD representing N = pq prior to

applying the operations is O(n3), where n is the number of bits in one of the factors
p and q. We have run experiments to determine the complexity of the proposed
factorization algorithm. The best known algorithm for factoring is the GNFS, which

has complexity LN [1
3
, 3

√
64
9

] [70]. The observed complexity of the algorithm in our

work is O(2n). Asymptotically, this would be comparable only to the trial division
method. Practically, the trial division is faster than the proposed method. Thus,
although using BDD for factoring integers is a natural idea, we have shown that it
does not lead to an improvement in computational efficiency.

1.3.2 Graphs and self-dual additive codes over GF (4)

Our second paper deals with the classification of the family of a particular type of
codes called self-dual additive codes over GF (4). The 1948 publication of Claude
Shannon’s landmark paper “A mathematical theory of communication” [111] sig-
nified the beginning of coding theory. The main theorem of this paper essentially
guarantees the existence of error-correcting codes with certain good properties. This
result was only existential in nature, meaning that it did not show how such codes
could be constructed. This motivated later researchers to look for more and better
codes which could be applied in practice.

The crux of the main problem in coding theory is to find codes with rate R
and minimum distance d as large as possible. The greater the rate R, the more
efficiently information can be transmitted. The greater the minimum distance d,
the more errors the code can correct. Clearly, these two are in conflict, hence the
goal is to find a good trade-off.

Self-dual codes are an interesting family of codes which has rich mathematical
history and connections to lattices and sphere packings [120], and modular forms [78,
112]. Self-dual additive codes over GF (4) under the Hermitian trace inner product
(which will be defined later) became of interest because of their correspondence to
additive (or stabilizer) quantum error-correcting codes [7, 20, 27, 35, 52].

Let GF (4) = {0, 1, ω, ω2} be the finite field of 4 elements. An additive code C
over GF (4) of length n is an additive subgroup of GF (4)n. In other words, let C be
a code over GF (4) with generator matrix G. We say that C is an additive code if
all codewords in C are GF (2)-linear combinations of the rows of G.

There is a natural inner product arising from the trace map. The trace map
Tr : GF (4)→ GF (2) is given by Tr(x) = x+ x2. In particular, Tr(0) = Tr(1) = 0
and Tr(ω) = Tr(ω2) = 1. The conjugate of an element x ∈ GF (4), denoted as x
is the image of x under the Frobenius automorphism; in other words, 0 = 0, 1 = 1,
ω = ω2, and ω2 = ω.

The Hermitian trace inner product of two vectors x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is defined as

x ∗ y =
n∑
i=1

Tr(xiyi) =
n∑
i=1

(xiyi
2 + x2i yi).

If C is an additive code, its dual, denoted as C⊥, is the additive code {x ∈
GF (4)n | x ∗ c = 0 for all c ∈ C}. If C is an (n, 2k) code, then C⊥ is an (n, 22n−k)
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code. We say that C is trace self-orthogonal if C ⊆ C⊥ and we say that C is trace
self-dual if C = C⊥. In particular, if C is self-dual, then C is an (n, 2n) code. We
remark that additive self-dual codes exist for any length n since the identity matrix
In generates a self-dual (n, 2n, 1) code.

The weight of a codeword c ∈ C is the number of nonzero components of c. The
minimum weight d of a code C is the smallest weight of any nonzero codeword of
C. Let C be an [n, k, d] code. For i ∈ {0, 1, 2, . . . , n}, let Ai denote the number of
code words in C of weight i. The collection {Ai : i ∈ {0, 1, 2, . . . , n} is called the
weight distribution of the code C. The weight enumerator of C is defined to be the
homogeneous polynomial WC(x, y) = A0x

n + A1x
n−1y + A2x

n−2y2 + . . .+ Anyn.

Given the weight distribution of a code, it is easy to determine its minimum
distance. It is hard to approximate the minimum distance of a given code, so the
computation of the weight enumerator is also a hard problem [127].

Two self-dual additive codes C1 and C2 over GF (4) are equivalent if and only
if the codewords of C1 can be mapped onto the codewords of C2 by a map that
preserves self-duality. Such a map consists of a permutation of coordinates, followed
by a scaling of coordinates by the elements of GF (4), followed by conjugation of some
of the coordinates. Two equivalent self-dual codes have the same weight enumerator.

All additive self-dual codes over GF (4) of length n ≤ 5 have previously been
classified up to equivalence by Calderbank et al. [20]. For n ≤ 7, the classification
was done by Höhn [52] and Hein et al. [46], and for n ≤ 9, it was done by Glynn et
al. [40]. Danielsen and Parker [27] classified all self-dual additive codes over GF (4)
of length n ≤ 12 by using a graph based algorithm for general graphs.

Our contribution: [62] We follow the classification of Danielsen and Parker.
We study self-dual additive codes over GF (4) and give a method to classify them by
using a graph based algorithm for graphs having a fixed value of a property called
rankwidth (which we will define later in Section 3.3.1). This leads to a significantly
faster method for classifying the codes corresponding to these graphs. Even though
this method is applicable only to a subset of codes, the branching strategy for
classifying graphs corresponding to self-dual additive codes on n vertices takes at
most 3(n − 1) ways for graphs having rankwidth 1. For comparison, in Danielsen
and Parker’s work [27], the branching is done in 2n−1 − 1 ways. It is proposed to
determine for how large values of n classification can still be performed in practice
by conducting experiments in the future.

There are two computationally heavy steps in the classification algorithm: testing
graph isomorphism and weight enumeration. For a fixed k, testing graph isomor-
phism for graphs of rankwidth k is polynomial in the size of the graph [42], and it
is in fact linear for graphs of rankwidth 1 [124]. Hence, looking at the problem of
classification of such codes in terms of rankwidth may have additional advantages.

Another important step in the classification algorithm from [27] was computing
weight-enumerators for a given code. The algorithm given in [27] for computing
the weight-enumerator of a linear [n, k] code is essentially a brute-force search with
complexity O(2k). If k > n/2, the weight enumeration of the dual code is computed
instead for the sake of efficiency. We use Binary Decision Diagrams (BDD) to
compute the weight-enumerators instead of performing a brute-force search. The
algorithm using BDD for weight enumeration has complexity similar to brute force,
but has the benefit that we automatically get complexity O(2min{k,n−k}) without
needing to consider the dual code.
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We show that the minimum distance of a code is at least 4if and only if the
corresponding graph does not contain any pendent vertex or any twin-pairs (both
of these terms are defined later).

1.3.3 Reducing lattice enumeration search trees

With the current interest in post-quantum cryptography, lattice based cryptographic
primitives are among the most promising candidates for achieving secure and efficient
post-quantum encryption. Given two positive integers m and n with m ≥ n, the
lattice generated by a set {b1, b2, . . . , bn} of n linearly independent vectors in Rm is
the set {∑n

i=1 xibi : xi ∈ Z} of integer combinations of the vectors bi. One of the
most basic computational problems concerning lattices is the shortest vector problem
(SVP): given a lattice basis as an input, find a nonzero lattice vector of smallest
norm.

The first step towards attempting to solve the SVP is through lattice reduction,
the goal of which is to transform the input basis into one containing very short and
nearly orthogonal vectors. This is closely related to the reduction theory of quadratic
forms developed by Lagrange [64], Gauss [38] and Hermite [50]. Lattice reduction
algorithms have numerous practical applications, notably public-key cryptanalysis
(for instance, breaking knapsack cryptosystems [88], or special cases of RSA and
DSA [86, 81]).

Algorithms for solving the SVP fall into two general categories:

• exact algorithms: these provably find a shortest vector, but their complexity
is exponential in the dimension of the lattice. Exact algorithms fall into two
sub-categories:

– polynomial-space exact algorithms: these are based on enumeration
which, in its simplest form, is an exhaustive search for finding the best
integer combinations of the basis vectors such that the resulting vector is
the shortest vector.

The standard enumeration technique has a worst-case complexity of 2O(n
2),

where n is the dimension of the lattice. In the 1980s Fincke, Pohst and
Kannan studied how to improve the complexity of the standard enumer-
ation algorithm for solving SVP [33, 56, 34]. These algorithms are deter-
ministic and are based on an exhaustive search of lattice points within
a small convex set. In general, the running time of an enumeration al-
gorithm heavily depends on the quality of the input basis. So, suitably
pre-processing the input lattice using a basis reduction algorithm is es-
sential before applying a lattice enumeration method.

In the 90s Schnorr, Euchner and Hörner introduced the pruning tech-
nique, by which these algorithms obtained substantial speedups [107,
108]. The rough idea is to prune away sub-trees where the probability
of finding the desired short lattice vectors is small. This restricts the
exhaustive search to a subset of all solutions. Although there is a chance
of missing the desired vector, the probability of this is small compared to
the reduction in running time.

The pruning strategy was later studied more rigorously by Gama, Nguyen
and Regev [37], introducing what they called extreme pruning. In extreme
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pruning, very large parts of the search tree are cut away. This makes the
search very fast, but the probability of finding the shortest vector on a
given run is very small. However, the authors showed that the search
tree is reduced by a larger factor than the reduction in the probability of
finding the shortest vector, so one obtains a speed-up by just permuting
the basis and repeating the process a number of times. The performance
of pruned enumeration leads asymptotically to an exponential speed up
of about 2n/2. The algorithm using extreme pruning is the fastest known
and today’s state of the art when it comes to enumeration.

– exponential-space exact algorithms: these have a better running
time than the polynomial-space exact algorithms, but have exponential
space complexity. The first such algorithm is the randomized sieve algo-
rithm of Ajtai, Kumar and Sivakumar (AKS) [3], with a worst-case time
complexity of 2O(n). An alternative deterministic algorithm was later pre-
sented by Micciancio and Voulgaris [84] with time complexity 22n+O(n). It
is worth noting that heuristics can be used to improve the running time
of the AKS algorithm to e.g. 20.3836n [130].

• approximation algorithms: these are much faster than the exact algo-
rithms, but do not guarantee that their output vector is indeed a shortest one.
Their output is typically an entire reduced basis, and thus they are essentially
lattice reduction algorithms. The best known lattice reduction algorithms are
the famous LLL algorithm [69] and the BKZ algorithm [87]. Both of these
algorithms work by applying successive transformations to the input basis in
an attempt to make the basis vectors as short and as orthogonal as possible.

Our contribution: [61] We propose two new ideas, and show their potential
in speeding up lattice enumeration. First, we propose a new enumeration algorithm
called hybrid enumeration. Second, we provide an algorithm for estimating the signs
(+ or −) of the coefficients v1, v2, . . . , vn in the lattice element

∑n
i=1 vibi.

One disadvantage of the standard enumeration technique is that the algorithm
depends on the computed Gram-Schmidt (GS) orthogonal basis for computing the
intervals in which the coefficients vi giving a short vector can be found. Once the
GS orthogonal basis is computed, it fixes the order of the coefficients to be guessed.

In our work, the hybrid enumeration takes a greedy approach, where the basis
vectors are not bound by any particular order and we are free to choose which of
the coefficients vi that we have not tried before to branch for at any given point in
the search tree. We show that dynamically changing the order of the coefficients
vi that we guess lowers the number of nodes in the search tree as compared to the
standard enumeration algorithm.

The price to pay for this flexibility is increased work at each node of the search
tree. Hence, the actual time taken to enumerate a lattice using the new method
may be longer than the time taken by the standard GS enumeration. Therefore,
we propose to only use the new enumeration technique at the nodes on the highest
levels of the search tree, and then switch to standard enumeration for the remaining
levels. This still leads to a reduction in the number of nodes in comparison with
the standard enumeration method. The magnitude of the reduction depends on the
type of lattice and the level where we switch to standard GS enumeration.
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The second technique we provide is to estimate the signs of each coefficient vi.
The main idea behind the algorithm is to exploit the inner product function which
contains information about the length and angle between the basis vectors. Given
two vectors a and b, if the angle between them is less than 90 degrees, then their sum
a+ b is longer than both a and b, and their difference a− b is shorter than at least
one of a and b. To get a short vector we need to subtract one from another, which
implies that the signs of these vectors should be opposite to one another. Similarly,
when the angle between them is more than 90 degrees, then addition gives a short
vector, so their relative signs should be the same.

We generalize this observation to n vectors, developing a method for estimating
the signs of each vi together with a confidence measure for each estimate. We then
give a pruning strategy where the interval computed for each vi is cut down using
the estimate of the sign and the confidence factor. Unlike other pruning methods,
this leads to a one-sided pruning where we only cut away a portion of possible values
for vi (values where the sign is believed to be wrong).

We ran experiments to compare the efficiency of hybrid enumeration to that
of standard enumeration. Through our experiments, we observed that applying
hybrid enumeration leads to a reduction in the number of nodes, but the reduction
is asymptotically negligible and hence the algorithm has the same complexity as
that of standard enumeration. When comparing hybrid enumeration with extreme
pruning, we let enumeration using extreme pruning run for the same amount of
time that hybrid enumeration uses to exhaustively search for the shortest vectors.
What we observed is that in most cases extreme pruning will miss some of the short
vectors that are found by hybrid enumeration. If it is important to find all vectors
of length within some bound (we used the bound from [105] in the experiments),
then it is faster to use hybrid enumeration.

We ran experiments for sign-based pruning on top of both standard enumeration
and extreme pruning. In the case of running sign-based pruning on the top of
standard enumeration, we observed a modest reduction in the number of nodes in
the search tree and a reduction in the running time. However, we never failed to
find the shortest vector using sign-based pruning. In the case of running sign-based
pruning on top of extreme pruning, our method did not show any improvement
over ordinary extreme pruning. The number of nodes in the search tree is indeed
reduced, but it takes longer to find short vectors compared to the usual extreme
pruning technique.

1.3.4 Applications of elliptic and hyperelliptic curves -
effective estimates of class numbers

The arithmetic of quadratic fields, i.e. degree two extensions of Q, has interesting
applications in cryptography. It is well known that many public key cryptosystems
are based on intractable computational problems in number theory like integer fac-
torization, discrete logarithms, etc. A number of problems involving the structure
of the class groups of these fields are believed to be intractable. Consequently,
corresponding cryptographic implementations built on these problems could be con-
sidered secure given large enough parameters.

Instances of such problems include key exchange protocols using imaginary quadratic
fields [18] and real quadratic number fields [103], the NICE (New Ideal Coset En-
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cryption) cryptosystem based on the hidden kernel problem [92], one way functions
based on ideal arithmetic in number fields and the Diffie-Hellman problem [16].
It is also pertinent to mention the discrete logarithm problem for class groups of
imaginary quadratic fields, for which no efficient algorithm is known [17].

All of these problems involve the computation of the class numbers of imaginary
quadratic extensions. The difficulty lies in the hardness of factoring the discriminant
which in turn implies that computing the orders of the elements in the class group
of imaginary quadratic fields is difficult if factoring the discriminant is hard.

Our contribution: [125] In this paper we consider the results of Soleng [121]
and Gillibert [39] regarding certain families of imaginary quadratic extensions arising
out of some natural homomorphisms in the arithmetic of elliptic and hyperelliptic
curves. The results of [121, 39] show that the class groups will become arbitrarily
big when a parameter n tends to ∞ or −∞.

The objective of this paper is to compute a bound on the effective estimate
(defined in Chapter 5) for the orders of the class groups of a family of imaginary
quadratic number fields. That is, we estimate how small or large some parameter
n needs to be in order for the associated class group to have size greater than some
pre-defined value M .
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Chapter 2

Integer Factorization using Binary
Decision Diagrams

2.1 Introduction

Prime numbers have fascinated mathematicians since antiquity. The concept of a
prime number was probably known to Pythagoras, and acquired a clear definition
in Euclid’s “Elements” (300 BC): a positive integer N is a prime if it does not have
any non-trivial divisors, in other words, if the only integers that divide N are 1 and
N .

The problem of finding the prime factors of an integer was an immediate con-
sequence of the fundamental theorem of arithmetic enunciated in the “Elements”:
every positive integer N greater than 1 can be represented uniquely as a product of
prime powers. Formally, if p1, p2, . . . , pi are all distinct primes dividing N arranged in
increasing order of magnitude, then N can be uniquely written as N = pe11 p

e2
2 . . . peii ,

where ei are positive integers.

It ought to be stressed that Euclid’s theorem is only existential in nature. It is
not constructive, in the sense that the proof does not give any method of finding
the prime divisors of N .

We start this chapter by discussing some historical and modern factorization
algorithms. We then proceed to a discussion of a method that we use to attack
the factorization problem, which utilizes data structures called Binary Decision Di-
agrams (BDD). At the outset, it must be stated that BDD is a well known graph
theoretic structure [59] used to represent Boolean functions. In this chapter, we
consider the product N = pq of two large unknown prime numbers p and q, and
focus on how to recover p and q if N is known. We write all these integers in binary,
with the bits of p and q corresponding to unknown variables. We then express N
as the binary product of p and q and thereby obtain relations between the bits of p
and q (which are unknown) and the bits of N (which are given).

We represent this natural Boolean system as a BDD, which we subsequently
transform until we arrive at an equivalent, concise BDD from which the values of
p and q can be read. The resulting complexity appears in practice to be of the
order O(

√
N). Asymptotically, this would be comparable only to the trial division

method (described in the next section), though the latter is faster than the method
proposed in this chapter.
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2.2 Early factorization algorithms

In this section, we present some classical algorithms for solving the integer factor-
ization problem.

1. Trial Division: Trial division is a brute force method which goes through all
primes p ≤

√
N and tests whether they are divisors of N . The algorithm tries

to factor N by each prime in turn, removing each prime factor it finds. The
algorithm stops when the next prime trial divisor exceeds the square root of
the remaining cofactor. This method is impractical for large integers with large
prime factors. In the worst case, it can take up to O(

√
N) steps. There are

some techniques such as quadratic residues, which can speed up trial division
by skipping some primes that cannot be divisors of N . More details can be
found on page 121 in [129].

2. Fermat’s Algorithm [129]: Every odd integer N can be written as the difference
of two squares, i.e. if N is odd, then it can be written as N = a2− b2 for some
integers a and b. Let N be a composite number that we want to factor; write
N = x ·y with x ≤ y. Since N is odd, x and y must both be odd. Let a = (x+y)

2

and b = (y−x)
2

. Notice that a and b are both integers. Then x = a − b and
y = a+ b so N = x · y = (a− b)(a+ b) = a2− b2. Fermat’s algorithm succeeds
if one manages to express the number N as the difference of two squares, i.e.
if one is able to find a and b such that N = (a2 − b2) = (a+ b)(a− b). In the
worst case, this algorithm takes O(N) operations. If N = x · y, and x, y have
the same number of bits, then the algorithm takes O(

√
N) operations.

This algorithm was improved by Hart and Lehman. Hart proposed a variation
of Fermat’s factoring algorithm to factor N in O(N

1
3
+ε) steps.

Hart’s algorithm [45] begins by checking whether N is a square. If N is not a
square, then the algorithm performs trial division, but it halts when the prime
p being tested for divisibility reaches N1/3. If N has not yet been factored, it
performs the following steps: for i = 1, 2, 3, . . . , the algorithm tests whether
(d
√
Nie)2 mod N is a square. If this number equals t2 for some integer t,

then gcd((d
√
Nie − t, N)) is a factor of N . Later, Lehman [66] reduced the

complexity of Fermat’s factoring algorithm to O(N1/3).

In 1920, Maurice Kraitchick [131] improved upon Fermat’s method as follows:
instead of looking for integers a and b such that a2 − b2 = N , we ask when
a2 − b2 is a multiple of N . In other words, we try to find as many solutions
as possible to the congruence a2 − b2 ≡ 0 mod N . We will come back to this
method when discussing modern factorization algorithms.

3. Euler’s Algorithm [89]: This algorithm depends on the possibility that the
given odd composite integer N can be expressed as the sum of two squares
in two different ways; in other words, on the possibility of writing N = (a2 +
b2) = (c2 + d2) for some integers a, b, c, d with {a, b} 6= {c, d}. From these
expressions, Euler’s method factorizes the given number N by the formula

N = (k
2

2
+ h

2

2
)(l2 + m2) where m = gcd(a + c, d − b), l = gcd(a − c, d + b),

k = (a− c)/l and h = (a+ c)/m.
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These methods were principally designed for calculation by hand for small values
of N , and are not suitable if the number of digits of N is very large. The main chal-
lenge in factorizing a number is to formulate efficient algorithms without assuming
anything about the input integer.

In the early 20th century, electrically driven machines were specifically con-
structed for the purpose of factoring large integers. For example, in 1927 D. H.
Lehmer’s “Bicycle-chain sieve” [68] produced the following examples of large integer
factorizations: 1020+1 = 73×137×1676321×5964848081 and 2019210335106439 =
25709599× 78539161.

Later, in 1932, Lehmer improved on this machine and built the “Photoelectric
Number Sieve” [10] which was successful in factorizing even larger numbers: 279−1 =
2687 × 202029703 × 1113491139767 and 293 + 1 = 32 × 529510939 × 715827883 ×
2903110321.

2.3 Modern factorization algorithms

Factorization problems, which had so far attracted mainly mathematicians, had now
acquired a position of central importance in view of their applications to cryptog-
raphy. The security of the widely used RSA cryptosystem relies on the hardness of
the RSA problem. Given an RSA public key (N, e) and a ciphertext C = M e (mod
N), the RSA problem is to compute M . This problem is no harder than factoring
integers, since if the adversary can factor the number N , they can compute the
private key (N, d) from the public key (N, e). However, it is not clear whether an
algorithm for integer factoring can be efficiently constructed from an algorithm for
solving the RSA problem [101].

In the following, we mention a few instances of recent factorization algorithms.

1. Pollard’s rho method [95]: This algorithm, also known as the Pollard Monte
Carlo factorization method, was invented by John Pollard in 1975. Let N be a
composite positive integer to be factored. The algorithm generates a sequence
of integers x0, x1, x2, . . . modulo N . We start with a random integer x0 ∈ ZN ,
and a function f(x), which is easily computable (the most common choice is
f(x) = x2 + a mod N , where a 6= 0 is an element of ZN) and subsequently
obtain a sequence of integers xi = f(xi−1) for i ≥ 1.

Since ZN is finite, and xi is generated from xi−1 deterministically, the se-
quence x0, x1, x2, . . . must eventually be periodic. Now consider the sequence
x′0, x

′
1, x
′
2, . . . where each x′i is the reduction of xi modulo the unknown prime

p. The reduced sequence x′0, x
′
1, x
′
2, . . . is periodic as well (since each x′i is an

element of the finite set Zp).

Let τ and τ ′ be the smallest period of the sequence x0, x1, . . . and x′0, x
′
1, . . . ,

respectively. Then τ | τ ′. If τ < τ ′, then there exist integers i, j with i < j
such that xi 6≡ xj mod N but x′i ≡ x′j mod p, that is, xi ≡ xj mod p. In
that case, d = gcd(xj − xi, N) is a proper divisor of N . On the other hand,
if τ = τ ′, then for all i, j with i < j, we have that gcd(xj − xi, N) is either 1
or N . Note that computing xj − xi for all i, j with i < j is expensive. The
complexity of the Pollard rho method is O(

√
p), where p is the smallest prime

factor of N .
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2. Pollard’s (p − 1) method [96]: Both trial division and Pollard’s rho method
are effective for factoring N if N has small prime factors. Pollard’s (p − 1)
method is effective if p− 1 has small prime factors for some prime p dividing
N .

Pollard’s (p − 1) method uses Fermat’s little theorem, which states that for
a prime p and for a ∈ Z∗p we have ap−1 ≡ 1 mod p. The theorem implies

that for any integer k we have ak(p−1) ≡ 1k ≡ 1 mod p. Therefore, for any
multiple m of (p − 1), we have am ≡ 1 mod p, that is p | (am − 1). Thus,
computing gcd((am− 1), N) might reveal a factorization of N . If p divides N ,
then p divides gcd((am − 1), N). We cannot compute am mod p because p is
an unknown prime factor of N . However, we can compute am mod N .

Let B be a positive integer. To find m > 1 which is a multiple of (p− 1), let
p1, p2, . . . , pt be all primes between 2 and B. For each i = 1, 2, . . . , t, define
ei = blogpi Bc. Consider the exponent m =

∏t
i=1 p

ei
i . If p − 1 is B-smooth,

then the exponent m is a multiple of (p − 1). A number is called B-smooth
if all its prime factors are less than or equal to B. It is important to note
that m may be quite large so instead of computing am mod N directly, and
then computing gcd(am − 1, N), one may sequentially compute the sequence
ap

e1
1 , (ap

e1
1 )p

e2
2 , ((ap

e1
1 )p

e2
2 )p

e3
3 . . . , and so on. After this series of exponentiations,

one can compute gcd(am − 1, N). Pollard’s (p − 1) method can be used to
discover factors p in time roughly proportional to the largest prime factor of
p− 1. The algorithm runs in time O(B log2N). Evidently, this is only going
to be efficient for small values of B.

3. Continued fraction factorization [67]: This factorization method was developed
by D.H. Lehmer and R.E. Powers in 1931 and is based on the continued fraction
expansion of

√
N . To factor a positive integer N which is not a square, we

compute the partial continued fraction expansion {(Pr, Qr)}∞r=1 of
√
N (or√

kN for some integer k). If Pr and Qr are the r-th convergents to
√
N for

r = 0, 1, 2, . . . , we have

P 2
r −NQ2

r = (
√
NQr − Pr)2 − 2

√
NQr(

√
NQr − Pr)

so that

|P 2
r −NQ2

r| ≤ |
√
NQr − Pr|2 + 2

√
NQr|

√
NQr − Pr| < 2

√
N.

Here
√
N is irrational because we assume that N is not a square; that is,

Pr
Qr
6=
√
N for all r. Then 0 < |P 2

r −NQ2
r| < 2

√
N for all r ≥ 1.

In order to factorize N , we fix a factor base of small primes B = p1, p2, . . . , pt
and compute the convergents Pr/Qr for r = 1, 2, 3, . . .. Let tr = P 2

r − NQ2
r.

Going modulo N , we have, P 2
r ≡ tr mod N . We check the smoothness of

tr by trial division of tr by the primes in B. Since some of the values of tr
are negative, we include −1 as an element in the factor base so that B =
−1, p1, p2, . . . , pt. Every smooth tr gives a relation. The crucial point is that
|tr| ≤ 2

√
N , which is small relative to N ; this follows from the theory of

continued fractions. After sufficiently many relations are obtained, we combine
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them to obtain congruences of the desired form, and solve them to obtain the
factorization of N .

It is worth noting that the continued fraction factorization method was the
first integer factorization algorithm with a sub-exponential running time. A
sub-exponential expression in ln N is, in this context, given by an expression
called L notation, and is defined as: LN [α, c] = e(c+o(1))(ln N)α(ln ln N)(1−α)

where c > 0 and 0 ≤ α ≤ 1. Plugging in α = 0 in LN [α, c] gives a polynomial
expression in ln N . On the other hand, for α = 1, the expression LN [α, c] is
exponential in ln N . For 0 < α < 1, the expression LN [α, c] is sub-exponential
in ln N . The time complexity of the algorithm is LN [1

2
,
√

2]. John Brillhart
and Michael Morrison in 1970 used this algorithm to achieve the following
factorization:

2128 + 1 = 59649589127497217 × 5704689200685129054721.

4. Elliptic curve factorization [72]: This is the third fastest integer factorization
method which makes use of elliptic curves and was found by Hendrik Lenstra
in 1987. This factorization method is a clever adaptation of Pollard’s (p− 1)
method. The time complexity of elliptic curve factorization depends on the
size of the smallest prime factor p in the factorization of N and is given by
Lp[

1
2
,
√

2]. Therefore this method can be efficient if p is small.

Given a number N to be factored, we choose an arbitrary elliptic curve E :
Y 2 = X3 + aX + b mod N and a non-trivial point P = (α, β) on the curve.
Fix a factor base B as a finite set of small primes and define M =

√
N and

m =
∏
pi
ei where ei = blog M/ log pic. As per the addition law on elliptic

curves, if the attempt to determine mP mod N fails, i.e. if the difference
in the X coordinates (X2 − X1) is not relatively prime to N , then it will be
successful in factoring N as gcd(X2 −X1, N) will be a proper divisor of N .

5. Dixon’s factorization method [31]: This algorithm was designed by John D.
Dixon in 1981. Unlike Fermat’s method which attempts to express N as a
difference of two squares, here the factorization method finds differences of
squares modulo N of the form a2 ≡ b2 mod N (as in the Kraitchick method
mentioned above) which can be transformed into the factorization N = gcd(a+
b,N)× (N/gcd(a+ b,N)).

This method works as follows: choose a bound B, and calculate a factor base
P = {p1, p2, . . . , pm}, which is the set of all primes less than or equal to B.
Search for positive integers {a1, a2, . . . , am+1} such that ai

2 ≡ ∏ p
eij
j mod N

with pj ∈ P . After generating enough relations, usually a few more than the
size of P , we can use linear algebra (for example, Gaussian elimination) to
multiply together various relations in such a way that the exponents ej for
all j are even. This gives us the congruence a2 ≡ b2 mod N , which can be
transformed into a factorization of N , namely N = gcd(a+b,N)×(N/gcd(a+
b,N)). If the factorization turns out to be trivial, which happens when a ≡ b
mod N , then we have to try out other relations until we get a non-trivial
pair of factors of N . Dixon’s factorization algorithm has sub-exponential time
complexity LN [1

2
, 2
√

2].
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6. Quadratic sieve algorithm [97]: This is another sub-exponential integer fac-
toring algorithm, invented by Carl Pomerance in 1981. Many of its ideas go
back to Kraitchick and the continued fraction factorization method. The com-
plexity of this method is LN [1

2
,
√

2], i.e. the same as the continued fraction
factorization method.

However, the quadratic sieve offers the possibility of sieving, a process that
replaces trial division in the continued fraction factorization method. As a
result, the quadratic sieve method achieves a better running time. Another
advantage of the quadratic sieve method over the continued fraction method is
that with the quadratic sieve it is possible to distribute the task of factoring to
many computers such that each computer can be given its own set of quadratic
polynomials to sieve.

7. General number field sieve algorithm [70]: This algorithm is the most sophis-
ticated and efficient integer factorization algorithm known to date. It was first
proposed for the so-called Fermat numbers, i.e. for numbers of the form 22k+1,
where k is some positive integer; later, it was extended to general composite
numbers by Pomerance et al [19].

The number field sieve algorithm is based on the earlier quadratic sieve method
but is more involved because all computations are done in the ring of algebraic
integers in a suitable number field. The key idea is to exploit the factorization
of smooth numbers in a well chosen algebraic number field. The difference over
the complexity of the quadratic sieve is that the quantity in the exponent, the
power of logN , has its exponent reduced from 1/2 to 1/3, giving the complexity

LN [1
3
, 3

√
64
9

].

8. Quantum factoring [113]: In 1994, Peter Shor invented a polynomial time
quantum factoring algorithm for integer factorization. Shor’s algorithm con-
sists of two parts: (i) a reduction of the factoring problem to the problem of
finding the order of an element a in the group (Z∗N), where N is the integer
to be factored; this problem can be solved on a classical computer, and (ii) a
quantum algorithm for solving the order-finding problem. In general, quantum
algorithms are probabilistic, which means that they find the correct answer
with high probability, and the probability of failure can be decreased by re-
peating the algorithm. Shor’s algorithm is significant because given a large
(that is, with a sufficient number of qubits) quantum computer, it is possible
to break the RSA public key cryptosystem.

2.4 Binary Decision Diagrams

Researchers have studied different ways of transforming the integer factorization
problem into the problem of solving systems of Boolean equations. Once we have
a system of Boolean equations, there are different types of techniques that can be
applied in order to solve them. For example, SAT solving and algorithms using
binary decision diagrams have all been tried. In [54, 6, 73], the problem of integer
factorization is translated into SAT instances. In [6, 73], the authors also apply
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SAT solvers to the SAT instance of the factorization problem and measure their
complexity.

Researchers have also considered how to use BDD for the integer factorization
problem. In [132] it is shown that the BDD that verifies a multiplication circuit on
n bits has node complexity of Ω(2

n
2 ). Such a BDD can be used to factor an integer

in polynomial time in the number of nodes. Recently, the authors of [119] looked at
a different way to transform integer multiplication into a BDD.

In this chapter, we transform the integer factorization problem into a BDD in
a different way compared to the previous works in [119, 132]. Moreover, [119] does
not give a factorization algorithm to be used on their BDD. We use the technique
of linear absorption to factor RSA numbers using our BDD. The motivation for
using the linear absorption technique comes from [98], where it is shown that using
this method to solve a Boolean system of equations outperformed SAT solvers on
a particular class of problems. Out of academic curiosity, we wanted to see how
well this linear absorption technique performs on the integer factorization problem.
We ran experiments and got similar behaviour and complexity as in [6, 73], but we
tested larger instances. Our experiments suggest that the complexity for factoring
2n bit RSA numbers using the method of linear absorption is O(2n).

2.4.1 Description of Binary Decision Diagrams (BDD)

Binary Decision Diagrams are data structures used to represent a Boolean function
[59]. There are different variants of BDD such as OBDD [14], ZBDD [57] and πBDD
[85]. In this chapter, we focus on a particular type of BDD which will be described
below.

We focus primarily on representing integers N that have only two prime factors
p and q of the same bit size as a system of Boolean equations. By solving the
system, one can obtain the prime factors p and q. We believe that our method can
be generalized to numbers with arbitrarily many prime factors.

In our work, we define a Binary Decision Diagram (BDD) as a directed acyclic
graph with a unique root node at the top and a true-node at the bottom. The nodes
in a BDD are arranged in horizontal levels. In Figure 2.1 we give an example of
a BDD, and it may be useful to refer to this figure when reading the description
below.

Edges in the BDD connecting two adjacent nodes are labelled as 0-edges or as
1-edges. Edges are drawn downwards only, which means that no edges are drawn
between the nodes on the same level. The 0-edges are drawn as dotted lines, while
the 1-edges are drawn as solid lines.

Each level in a BDD is associated with a single variable or linear combination of
variables. A path in a BDD is a sequence of consecutive edges, where the end node
of one edge is the start node of the next edge. A complete path starts in the top
node and ends in the bottom node. Since each edge is labelled either as a 0-edge
or a 1-edge, the path can be seen as a sequence of binary assignments. A complete
path and its corresponding linear system are shown in Figure 2.1.

Each edge in a path can be seen as an assignment of a value (0 or 1) to a variable
or linear combination of variables associated with that level. If an edge labelled
with e ∈ {0, 1} starts from a node on a level associated with a linear combination
l, it yields the linear equation l = e. Thus, a complete path gives a system of
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Figure 2.1: A binary decision diagram with 6 levels and linear combinations from a
set of 6 variables. The red path corresponds to the linear equation system on the
right.

linear equations. The whole BDD after construction encodes a set of binary vectors,
namely the solutions to all linear systems generated by all complete paths in the
BDD. A linear system may or may not have a solution. If a path gives a linear
system that has a solution, we call it a consistent path, and, otherwise, we say that
it is an inconsistent path. Two BDD are equivalent if they encode the same set of
binary vectors, i.e. the same set of solutions to all linear systems given by the paths.

An edge need not go to a node on the level directly below. In that case we say
that the edge jumps over some levels. For an edge that jumps over levels, we can
always insert nodes on each level that it jumps over. For example, if an edge jumps
from level i to level i + 2, we can insert a node at level i + 1 such that the newly
inserted node has outgoing 0- and 1-edges, with both of these edges pointing down
to the same node in level i+ 2 that the original edge (which jumped over level i+ 1)
pointed to. Both of these BDD representations are equivalent, i.e. they encode the
same Boolean function.

2.4.2 Operations in a BDD

Given a set of Boolean equations, we draw the corresponding binary decision diagram
with nodes, edges and levels. Each level of the BDD is associated with a value, i.e.
with a single variable or a linear combination of variables. The number of paths in
the BDD can be exponential in the number of nodes; thus, even if the number of
nodes is small, the BDD can have a very large number of paths. On a high level, the
actual structure of a given BDD encodes all relations between the variables in the
system of Boolean equations we are trying to solve. In other words, the structure
of the BDD represents the system of Boolean equations. Finding the solution to
an equation system represented as a BDD amounts to finding a consistent path in
the BDD, and solving the associated linear system of equations in order to obtain a
solution to the original system. The operations performed on a BDD are analogous
to the elementary row operations used in Gaussian elimination for linear systems in
Boolean variables. The operations used are the following:
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l1

l2

A B C D

l1

l1 + l2

A B C D

Figure 2.2: Adding levels in a BDD

1. Adding levels in a BDD:

The add operation allows us to add the linear combination corresponding to a
level in the BDD to the linear combination corresponding to the level directly
below, and change the BDD accordingly to keep the set of solutions encoded
by it the same. The procedure is shown in Algorithm 1, and we explain the
general case of adding levels using Figure 2.2. The figure shows the case when
all edges are present. In the cases where some of the edges are missing, we can
imagine that the missing edges lead to some fictive nodes, change the edges
according to Figure 2.2, and then remove the fictive nodes. In the case when
there is an edge which jumps from level i directly to level i+ 2 (skipping level
i+ 1), we can insert a node at level i+ 1 before performing the add operation.

Let l1 and l2 be the linear combinations corresponding to two adjacent levels,
with l1 on the top. In the following, we will identify a linear combination with
its corresponding level; in other words, we will refer to the level corresponding
to the linear combination li simply as “level li”. We want to add l1 onto l2. In
the general case, there are two edges going out from the node on the top level:
a 0-edge and a 1-edge. By choosing values for l1 and l2, we end up in one of the
four nodes labelled A,B,C,D in Figure 2.2. When we add l1 to l2, the lower
level becomes associated with the linear combination l1 + l2, and the choice
of values for l1 and l2 must send us to the same node as in the original BDD.
For instance, the combination l1 = 1 and l2 = 0 leads to node C in the BDD
on the left-hand side of Figure 2.2. That choice of values gives l1 + l2 = 1, so
after adding the levels together, the values l1 = 1 and l1 + l2 = 1 must also
end up in node C in the BDD on the right-hand side. To preserve the set of
vectors encoded in the BDD when replacing l2 by l1 + l2, we must “flip” edges
going out from the node pointed to by the 1-edge originating at the node on
level l1.

Let li be a level containing n nodes. The complexity of adding li to li+1 is
O(n) because we only flip 2 edges for every node in the given level, and this
is linear in the number of nodes.

2. Swapping levels in a BDD:

When swapping levels, the linear combination associated with level i is inter-
changed with the one corresponding to level i+ 1, without affecting the set of
vectors encoded by the BDD. We explain the general case of swapping levels
using Figure 2.3, with pseudo-code given in Algorithm 2.

Let l1 and l2 be the linear combinations corresponding to two adjacent levels,
with l1 being above l2. We want to swap these linear combinations without
changing the set of vectors encoded in the BDD. For the node on level l1, we
have two outgoing edges. As seen previously, choosing values for l1 and l2, we
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Algorithm 1 Add level (i)

Input: Nodes in the level i and nodes in the level i + 1 with their associated
linear combinations li and li+1 respectively.
Output: Nodes in the level i and nodes in the level i + 1 with their associated
linear combinations li and li + li+1 respectively.

for Every node n on level i do
n1 ← child along 1-edge from n.
Swap 0- and 1-edges from n1.

end for

l1

l2

A B C D

l2

l1

A B C D

Figure 2.3: Swapping levels in a BDD

end up in one of the four nodes labelled A,B,C,D in Figure 2.3. In the BDD
on the left-hand side prior to swapping, the choice of values l1 = 0 and l2 = 1
leads to the node labeled B. After we swap l1 and l2, the choice of values
l1 = 0 and l2 = 1 must still lead to the node labeled B. This is achieved by
swapping edges on the lower level of the paths where l1 and l2 have different
values.

The swap and add operations have linear time complexity in the number of
nodes on the two affected levels, so it is very cheap to do when this number
is small. The drawback is that the number of nodes on the lower of the two
levels may, in the worst case, double during the operation. This happens, for
instance, when there is only one node on the lower level prior to applying
the operations, but after performing an add or swap operation, two nodes are
needed in order to keep the paths intact. Hence, repeatedly applying swap or
add operations to the BDD may lead to an exponential growth in the number
of nodes. The number of nodes may also decrease after reduction, but finding
an arrangement of the linear combinations giving the smallest reduced BDD
is an NP-hard problem [9].

Algorithm 2 Swap level (i)

Input: Nodes in the level i and nodes in the level i + 1 with their associated
linear combinations li and li+1 respectively.
Output: Nodes in the level i and nodes in the level i + 1 with their associated
linear combinations li+1 and li respectively.

for Every node n on level i do
n0 ← child along 0- edge from n.
n1 ← child along 1- edge from n.
Swap 0-edge from n1 and 1-edge from n0.

end for
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3. Linear absorption: removing inconsistent paths in a BDD

In constructing a BDD to represent a set of equations, there might be some
dependencies among the linear combinations. As these dependencies lead to
inconsistent paths, we would like to eliminate them in order to facilitate finding
the consistent paths that lead to a solution of the associated linear system.
This elimination process is called linear absorption. This operation is explained
in Algorithm 3, and Figure 2.4 shows a small example of the steps carried out
in applying linear absorption to a BDD.

Let l0, l1, . . . , lr be levels such that l0+ l1+ . . .+ lr = 0, so that they are linearly
dependent. We start with level l0 and repeatedly use the swap operation to
move it downwards in the BDD until l0 is at the level just above l1. We then
apply the add operation, transforming level l1 into a level associated with the
linear combination l0 + l1. Using the swap operation again, and moving l0 + l1
down to the level just above l2, we then apply the add operation to transform
level l2 into a level corresponding to l0 + l1 + l2. We proceed in the same way
until we have processed all r + 1 variables.

The final add operation creates the sum l0 + . . . + lr for the level that was
previously associated with lr. Since l0 + l1 + . . . + lr = 0 by assumption,
we have created a level with 0 as its linear combination. We call this level
a 0-level. The dependency l0 + . . . + lr = 0 has now been condensed into a
single level, and whether a path is consistent or not with this dependency now
only depends on the edges going out from this level. A path having a 1-edge
going out from this 0-level gives a linear system containing the inconsistent
“equation” 0 = 1 directly. Hence, all 1-edges going out from the 0-level can
be removed.

After removing all 1-edges from the 0-level, all remaining paths in the BDD will
be consistent with the particular dependency that we started with, regardless
of how we transform the BDD using swap and add operations afterwards.
When removing the inconsistent 1-edges, we say that the linear dependency
l0 + . . .+ lr = 0 has been absorbed into the BDD.

A 0-level with only outgoing 0-edges does not give any constraint or infor-
mation that can be useful in finding a solution to the problem instance. We
may therefore remove the entire 0-level. This is done by redirecting all edges
pointing to nodes on the 0-level to their children along the 0-edge, and then
deleting all nodes on the 0-level.

Repeating the steps in this example, we note that a BDD admitting several
linear dependencies can be restructured to a simpler BDD with a reduced
number of levels.

Linear absorption essentially amounts to repeatedly applying the add and
swap operations. As we have pointed out earlier, the use of these operations
(add and swap) at level i might double the number of nodes at level i + 1.
Performing one linear absorption involves each level only once, so absorbing
one linear dependency might in the worst case double the number of nodes in
the BDD. An upper bound on the complexity of absorbing k dependencies is
therefore O(n2k), where n is the number of nodes in the initial BDD.

4. Reducing a BDD:
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0. x1 + x4+ x5+ x6

1. x1 + x5

2. x1 + x3+ x5

3. x3 

4. x2 + x3+ x4+ x6
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5

8

6 7

T
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(a) After swapping l0 and l1.

0. x1 + x4+ x5+ x6

1. x1 + x5

2. x3 

3. x3 

4. x2 + x3+ x4+ x6

1

23

564

789

10

T
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(b) After adding l0 to l2.

0. x1 + x4+ x5+ x6

1. x1 + x5

2. x3 

3. 0 

4. x2 + x3+ x4+ x6

1

2 3

67 4 5

1011 8 9

12 13

T

(c) After adding l0 + l2 to l3.

0. x1 + x4+ x5+ x6

1. x1 + x5

2. x3 

3. x2 + x3+ x4+ x6

1

23

4

5

T

(d) After deleting 1-edges and re-
moving 0-level, followed by reduc-
tion

Figure 2.4: Absorbing the linear dependency l0 + l2 + l3 = 0 where l0 = x1 + x5,
l2 = x1 + x3 + x5 and l3 = x3. Every BDD in the figure has the same solution space
and encodes the same Boolean function.
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Algorithm 3 Linear Absorption (i1, i2, . . . , ir)

Input: BDD with li1 , . . . , lir as linear combinations on levels i1, i2, .., ir with i1 <
i2 < . . . < ir such that li1 + . . .+ lir = 0.
Output: New BDD without the linear dependency li1 + . . .+ lir = 0.

for j = 1 to r − 1 do
c← ij
while c < ij+1 − 1 do

Swap level (c).
c← c+ 1

end while
Add level (c)

end for
for Every node n on level ir do

Delete 1-edge from n
Redirect all incoming edges to n to 0-child of n
Delete n

end for

A BDD is said to be reduced if, for a given arrangement of its linear combina-
tions, it has the minimal number of nodes among all BDD encoding the same
set of binary vectors. In other words, a BDD is reduced if no further nodes can
be deleted or merged in it while keeping the set of encoded solutions intact.

Performing linear absorption may result in one of the following cases, in which
we apply reduction:

(i) The BDD after linear absorption might contain nodes with no incoming
or outgoing edges. Such nodes become dead ends for any path reaching
them, and they can never be part of a complete consistent path and can
therefore be removed.

(ii) If both the 0- and 1-edge of a node t in level i point to the same node
t0 in some level, then we redirect all incoming edges of t to t0 and delete
the node t.

(iii) If a node s on level i has the same 1-child and 0-child as t, then we
redirect all incoming edges of s to t and delete s.

Note that deleting one dead end node may create other dead end nodes on the
level above, and all such nodes should be deleted in a recursive fashion. We
always start reduction on the lowest level and perform the operations level by
level, going upwards. This ensures that at any particular level, the part of the
BDD below will always be reduced.

In practice, reduction is a semi-local operation that only affects the nodes close
to some particular level, and, in the worst case, applying it to one particular
level has run time O(n2). It has been shown [15] that for a fixed set of lin-
ear combinations associated with the levels, a reduced BDD is always unique
(regardless of the order in which the nodes are deleted).
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Algorithm 4 Reduce (B)

Input: BDD B with k levels
Output: Reduced BDD

for Each i = k to 1 do
for Each node t on level i do

if t has no incoming or outgoing edges then
Delete t

end if
if 0-edge and 1-edge of t points to the same node t0 then

Redirect all incoming edges of t to t0
Delete t

end if
if Another node s on level i has the same 1-child and 0-child as t then

Redirect all incoming edges of s to t
Delete s

end if
end for

end for

2.5 Integer multiplication represented as a BDD

In this section we will show how the multiplication of two n-bit numbers can be
represented via a BDD. The motivation behind this is that we want to express
multiplication as as system of Boolean equations, with the unknown factors p and
q of a known integer N = pq as variables. By building a BDD that represents
these equations and applying the linear absorption operation, we can solve the set
of equations in order to factor N = pq. We focus on the case of RSA moduli, i.e.
N = pq where both p = (pn−1, . . . , p0) and q = (qn−1, . . . , q0) have n bits each,
and N is a fixed and known 2n-bit value. Nonetheless, the method can easily be
extended to the multiplication of arbitrary integers. We have

N =
2n−1∑
i=0

Ni2
i p =

n−1∑
i=0

pi2
i q =

n−1∑
j=0

qj2
j.

The product N = pq can now be written as follows, in terms of bits:

(qn−1 . . . q2 q1 q0) (pn−1 . . . p2 p1 p0)
p0qn−1 . . . p0q2 p0q1 p0q0

+ p1qn−1 p1qn−2 . . . p1q1 p1q0
+ p2qn−1 p2qn−2 p2qn−3 . . . p2q0
... . .

. ...
...

... . .
.

+ pn−1qn−1 . . . pn−1q2 pn−1q1 pn−1q0
= N2n−1 N2n−2 . . . Nn+1 Nn Nn−1 . . . N2 N1 N0

(2.1)

The plus signs in Table 2.1 represent ordinary integer addition. We refer to all
terms of the form piqj with i+ j = c as column c of the table.
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1

v + 2i+jv

pi

qi

Figure 2.5: The term piqj adds 2i+j to v when pi = qj = 1, and 0 otherwise.

Let vk be the number given by the k least significant bits of N . We now look
more closely at how the number N is built from the unknown terms piqj. We set
v0 = 0. We look at column 0, which has the term p0q0. This column will contribute
the value 2i+j = 20+0 = 1 to v0, provided p0 = q0 = 1. For column 1, we will add
the value 2i+j = 20+1 = 2 to v1 for each of the terms p0q1 and p1q0 that evaluates to
1. We compute the numbers vk for 0 ≤ k ≤ 2n− 1 in the same manner.

Adding up the first k columns of the multiplication table above will result in the
number vk + 2kv, where v is the carry pattern from the additions that will affect
the next columns. Note that the k least significant bits of N will be determined by
the additions in the first k columns, and will not change when performing the rest
of the multiplication.

2.5.1 Basic building block of the BDD

The terms that are added when computing the product are of the form piqj, which
can have values 0 or 1. The term piqj appears in column i + j, and hence will
contribute either 0 or 2i+j to N . We can associate the value of N computed so
far to the nodes in a BDD. If the value computed before processing piqj is v, the
value after processing piqj will be either v or v + 2i+j. This is expressed in the
graph structure in Figure 2.5. This small subgraph is the basic building block for
constructing a BDD representing the whole multiplication N = pq.

2.5.2 Building the multiplication BDD

We construct a BDD representing the multiplication by going through the multipli-
cation table (2.1) column by column, starting at column 0.

Column 0: Initially, the value computed so far, v0, is 0. We begin constructing
the BDD by building the structure for column 0, which only contains the term p0q0.
The top of the BDD will only contain the basic building block, as shown in Figure
2.6a. Since processing p0q0 completes the contribution from column 0, the possible
values for v1 are listed in the nodes on the lowest level (so far only 0 and 1). We
can now find all values that do not match the actual v1 given by the known N , and
delete the nodes corresponding to those values. In the RSA model, N being odd,
the bit values p0 and q0 are necessarily equal to 1, and so we delete the node that
corresponds to v1 = 0. The result is shown in Figure 2.6b.

Column 1: We continue building the BDD from the bottom node in Figure
2.6b. The first term in column 1 is p0q1, so the two new levels we get when adding
the basic building block starting from this node will be associated with p0 and q1.
The basic building block has two nodes on the bottom, and the values in these nodes
will be 1 in the case that p0q1 = 0, and 3 when p0 = q1 = 1. This is shown in Figure
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(a) p0q0 adds 1 when p0 = q0 = 1.
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(b) After deleting impossible node for v1.

Figure 2.6: BDD after processing column 0.
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(a) Adding p0q1 to the value we have so far.
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(b) Complete construction of BDD for
columns 0 and 1.

Figure 2.7: BDD after processing column 1.

2.7a.

To add the second term p1q0 in column 1, we extend the BDD by adding two
basic building blocks from each of the bottom nodes we have up to now. The levels
for the nodes will be associated with p1 and q0. Extending from the node containing
the value 1 will produce two new bottom nodes with values 1 and 3, respectively.
Extending from the node with value 3 will produce two new bottom nodes with
values 3 and 5, respectively. Nodes with equal values can be merged, so we end up
with the BDD in Figure 2.7b.

We have now finished the construction for column 1, and can check to see which
nodes have values consistent with the known v2, i.e. the number given by the two
least significant bits of N . If v2 = (01)2, we delete the node on the lowest level with
value 3, and if v2 = (11)2, we delete the nodes containing 1 and 5.

Column k: We can continue building the BDD in a recursive fashion. Assume
that we have completed the construction for column k−1, and have a current bottom
level with t nodes on it. Let these nodes be A0, . . . , At−1, where the value in each
Ai is vk + i2k. We extend a basic building block corresponding to the first term in
column k from each Ai.

The values in the two bottom nodes extending from Ai will be vk + i2k and
vk + (i + 1)2k. The latter of these values will be the same as the value in the first
bottom node extending from Ai+1. These nodes can be merged, so all basic building
blocks will be linked together as shown in Figure 2.8. Due to this linking, the number
of nodes on the new bottom level will be t+ 1 instead of 2t.

We continue in this fashion for each of the terms in column k. Let the number
of terms in column k be ak. Each term adds one to the number of nodes on the
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vk

vk + 2kvkCol k

pi

qi

A0 A1
A2 At−1

vk + 2k

vk + 2 · 2k

vk + 2 · 2k vk + (t− 1) · 2k

vk + (t− 1) · 2k vk + t · 2k

Figure 2.8: Adding the first term piqj in column k. Basic building blocks are linked
together.

new bottom level, so after adding the basic building blocks for the last term, the
number of nodes on the bottom level will be t+ ak. Their values will be vk + i2k for
i = 0, . . . , t+ ak − 1.

At this point the addition of column k is complete, and we must check which
nodes have values consistent with vk+1. If Nk = 0, the nodes with values vk + i2k for
even i will match the given N , and if Nk = 1, the nodes with i odd will be consistent
with N . Hence, every other node will be inconsistent with vk+1 and must be deleted,
so that we end up starting the next column with b(t+ ak)/2c or d(t+ ak)/2e nodes,
depending on the given value of N .

Completing the BDD: Once the construction for the final column is done, the
full multiplication pq = N is expressed in the BDD. At this point, only the node on
the bottom level having value N should be kept, and all other nodes on that level
should be deleted. The node with value N becomes the bottom node of the BDD.
Finally, the BDD should be reduced to remove any remaining dead ends.

2.5.3 Size of the constructed BDD

We conclude the section by proving that the number of nodes in the initial BDD
representing N = pq will be O(n3). Hence, the multiplication of large RSA numbers
that cannot be factored in practice can still be easily represented as a BDD.

The following lemma gives a formula for the number of terms in a particular
column. The correctness of the formula easily follows from the multiplication table
(2.1).

Lemma 2.5.1. Let ak be the number of terms in column k of the multiplication
table representing the product pq = N , where p and q are n-bit numbers. Then

ak =

{
k + 1 0 ≤ k ≤ n− 1,
2n− k − 1 n ≤ k ≤ 2n− 2.

The next step is to count the number of nodes on the bottom level of the BDD
when starting the construction of the nodes for column k. Our aim is to get an
upper bound on the number of nodes in the BDD. In the following, when we have t
nodes on the bottom level before deleting nodes that contradict the known value of
vk, we always assume that the number of nodes remaining after deletion is dt/2e.
Lemma 2.5.2. Let tk be the number of nodes on the first level representing the
addition of terms in column k. Then

tk ≤


1 k = 0,
k 1 ≤ k ≤ n,
2n− k + 1 n+ 1 ≤ k ≤ 2n− 1.
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Proof. The case for k = 0 is trivial: the BDD starts with a single top node, so
clearly t0 = 1.

We notice that the multiplication table (2.1) of 2n-bit numbers p, q follows the
pattern that the number of terms in each column increases by one up until column
n−1. We prove our claim for k in the range 1 ≤ k ≤ n by induction. The statement
is true for k = 1 since we always start with a single node after column 0 is complete
when making nodes for column 1. Assume that tk = k for some 1 ≤ k ≤ n − 1.
The addition of the first term in column k will add two new levels to the BDD; the
first will contain k nodes, and the second will contain k + 1 nodes. Each addition
of a new term adds two new levels, and the number of nodes on the second of these
will have one more node than the previous one. Since there are ak = k + 1 terms
by Lemma 2.5.1 in column k, the number of nodes on the bottom level after adding
the last term will be k + (k + 1) = 2k + 1. Half of the nodes are inconsistent with
the given vk+1; after removing them, we are left with tk+1 = d(2k + 1)/2e = k + 1
nodes. This shows the correctness for the case 1 ≤ k ≤ n.

The pattern in the multiplication table (2.1) from column n to column 2n− 1 is
that the number of terms decreases by one for each column. We show the formula
for n+ 1 ≤ k ≤ 2n− 1 also by induction, but the base case is less trivial this time.
We know that tn = n, and need to show that tn+1 = 2n − (n + 1) + 1 = n to start
the induction. The construction of nodes for column n starts with tn nodes. In a
similar fashion as explained above, two new levels get added for each term in column
n, and the second of these increases by one node as compared to the previous one.
The bottom level, after adding all an terms, is the starting level for column n + 1,
and will contain tn + an nodes. We then delete half of these nodes (which are in
conflict with the value of vn+1). With tn = n and an = n− 1 from Lemma 2.5.1, we
get tn+1 = d(2n− 1)/2e = n, which justifies the base case.

Assume now n + 1 ≤ k ≤ 2n− 2 and tk = 2n− k + 1. As explained above, the
number of nodes on the level at which column k + 1 starts will be tk + ak before
deleting nodes, and d(tk + ak)/2e after deletion. We then get tk+1 = d(2n− k + 1 +
2n− k − 1)/2e = d(4n− 2k)/2e = 2n− (k + 1) + 1, as desired.

Knowing ak and tk for 0 ≤ k ≤ 2n− 2, we can count the (maximum) number of
nodes in the part of the BDD representing the additions in column k.

Lemma 2.5.3. Let Tk be the number of nodes in the BDD representing the additions
in column k. Then

Tk ≤


2 k = 0,
3k2 + 3k 1 ≤ k ≤ n− 1,
3n2 − 5n+ 2 k = n,
3(2n− k − 1)(2n− k) n+ 1 ≤ k ≤ 2n− 2.

Proof. By the construction of the previous columns, the level at which additions in
column k begin contains tk nodes. Each term in column k adds first a new level
with the same number of nodes as the level above, and then a level with one node
more. This continues for each of the ak terms in column k, so that the last two
levels added have tk + ak − 1 and tk + ak nodes, respectively. The last level belongs
to column k+ 1, and should not be counted, so we get tk + tk + (tk + 1) + (tk + 1) +
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. . .+ (tk +ak− 1) + (tk +ak− 1) nodes for column k in total. This can be written as

Tk =

ak−1∑
i=0

2(tk + i) = 2aktk + 2

ak−1∑
i=0

i = 2aktk + ak(ak − 1) = ak(2tk + ak − 1).

It is now straightforward to verify the four cases stated in the lemma by inserting
the expressions for ak and tk from Lemmas 2.5.1 and 2.5.2 into the equation.

We are now ready to state the main result.

Theorem 2.5.4. Let N = pq, where N is known and p and q are unknown n-bit
integers. Let Bn be the number of nodes in the BDD representing N = pq. Then

Bn ≤ 2n3 − 4n+ 5.

Proof. The proof follows by summing up the values for Tk given in Lemma 2.5.3 for
all columns in the multiplication table, and adding 1 for the bottom node. In the
calculations we make use of the standard formulas

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

and
n∑
k=1

k =
n(n+ 1)

2
.

The proof then follows by straightforward calculation:

Bn = 1 +
2n−2∑
k=0

Tk = 1 + T0 +
n−1∑
k=1

Tk + Tn +
2n−2∑
k=n+1

Tk

≤ 1 + 2 +
n−1∑
k=1

(3k2 + 3k) + (3n2 − 5n+ 2) +
2n−2∑
k=n+1

3(2n− k − 1)(2n− k)

= 3n2 − 5n+ 5 + 3
n−1∑
k=1

k2 + 3
n−1∑
k=1

k + 3
n−2∑
k=1

(2n− (n+ k)− 1)(2n− (n+ k))

= n3 + 3n2 − 6n+ 5 + 3
n−1∑
k=2

(k − 1)k

= 2n3 − 4n+ 5.

2.6 Factoring using BDD with linear absorption

Summarizing all our observations and results above, an algorithm for finding the
factors p and q of an unknown integer N = pq can be states as follows.

We have constructed many BDD for various values of N , following the descrip-
tion given in the previous section. For two n-bit numbers p = (pn−1 . . . p0) and
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Algorithm 5 BDD Factoring (N)

Input: A positive integer N = pq where p and q are primes of equal bit-length n.
Output: p and q

B ← BDD representing N = pq
while Linear dependencies exists in B do

Find i1, i2 ← levels such that li1 + li2 = 0
Linearly absorb (i1, i2)
Reduce(B)

end while
∆← path in B
Assign values of p0, p1, . . . , pn−1 and q0, q1, . . . , qn−1 from ∆
Return p =

∑n−1
i=0 pi2

i and q =
∑n−1

i=0 qi2
i.

q = (qn−1 . . . q0), there are n2 different terms piqj used in the computation of the
product pq. Each term will give two levels in the constructed BDD, so the total
number of levels in the BDD will be 2n2. There are exactly 2n unknown variables pi
and qj, and each variable initially occurs on exactly n different levels. This duplica-
tion of variables in different levels is what gives rise to all the linear dependencies.
See Figure 2.9 for an example of what the structure of a complete multiplication
BDD looks like. Note the pattern that emerges from the borders between different
columns, where half the nodes have been deleted.

Figure 2.9: BDD
for N = 471953.

Each path in the BDD suggests values for the unknown pi and
qj. Almost all of the paths are inconsistent, because a path may
very well choose pi = 0 on one level where pi occurs and pi = 1 on
another. If we can remove all inconsistent paths, any remaining
path in the BDD will give values of pi and qj such that pq = N .

2.6.1 Observed complexity of factoring

We have performed experiments using linear absorption to remove
inconsistent paths; the exact procedure is given in Algorithm 5.
There are 2n variables in total and 2n2 levels in the BDD, so
there will be 2n2 − 2n different dependencies we need to absorb
before every remaining path is consistent. Once we have reached
that point there will only be two paths remaining in the BDD.
Both of them give values for p and q such that pq = N (there are
two paths because it is undecided which factor is p and which is
q, e.g. for N = 77 we can have p = 7, q = 11 or p = 11, q = 7).

An RSA modulus represented as a BDD can be factored us-
ing linear absorption, but we need a measure of its complexity.
As proved in Theorem 2.5.4, the initial BDD will contain only
polynomially many nodes in the number of bits. When doing the
swap and add operations during linear absorption, the number of
nodes will increase. However, the final BDD, after all dependen-
cies have been absorbed, is very small since it only contains two
paths. At some point, the BDD will therefore reach a maximum
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number of nodes, and operating on this BDD will give the heav-
iest work, in terms of both time and space complexity. Hence,
we take the maximum number of nodes during factoring as our
measure of complexity.

It is very hard to predict in advance how many nodes the BDD will contain after
absorbing a number of dependencies. Due to this, we do not have a closed formula
f(n) for the complexity of factoring an n-bit number using our method. The strategy
which we use to absorb the linear dependencies is as follows. First, we compute all
linear dependencies that exist in the BDD. For each dependency, we compute its
cost. The cost is computed by the number of nodes that are involved in all levels
that will be used in the add and swap operations during the linear absorption of this
particular dependency. The strategy for choosing which dependency to absorb is to
employ a greedy approach by always absorbing the dependency with the smallest
cost. The observed complexity of factoring 2n-bit numbers with the BDD approach
and this strategy of linear absorption appears to be of the order 2n. Table 2.1 shows
the details and actual run times for some particular values of N .

The construction and resolution of the BDD used to find the factors p, q was
first coded in C. The results are shown in Table 2.1. Later, with the development
of the “Cryptapath” tool [26], new experiments were conducted for larger moduli
using this tool. For each 20 ≤ n ≤ 28, we generated 100 instances of RSA numbers
to factor. Figure 2.10 shows the minimum, the maximum and the mean number of
nodes in the BDD constructed when factoring these numbers.

N p q dlog2(N)e peak number of nodes runtime (s)
479069 571 839 19 212.996 0.316
1887239 1249 1511 21 214.070 0.760
8795869 2741 3209 24 214.925 1.246

288676361 16603 17387 29 218.347 18.86
9657443137 93407 103391 34 220.136 80.3

163580897747 405917 402991 38 222.303 537

Table 2.1: Some factoring experiments.

2.6.2 Further observations on the constructed BDD

Clearly, factoring RSA moduli via the method proposed in this chapter cannot
compete with any of the best factoring algorithms known, such as the number field
sieve [70], in terms of asymptotic complexity. The purpose of this chapter is rather
to give a different approach to the factoring problem, and hopefully inspire some
new ideas. Below, we present two observations that might be useful for future work.

Absorbing 2n− 2 dependencies for free

Finding an order in which to absorb the dependencies such that the overall complex-
ity is minimised is a challenging problem. However, it is possible to absorb 2n − 2
dependencies from the starting BDD without any increase in the number of nodes.
This can be explained as follows.
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Figure 2.10: Complexities for factoring RSA numbers with p and q of bit-size 20 to
28. 100 instances were generated for each bit-size, with each recorded complexity
represented as a blue dot. The red stars mark the mean values for each bit-size.

The terms in column k < n are p0qk, p1qk−1, . . . , pkq0, but the order of adding the
terms is irrelevant to the computation of N . In the BDD, the variables pi and qk−i
must appear on adjacent levels, but the pairs (pi, qk−i) can be put in any order on
the levels representing column k without changing the solution set corresponding to
the BDD. Similarly, the order of the components within the pair does not matter,
i.e. either (pi, qk−i) or (qk−i, pi) can be considered. Permuting the variables like this
within one column does not change the node structure in the BDD.

Say now that pi appears in both column k and column k−1. It is then possible to
put the pair (pi, qk−i−1) at the lowest possible levels within column k− 1, and set pi
as the lowest of these two. In column k, we can set the pair (pi, qk−i) at the highest
possible levels within column k, and set pi as the highest. The two levels with pi
will now be adjacent and can be merged into one, absorbing one dependency. The
number of nodes in the BDD will actually decrease since the BDD was unchanged
up until the two levels containing pi were added together, and then the lower of the
two levels gets deleted.

We can let two variables “meet” like this on each of the 2n − 2 column bound-
aries, and absorb 2n − 2 variables without any increase in the number of nodes.
Unfortunately, this process can not be readily repeated since the column boundaries
now consist of three levels that are dependent on each other and can not freely move
without increasing the number of nodes. To merge other variables that are equal
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means that one of them has to cross a column boundary, with no guarantees on how
this will affect the resulting number of nodes.

Moving one variable to the top

Each variable pi and qj initially occurs on n different levels. Let us start with the
lowest level where, say, pi is found, and use the swap operation to move it upwards
through the BDD. Each time this instance of pi is just below another level containing
pi, we merge the two levels using linear absorption before continuing. In the end,
the variable pi only occurs at the highest level, where the top node is located. Figure
2.11 shows an example constructed from the multiplication of two 8 bit primes p =
(p7, . . . , p0) = (10010101)2 = (149)10 and q = (q7, . . . , q0) = (11010011)2 = (211)10.

The resulting BDD has now been split into two parts between the level where
we started; one part for pi = 0 and one for pi = 1 (see the BDD on the left-hand
side in Figure 2.11). If it were possible to somehow detect which part contains the
consistent path, we would learn whether pi = 0 or pi = 1, delete the other part of
the BDD by cutting off the 1- or 0-edge from the top node, and iterate the process
with another variable.

In the BDD on the right-hand side in Figure 2.11, we show an example where
we have moved q7, initially found at the lowest level, to the top. The BDD splits
completely in two, and in this example we can see that guessing q7 = 0 immediately
determines the values of several other variables. All paths in the part of the BDD
where q7 = 0 end in the same string of 1-edges, indicating that p5 = p6 = p7 = q3 =
q4 = q5 = q6 = 1 must be true for there to be any possibility for p and q to multiply
to N .

2.7 Conclusion

In this chapter, we have shown how to use binary decision diagrams to factor a
number N which has two prime factors p and q of the same bit size. Unfortunately,
according to our experiments, the running time and space requirements for factoring
RSA moduli N with 2n bits seems to be of order O(

√
N). When the bit lengths

of p and q are different, the complexity is expected to be of order O(
√

max(p, q)).
As mentioned earlier, the complexity of this method is comparable only to trial
division which has a similar complexity but performs much faster in practice than
the method proposed in this chapter. Our results can also be compared to the SAT
solving techniques used in [6, 73]. In these papers, the authors use the factorization
problem to test their SAT solvers. The complexity of their method is of the same
magnitude as ours, but in our work we have conducted experiments with higher bit
size of N .

One interesting question arising from our work is to find a good ordering of the
variables which can improve the representation of the function via BDD. Variable
ordering is the process of choosing a particular order for the variables and employing
a BDD to represent that system accordingly. Certain functions are sensitive to
variable ordering which can induce exponential growth in the BDD. In principle,
the variable ordering can be selected arbitrarily, since the BDD corresponding to
any ordering will produce the correct solution. In practice, selecting an optimal
ordering which leads to a compact representation of the system is critical.
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Figure 2.11: Absorbing all instances of one variable and moving it to the top splits
the BDD in two.
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Chapter 3

Graphs and Self-Dual Codes over
GF (4)

3.1 Introduction

The mathematical principles underlying digital communication theory were enunci-
ated in Shannon’s seminal paper from 1949 [111]. The main theorem presented in
this paper guarantees the existence of error correcting codes with desirable prop-
erties. This has motivated later researchers to look for more and better error cor-
recting codes that could be applied in practice. Applications of such codes range
from satellite communications to data compression (JPEG). Subsequently, the the-
ory of error correcting codes has been an active area of research having surprising
and deep connections with other areas of mathematics like number theory, algebraic
geometry, and the geometry of numbers. In particular, error correcting codes have
been constructed over Galois fields (Reed-Solomon codes, Reed-Muller codes, etc).
Asymptotically good families of codes have been discovered using deep properties
of class fields of imaginary quadratic extensions [128].

As mentioned above, Shannon’s theorem assures the existence of good error
correcting codes (that is, codes for which the probability of error after decoding
can be made arbitrarily small by increasing the length of the codewords), provided
certain conditions are satisfied. One of these conditions is related to the so-called
channel capacity. The channel capacity is a numeric value that characterizes a
given communication channel. For example, for the commonly encountered binary
symmetric channel with crossover probability p, the channel capacity is given as 1−
h2(p), where h2(p) = −p log2 p−(1−p) log2(1−p) is the binary entropy function. The
parameters of a code are given by (n, k, d), where n is the length of the codewords,
k is the number of codewords, and d is the minimum distance (that is, the smallest
distance between any pair of distinct codewords). A code whose codewords form
a linear subspace of the n-dimensional vector space is called a linear code; the
dimension of this subspace is called the dimension k of the code, and its parameters
are given by [n, k, d].

A formal mathematical statement of Shannon’s theorem can be given as follows.
The statement refers to the so-called rate of the code. The rate of a q-ary code,
i.e. a code over an alphabet of q symbols, with codeword length n and number of
codewords k is defined as R = n/ logq(k).

Theorem 3.1.1. [111] Consider a communication channel with channel capacity c.
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Let ε > 0, and let R < c be an integer. Then there is a sufficiently large integer n
such that there exists a binary code of length n, with rate R and with error probability
Perr < ε.

Unfortunately, the proof of Shannon’s theorem is not constructive. This has
motivated a lot of research on the topic. For some applications and communication
channels, it is known how to construct codes with excellent performance that are
very close to the Shannon limit.

However, many important applications may impose strict limitations on the code
parameters and structure, for example on the code length. For such applications, it
may not be possible to find a code that operates close to the Shannon limit. Instead,
a practical goal of code design is to construct a code with large minimum distance
d, which will work well on a channel without too much noise. For example, on a
binary symmetric channel with crossover probability p, the error probability after
decoding is upper bounded (although not tightly) by 1 −∑t

w=0

(
n
w

)
pw(1 − p)n−w,

where t = d(d−1)/2e is the number of errors that the code is guaranteed to correct.
In practice, the value of p is assumed to be small, and therefore there is a very high
probability that only a few errors will occur. Thus, it is important to find codes
with a large minimum distance d, which can correct a large number t of errors.

One of the main problems in coding theory is to find codes with a given length n
and a large number of codewords k having minimum distance d as large as possible.
The greater the rate R of the code, the better its efficiency; on the other hand, the
greater the values of k and n, the longer the decoding delay. Furthermore, the larger
the minimum distance d, the more errors the code is guaranteed to correct. Clearly,
these aspects are in conflict, and hence the goal of coding theory is to find codes
achieving a good trade off between these values.

Other important problems concerning error correcting codes are:

(i) determining the minimum distance of a given code,

(ii) computing the weight enumeration of a given code (that is, the number of
codewords of weight i for each possible value of i), and

(iii) classification of codes.

These are instances of difficult problems in computer science in the context of coding
theory.

In this chapter, we focus on a set of codes called self-dual additive codes over the
finite field of 4 elements, GF (4), and address some of the issues mentioned above.

Self-dual, or self-orthogonal, codes are important for a number of practical and
theoretical reasons [11, 75, 76, 79, 80, 93]. After the publication of [20], additive self-
orthogonal codes over GF (4) under the trace inner product (which will be defined
later) became a subject of intense study due to their correspondence to additive
quantum error-correcting codes known as binary stabilizer codes. Several papers [7,
20, 27, 35, 52] were devoted to constructing and classifying self-dual additive codes
over GF (4).

All additive self-dual codes over GF (4) of length n ≤ 5 have previously been
classified up to equivalence by Calderbank et al. [20]. For n ≤ 7, the classification
was done by Höhn [52] and Hein et al. [46], and for n ≤ 9, it was done by Glynn et
al. [64]. Danielsen and Parker [27] classified all self-dual additive codes over GF (4)
of length n ≤ 12 by using a graph based algorithm.
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In this chapter, we follow the classification of Danielsen and Parker [27]. In the
former, the classification is done for general graphs. In our work, we restrict ourselves
to a sub-class of graphs: every graph has a property called rankwidth (which we will
define later in this chapter); we only consider graphs of rankwidth 1. We study self-
dual additive codes over GF (4) and investigate the possibility of classifying them
using graphs of rankwidth 1. By restricting ourselves to this particular sub-class of
graphs, the classification becomes significantly faster. Even though this method is
applicable only to a subset of codes, our approach provides a significant speed up
as compared to the method of Danielsen and Parker: while the branching factor of
the latter is 2n−1 − 1, for graphs of rankwidth 1 it is only 3(n− 1).

Another important step in the classification of codes (as seen in [27]) is to com-
pute the weight enumerator WC of the code C. Below, we formally introduce two
important notions related to this concept.

Definition 3.1.1. Let C be an (n, k, d) code. For i ∈ {0, 1, 2, . . . , n} let Ai denote
the number of codewords in C of weight i. The collection Ai is called the weight
distribution of the code C.

Definition 3.1.2. Assume the same notation as in the previous definition. The
weight enumerator of C is defined to be the homogeneous polynomial WC(x, y) =
A0x

n + A1x
n−1y + A2x

n−2y2 + . . .+ Any
n.

In general, for a linear [n, k] code, the best known method of computing its
weight enumerator essentially amounts to brute-force and has complexity n2k. One
of the most important results in this area is the MacWilliams identity which relates
the weight enumerator of a linear code WC to the weight enumerator of its dual
WC⊥ . A formal statement is given below.

Theorem 3.1.2. (The MacWilliams theorem for binary linear codes) [77, p. 127].
If C is an [n, k] binary linear code with dual code C⊥ then

WC⊥(x, y) =
1

|C|WC(x+ y, x− y),

where |C| = 2k is the number of codewords in C. Equivalently,∑
u∈C⊥

xn−wt(u)ywt(u) =
1

|C|
∑
u∈C

(x+ y)n−wt(u)(x− y)wt(u).

One can determine the weight enumerator (and hence the weight distribution)
of a code C given the weight enumerator of its dual code C⊥. This is useful in the
case when the dimension k of C satisfies k > n− k, because then the dimension of
the dual C⊥ is smaller than n−k, and thus its weight enumerator can be computed
more efficiently, with the weight enumerator of the prime code being then obtained
via the MacWilliams identity.

We propose a different way of computing the weight enumerator using Binary
Decision Diagrams (BDD) (which we already introduced in Chapter 2). The com-
plexity of computing the weight enumerator using BDD remains the same as in
the case of brute force, with the advantage being that we always attain complexity
O(2min(k,n−k)) without having to explicitly compare the dimensions of the primary
and dual codes or to apply the MacWilliams identity.
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We also address the problem of the minimum distance of self-dual additive codes
that represent graphs having rankwidth 1.

We now introduce some basic notation and definitions that are necessary for the
further exposition.

Let GF (4) = {0, 1, ω, ω2} be the finite field of 4 elements, with ω2 = ω + 1. An
additive code C over GF (4) of length n is an additive subgroup of GF (4)n. The code
C is a free GF (2)-module having size 2k for some 0 ≤ k ≤ 2n. In this case, C is
called an (n, 2k) code. Being a GF (2)-module, it has a basis consisting of k basis
vectors. A generator matrix of C is simply a k × n matrix with entries in GF (4)
whose rows form a basis of C.

In other words, let C be a code over GF (4) with generator matrix G. If all
codewords in C are GF (2) linear combinations of the rows of G, then we say that
C is an additive code.

There is a natural inner product arising form the trace map. The trace map
Tr : GF (4) → GF (2) is given by Tr(x) = x + x2. In particular, Tr(0) =Tr(1) = 0
and Tr(ω) = Tr(ω2) = 1. The conjugate of an element x ∈ GF (4), denoted as x, is
the image of x under the Frobenius automorphism x 7→ x2; in other words, 0 = 0,
1 = 1, ω = ω + 1 = ω2, and ω2 = ω.

We now define the Hermitian trace inner product of two vectors x = (x1, x2, . . . , xn)
and y = (y1, y2, . . . , yn) in GF (4)n as

x ∗ y =
n∑
i=1

Tr(xiyi) =
n∑
i=1

(xiyi
2 + x2i yi).

If C is an additive code, its dual, denoted as C⊥, is the additive code {x ∈
GF (4)n|x ∗ c = 0 , ∀c ∈ C}. If C is an (n, 2k) code, then C⊥ is an (n, 22n−k) code.
The code C is called (trace) self-orthogonal if C ⊆ C⊥, and it is called (trace) self-
dual if C = C⊥. In particular, if C is self-dual, then C is an (n, 2n) code. We
remark that additive self-dual codes exist for any length n since the identity matrix
In generates a self-dual (n, 2n, 1) code. Any GF (4)-linear code is self-orthogonal
under the Hermitian trace inner product if and only if it is a self-orthogonal additive
code under the trace inner product [20]. Any linear Hermitian self-dual [n, k, d] code
is an additive self-dual (n, 2n, d) code. For example, the [6, 3, 4] Hexacode [25] is an
additive self-dual (6, 26, 4) code.

The weight of a codeword c ∈ C, is the number of nonzero components of c.
The minimum weight d of a code C is the smallest weight of any non-zero codeword
of C. If C is an additive (n, 2k) code with minimum weight d, then C is called
an (n, 2k, d) code. We say that C is a Type II code if C is self-dual and all its
codewords have even weight. Type II codes of length n exist only if n is even [35]. If
C is self-dual but some codewords have odd weight (in which case the code cannot
be GF (4)-linear), the code is called a Type I code. Bounds on the minimum weight
of additive self-dual codes of Type I and Type II are given in [126].

Given the weight distribution of a code, it is easy to determine its minimum
distance. Nonetheless, it is hard to approximate the minimum distance of a given
code, and hence the computation of the weight enumerator is also a hard problem
[127].

Two self-dual additive codes C1 and C2 over GF (4), are said to be equivalent if
and only if the codewords of C1 can be mapped onto the codewords of C2 by a map
that preserves self-duality. Such a map consists of a permutation of coordinates,
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followed by a scaling of coordinates by elements of GF (4), and, finally, by a con-
jugation of some of the coordinates. Two equivalent self-dual codes have the same
weight enumerator [27].

3.2 Self-dual additive codes over GF (4) and their

connection to graphs

In this section, we see how self-dual additive code over GF (4) correspond to struc-
tures known as isotropic systems, which in turn can be represented as graphs [12].
We recall some basic definitions and concepts from graph theory, define graph codes
and an operation called local complementation of a graph. The main point of this
section is that classifying self-dual additive codes over GF (4) up to equivalence
corresponds to classifying the orbits of graphs under local complementation. This
simplifies the classification process since graphs are, in general, simpler to handle
than codes.

3.2.1 Isotropic systems

Isotropic systems are combinatorial and algebraic structures which unify some prop-
erties shared by 4-regular graphs and pairs of dual binary matroids [13].

We define the mapping φ : GF (4) → GF (2)2 by φ(x) = (Tr(xω2),Tr(x)). Ex-
plicitly, we have 0→ (0, 0), 1→ (1, 0), ω → (0, 1) and ω2 → (1, 1).

The inverse mapping φ−1 : GF (2)2 → GF (4) is defined as φ−1(a, b) = a+ωb. Let
u ∈ GF (2)2n be written as u = (a|b) = (a1, a2, . . . , an, b1, b2, . . . , bn). The previously
defined mapping can be extended to φ : GF (4)n → GF (2)2n by letting φ(v) = (a|b)
where φ(vi) = (ai, bi). Likewise, the inverse mapping φ−1 : GF (2)2n → GF (4)n is
defined as φ−1(a|b) = a+ ωb.

The symplectic inner product of (a|b), (a′|b′) ∈ GF (2)2n is defined simply as
〈(a|b), (a′|b′)〉 = a · b′ + b · a′. A subset I ⊂ GF (2)2n is called totally isotropic if
〈u,v〉 = 0 for all u,v ∈ I.

Isotropic systems can be represented by simple graphs and can be defined by
the row space of a full rank n × 2n binary matrix (A|B), where ABT + BAT = 0.
Surprisingly, self-dual additive codes over GF (4) are related to isotropic systems by
the following theorem.

Theorem 3.2.1. [27] Every self-dual additive code over GF (4) can be uniquely
represented as an isotropic system, and every isotropic system can be uniquely rep-
resented as a self-dual additive code over GF (4).

Example 1. [27] The row-space of the matrix (A|B) given below defines an isotropic
system, while the matrix C = A+ωB is a generator matrix of the (6, 26, 4) Hexacode.

(A | B) =


1 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0 1 1 1
0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 1 0 1 0 1 0 1 1 1
0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 1 1 0 0 0 1 1 1 1

C =


1 0 0 1 ω ω
ω 0 0 ω ω2 ω2

0 1 0 ω 1 ω
0 ω 0 ω2 ω ω2

0 0 1 ω ω 1
0 0 ω ω2 ω2 ω
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3.2.2 Graph representation

Definition 3.2.1. A graph is a pair G = (V,E) where V = {v1, v2, . . . , vn} is a set
of vertices, or nodes, and E ⊆ V × V is a set of distinct pairs of elements (vi, vj)
called edges.

A graph with n vertices can be represented by an n × n adjacency matrix Γ,
where the non-diagonal elements γij of the matrix satisfy γij = 1 if (i, j) ∈ E,
and γij = 0 otherwise. We only consider simple undirected graphs whose adjacency
matrices are symmetric and whose diagonal elements are all equal to 0.

The open neighborhood of v ∈ V denoted by N(v), is the set of vertices connected
to v by an edge. The closed neighborhood N [v], is the set of all vertices connected
to v by an edge along with v itself, i.e. N [v] = N(v) ∪ {v}.

The number of edges incident on v is called the degree of the vertex v. A vertex
of degree 1 is called a pendant.

Definition 3.2.2. A pair of vertices u, v are called true twins if N [u] = N [v] and
are called false twins if N(u) = N(v). We call a pair of vertices a twin-pair if they
are true twins or false twins.

A subgraph H of a graph G is obtained by deleting vertices and edges from G. A
subgraph H is called induced if H can be obtained from G by only deleting vertices
from G together with all edges incident on the deleted vertices.

Definition 3.2.3. Two graphs G = (V,E) and G′ = (V ′, E ′) are isomorphic if there
exists a bijection f : V → V ′ between the vertex set of G and the vertex set of G′

such that two vertices u, v are adjacent in G if and only if f(u), f(v) are adjacent
in G′.

The complement, or inverse, of G is a graph H on the same vertex set as G with
the property that two distinct vertices are adjacent in H if and only if they are not
adjacent in G.

Having recalled the basics of graph theory, we are now ready to introduce graph
codes.

Definition 3.2.4. A graph code is an additive code over GF (4) that has a generator
matrix of the form C = Γ + ωI, where I is the identity matrix, Γ is the adjacency
matrix of a simple undirected graph, and ω is a primitive element of GF (4).

A graph code is always self-dual, since its generator matrix has full rank over

GF (2) and CC
T

only contains entries from GF (2) whose trace must be zero. This
construction for self-dual additive codes over GF (4) has also been used in [123].

In the case of additive codes, the converse implication holds as well. The following
theorem was first proved by Bouchet [12] and later by Van den Nest, Dehane and
Moor [74] in the context of isotropic systems.

Theorem 3.2.2. [12, 74] Every self-dual additive code over GF (4) is equivalent to
a graph code.

The generator matrix of a self-dual additive code over GF (4) corresponds to an
n × 2n binary matrix (A|B), such that C = A + ωB. The row space of (A|B),
denoted I, defines an isotropic system. The outline of the proof of Theorem 3.2.2
is to show that I is generated by (Γ|I), where I is the identity matrix and Γ is the
adjacency matrix of a simple undirected graph.
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Figure 3.1: Two graph representation of the Hexacode

Example 2. [27] Let C = A+ωB be the generator matrix of the (6, 26, 4) Hexacode
given in Example 1. Using the proof of Theorem 3.2.2, one can find C ′ = Γ + ωI,
which generates an equivalent graph code.

(A | B) =


1 0 0 1 0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 0 0 1 1 1
0 1 0 0 1 0 0 0 0 1 0 1
0 0 0 1 0 1 0 1 0 1 1 1
0 0 1 0 0 1 0 0 0 1 1 0
0 0 0 1 1 0 0 0 1 1 1 1



(Γ|I) =


0 0 1 0 1 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 1 0 0 0 1 0 0
1 0 0 1 0 1 0 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1



C =


ω 0 1 0 1 1
0 ω 1 1 0 1
1 1 ω 0 0 1
0 1 0 ω 1 1
1 0 0 1 ω 1
1 1 1 1 1 ω


Consider a graph G = (V,E) and its corresponding adjacency matrix Γ. The

matrix C = Γ + ωI is then the generator matrix for a graph code. Swapping vertex
i and vertex j of the graph G can be accomplished by exchanging column i and
column j of Γ and then exchanging row i and row j of Γ. We denote the resulting
matrix by Γ′. Exactly the same column and row operations map C = Γ + ωI to
C ′ = Γ′+ωI. The matrices C and C ′ generate equivalent codes. It follows that two
codes are equivalent if their corresponding graphs are isomorphic.

Figure 3.1 shows two graph representation of the (6, 26, 4) Hexacode. From
Theorem 3.2.2 and Example 2, one can see that every graph represents a self-dual
additive code over GF (4), and every self-dual additive code over GF (4) can be
represented by a graph.

3.2.3 Local complementation

We are now ready to define the operation referred to as local complementation.
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Figure 3.2: Local complementation at v4

Definition 3.2.5. Given a graph G = (V,E) and a vertex v ∈ V , the local comple-
mentation (LC) of G on v transforms G into Gv by replacing the induced subgraph
of G with vertex set N(v) by its complement.

Example 3. Consider the graph shown in Figure 3.2. Local complementation is
performed on the vertex v4. We see that the open neighbourhood of v4 is N(v4) =
{v0, v3, v5} and there are no edges between the neighbours {v0, v3}, {v3, v5}, while
there is an edge between {v0, v5}. The effect of local complementation on v4 results
in the introduction of an edge between {v0, v3} and between {v3, v5}, as well as the
removal of the edge between {v0, v5}.

The application of local complementation to graphs naturally leads to a notion
of equivalence.

Definition 3.2.6. If a graph G′ can be obtained from a graph G by a series of local
complementation operations, we say that G and G′ are LC-equivalent.

The codes corresponding to a given graph and to any graph obtained from the
first by local complementation are equivalent, as shown in the following theorem.
This leads to a useful characterization of equivalent codes in terms of their corre-
sponding matrices.

Theorem 3.2.3. [27] Let Γ be the adjacency matrix of the graph G = (V,E) and
Γv be the adjacency matrix of Gv after applying LC on v ∈ V . The codes generated
by C = Γ + ωI and C ′ = Γv + ωI are equivalent.

Theorem 3.2.4. [27] Two self-dual additive codes C and C ′ over GF (4), with cor-
responding graphs G and G′, respectively, are equivalent if and only if there is a finite
sequence of not necessarily distinct vertices (v1, v2, . . . , vi) such that (((Gv1)v2)...)vi

is isomorphic to G′.

3.2.4 Algorithm for the classification of self-dual additive
codes of general graphs

In light of Theorem 3.2.4, finding the graphs that can be obtained from a given
graph by means of local complementation is instrumental to classifying self-dual
additive codes. This naturally leads to the following definition.

Definition 3.2.7. The LC orbit of a graph is the set of all unlabelled graphs that
can be obtained by performing any sequence of LC operations on G.

It follows from Theorem 3.2.4 that two self-dual additive codes over GF (4) are
equivalent if and only if their graph representations are in the same LC orbit. The
LC orbit of a graph can be generated by a recursive algorithm.
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An algorithm for classifying self-dual additive codes corresponding to general
graphs is given in [27]. It is a recursive algorithm that uses the result of classification
on n − 1 vertices to obtain a classification on n vertices. Let Gn be the set of all
unlabelled simple undirected connected graphs on n vertices. Connected graphs
correspond to indecomposable codes, i.e codes that cannot be written as the direct
sum of two codes of smaller length.

The set of all distinct LC orbits of connected graphs on n vertices is a partitioning
of Gn into in disjoint sets. The number in is also the number of indecomposable
self-dual additive codes over GF (4) of length n up to equivalence.

Let Ln be the set containing one representative from each LC orbit of connected
graphs on n − 1 vertices corresponding to equivalent additive self-dual codes. The
recursive algorithm can then be described as follows.

• Compute a set of graphs En by adding a vertex to each graph in Ln−1. This
can be done in 2n−1 − 1 ways since the resulting graph must be connected.
All of the 2n−1 − 1 graphs obtained from one graph in Ln−1 are added to En.
The set En will contain at least one representative from each LC orbit of the
connected graphs on n vertices.

• For each set of isomorphic graphs, keep only one graph in En.

• Use weight-enumerators to partition the set En, i.e. graphs corresponding
to codes with the same weight-enumerator are put in the same class. It is
important to note that codes with different weight distributions can never be
equivalent.

• Partition each class in En by checking for self-dual equivalence.

• Compute Ln by taking one graph from each class in En.

• Output Ln.

3.3 Classification of self-dual additive codes cor-

responding to graphs of rankwidth 1

Classifying self-dual additive codes over GF (4) by considering all possible graphs
is hard. This is evident from the previously performed classification [27] where
self-dual codes over GF (4) have been classified only for n up to 12. Focusing on
a particular sub-class of graphs naturally leads to a more tractable classification
problem. In this section, we initiate the study of self-dual codes whose correspond-
ing graphs have rankwidth 1. The rankwidth of a graph is preserved under local
complementation. The class of graphs with rankwidth equal to 1 is exactly the class
of distance-hereditary graphs (defined later). We show that by combining the struc-
tural properties of these graphs with the algorithm used in [27], the classification
of the corresponding codes becomes significantly faster. Determining how far we
can take this procedure, i.e. up to what value of n we can still apply it efficiently,
remains a question for future work.

There are two computationally heavy steps in the general classification algorithm:
testing whether two given graphs are isomorphic to each other, and computing the
weight enumeration of a given code.
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Figure 3.3: A rank decomposition (T, L) of a graph. The rankwidth of T is 2. It so
happens that the rankwidth of this graph is 2 as well.

For a fixed k, testing graph isomorphism for graphs of rankwidth k is polynomial
in the size of the graph [42], and it is in fact linear in n for graphs of rankwidth 1
[124]. Hence, approaching the problem of classification of such codes from the point
of view of rankwidth can lead to significant computational advantages.

Computing the weight-enumerator in general is essentially a brute-force search
with complexity O(2k). If k > n/2 it is beneficial to compute the weight-enumerator
of the dual code instead and to then apply the MacWilliams identity. In our work, we
take a different approach, and use binary decision diagrams (BDD) to compute the
weight-enumerators. The algorithm using BDD for weight enumeration has similar
complexity to brute force, but has the benefit that we automatically get complexity
O(2min{k,n−k}) without having to explicitly examine the dimensions of the primary
and dual codes, or to apply the MacWilliams identity.

The minimum distance of codes corresponding to distance-hereditary graphs is
2. We show that the minimum distance of a code is at least 4 if and only if the
corresponding graph does not contain any pendant vertex or any twin-pairs.

3.3.1 Rankwidth

Let n be a positive non-zero integer. Let Tn be the set of all trees with the following
properties:

1. every tree T in Tn has exactly n leaves;

2. every internal node of every tree T in T has degree exactly equal to 3.

Let G be a simple undirected graph with n vertices. A rank decomposition of G
is a pair (T, L), where T ∈ Tn is such that there is a bijection between the set of
leaves L of T to the set of vertices V of G. Clearly, for any given tree T , there are
n! bijections. See Figure 3.3 for an example.

The rankwidth of a graph G can be computed as follows. Suppose T ∈ Tn
provides a rank decomposition (T, L) of G. Let e be any edge of T . Removing e
from the set of edges of T yields two sub-trees, Ta and Tb, which naturally give a
partition V = A∪B of the vertex set of T : more precisely, A is the set of vertices of
Ta, and B is the set of vertices of Tb. We now construct a bipartite graph ((A,B), E)
in which (ea, eb) is an edge for some ea ∈ A and eb ∈ B if and only if (ea, eb) is an
edge in G. The rank of the adjacency matrix of this bipartite graph is the weight of
the edge e. The rankwidth of the rank decomposition (T, L) is the maximum weight
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of an edge in T . Finally, the rankwidth of G is the minimum rankwidth of any rank
decomposition of G.

An important property of the rankwidth of a graph is that it remains invariant
under local complementation.

Theorem 3.3.1 ([90]). Given a graph G and a vertex v of G, rw(G) = rw(Gv).

The distance between two nodes of a graph is the length of the shortest path
between them. A distance-hereditary graph is a graph in which the distances in any
connected induced subgraph are the same as in the original graph.

The following theorem provides the connection between distance-hereditary graphs
and the rankwidth.

Theorem 3.3.2 ([90]). A graph G is distance-hereditary if and only if the rankwidth
of G is at most 1.

Recall that in the recursion step of the algorithm for computing Ln described in
Section 3.2.4, we expand the graphs from Ln−1 to graphs on n vertices by adding a
new vertex and connecting it in all possible ways to to each graph in Ln−1. However,
adding a vertex to a graph in this way does not, in general, preserve the property
of being distance-hereditary. Nonetheless, as shown in the following theorem, it is
possible to characterize the cases in which the property of being distance-hereditary
is indeed preserved.

Theorem 3.3.3 ([8]). Let G be a finite graph with at least two vertices. Then G is
distance-hereditary if and only if G is obtained from an edge by a sequence of one of
the following vertex extensions: adding the vertex as a pendant, adding the vertex as
a true-twin to an existing vertex, or adding the vertex as a false-twin to an existing
vertex.

Let Gn−1 be the set of all connected graphs of rankwidth 1 on n − 1 vertices.
Then Gn can be obtained by adding a vertex to each graph in Gn−1 as a pendant or
a twin to some vertex. Consider C to be the LC orbit of a graph G ∈ Gn−1. Let
G1, G2 ∈ C. Then there is a sequence of local complementation operations S that
can take G1 to G2. Let E1 and E2 be the 3(n− 1) extensions of G1 and G2 obtained
via adding a node either as a pendant or a twin pair. We show that by applying
S on any graph in E1, we end up with a graph in E2, implying that E1 and E2 are
LC-equivalent.

Let u be a new vertex added to G1 as a pendant or twin to a vertex v of G1. The
LC operations at vertices in G1 switch the role of u relative to v as a pendant or a
twin. At the same time, G1 changes to G2 after S has been performed. Then, u can
be seen as being attached to G2 as a pendant or twin (according to what happens
after applying S to G1+u). Hence, any graph E2 can be seen as being obtained from
a graph in E1 via applying S. This implies that instead of considering extensions of
C, we need only consider extensions of just one representative from C. Let Ln−1 be
the set of representatives of all orbits in Gn−1.

In the construction of En from Ln−1 in the algorithm, let us add the new vertex
only in one of the three different ways described in Theorem 3.3.3. There are at
most 3(n − 1) ways to do that. Therefore, instead of branching in 2n−1 − 1 ways,
we need only branch in at most 3(n − 1) ways. Since rankwidth is preserved by
LC operations, and adding a new vertex as a pendant, true twin or false twin to
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an existing vertex in Ln−1 preserves the property of being distance hereditary, the
graphs in the sets Ln−1, En and Ln can all be assumed to have rankwidth 1. Due to
this, testing isomorphism can be performed in linear time.

The algorithm for classifying self-dual codes over GF (4) corresponding to graphs
of rankwidth 1 is similar to the algorithm defined in the previous section, with some
changes highlighted below.

In the following exposition, we assume the same notation as in the description
of the algorithm described in Section 3.2.4:

• Compute the set of graphs En by adding a vertex to each graph in Ln−1 in
3(n− 1) ways.

• For each set of isomorphic graphs, keep only one graph in En.

• Using BDD, compute the weight-enumerators of the codes corresponding to
the graphs in En.

• Use these weight-enumerators to partition En into equivalence classes.

• Partition each class in En by checking for self-dual equivalence.

• Compute Ln by taking one graph from each equivalence class computed in the
previous step.

• Output Ln.

In the next section, we shall discuss how to compute weight enumerators using
Binary Decision Diagrams. Since BDD have been extensively discussed in Chapter
2 Section 2.4, we only look at the details of how to use them for computing weight
enumerators.

3.4 Computing weight enumerators using BDD

One of the most important properties of any code is its weight distribution, which,
among other things, allows one to compute the error probability of the code. Recall
that the weight distribution of a code C is given by the bivariate polynomial

Wc(x, y) =
∑
u∈C

xn−wt(u)ywt(u) =
n∑
i=0

Aix
n−iyi, (3.1)

where Ai denotes the number of codewords of weight i in C and wt(u) denotes the
weight of u.

As described above, in our algorithm for classifying self-dual additive codes, we
use BDD to compute their weight-enumerators. In this section, we take a closer
look at how this approach works.
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3.4.1 Construction of BDD

Let G be an n× n generator matrix of a self-dual additive code C over GF (4). We
compute the set of all codewords by considering all possible linear combinations over
GF (2) of the rows of G. This is done by first expanding the matrix into an n× 2n
matrix G′ over GF (2) by mapping each element of GF (4) to a pair of elements in
GF (2) as follows: 0 7→ (00), 1 7→ (01), ω 7→ (10), ω2 7→ (11). For example, consider
the matrix

G =

[
ω 1
1 ω

]
n×n

for n = 2. Under the mapping defined above, G becomes

G′ =

[
1 0 0 1
0 1 1 0

]
n×2n

Now we multiply all binary strings (c1, c2, c3, . . . , cn) of length n with the matrix
G′ to get the set of all codewords (x1, x2, x3, . . . , x2n−1, x2n). Continuing the example
above, we can obtain all the codewords by considering the products

(c1, c2)

[
1 0 0 1
0 1 1 0

]
= (x1, x2, x3, x4)

for all possible values c1, c2 ∈ GF (2).
Recall that every path in a BDD corresponds to a binary vector. In order to

construct a BDD that has paths corresponding to all possible codewords, we consider
the parity check matrix H of the code. From coding theory, we know that the parity
check matrix describes a set of linear relations that the coordinates of each codeword
must satisfy. More precisely, a vector x is a codeword of a code C if and only if
xHT = 0, where H is the parity check matrix of C.

Let the linear equations given by xHT = 0 be li(x) = 0 for 1 ≤ i ≤ n. A
BDD that represents all codewords of the code, i.e. vectors x satisfying li(x) = 0
for 1 ≤ i ≤ n, is given on the left-hand side of Figure 3.4. In that BDD, xij
are free variables such that no li can be written as a sum of xij . In other words,
considering the free variables as linear combinations too, all linear combinations in
the BDD are independent. The free variables can take any value, and li represent
linear combinations of the coordinates that must be 0 in order to be a codeword.

In the next step, we apply add and swap operations (described in Algorithm
1 and Algorithm 2 of Chapter 2) to this basic BDD in order to resolve the linear
combinations li. By resolving the linear combinations we mean that we add together
some of the linear combinations and free variables in order to transform li into a
single variable. Recall that the add operation can only be applied to two adjacent
levels. If it is necessary to perform addition on two levels are not adjacent, we first
apply the swap operation in order to move the corresponding variables and make
them adjacent.

We keep applying these operations until each level only contains single variables.
We are effectively performing Gaussian elimination with back substitution on the
set of linear combinations. We sort the levels in such an order that x1 appears on the
top and x2n appears on the lowest level, as shown in the BDD on the right-hand side
of Figure 3.4. We give a more detailed example of how the add and swap operations
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Figure 3.4: BDD after adding and swapping to resolve all linear combinations into
single variables, sorted on the levels.
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Figure 3.5: Example: Performing add and swap to a BDD to resolve x1 + x3 = 0.
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can be applied to a BDD in Figure 3.5. In the end, the paths of the resulting BDD
represent all codewords in C.

In this chapter, we mostly focus on the special case of codes of length 2n and
dimension n. However, constructing the BDD representing a binary code can be
done for codes of any length and dimension. Here we determine the complexity,
expressed in terms of the number of nodes in the final BDD, for any [n, k] linear
code C over GF (2).

We begin by resolving a natural question, namely, by giving an upper bound on
the number of nodes in a given level in the final BDD.

Lemma 3.4.1. The number of nodes on any level of the final BDD after resolving
all linear combinations for a code C is at most 2k.

Proof. The number of codewords in C is 2k, and so the total number of paths in the
BDD is also 2k. There are no edges between nodes on the same level, so all nodes
on any level are part of different paths. Hence the number of nodes on any level can
not be more than 2k.

Lemma 3.4.2. The number of nodes on any level of the final BDD after resolving
all linear combinations for a code C is at most 2n−k.

Proof. The number of nodes on any level of the basic BDD before resolving any
linear combinations is 0 or 1. Applying the swap or add operation will at most
double the number of nodes on the lower of the affected levels. We resolve one
linear combination by adding together certain levels in the BDD. Starting with the
lowest level and moving levels upwards, adding as needed, we see that each level is
involved in the resolution of a linear combination only once. So the number of nodes
on any level of the BDD when resolving one linear constraint will at most double.
Since we are resolving n− k linear combinations, the number of nodes on any level
in the final BDD will be at most 2n−k.

Combining Lemmas 3.4.1 and 3.4.2, we get the following result.

Theorem 3.4.3. The number of nodes in the final BDD representing the codewords
of a binary linear [n, k] code is of order O(2min{k,n−k}).

3.4.2 Algorithm for computing weight enumerators

Recall that pairs of coordinates (x2i−1, x2i) ∈ GF (2)2 can be interpreted as elements
in GF (4). A path in the BDD with resolved and sorted levels has length 2n, but
represents a codeword of length n with elements from GF (4). When computing
the weight enumeration, we therefore count how many non-zero GF (4) elements are
on the corresponding path. Figure 3.6 shows how the different elements of GF (4)
are represented as paths in the BDD, and Figure 3.7 gives an example of how to
count the weight of a codeword represented as a path. In both figures, a dashed line
representes a 0-edge in the BDD, while a solid line represents a 1-edge.

Now we describe our algorithm for computing weight enumerators using BDD.
We explain the whole process, where we start with a graph G, and want to compute
the weight enumeration of its corresponding self-dual code over GF (4).

Step 1: Given the adjacency matrix Γ of a graph G, we obtain the generator matrix
G = Γ + ωI over GF (4).
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0

1
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GF(4) Elements

(00) = 0

(01) = 1
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(11) = ω2

Figure 3.6: Weight of consecutive edges in a BDD

Path weight

1 + 1 + 0 = 21 1 0

Figure 3.7: Example of computing weight of a path

Step 2: We transform the generator matrix over GF (4) to a matrix over GF (2) by
mapping each element in GF (4) to a pair of elements in GF (2): 0 7→ (00),
1 7→ (01), ω 7→ (10), ω2 7→ (11).

Step 3: We obtain the parity check matrix H from the generator matrix G over
GF (2) and get the parity check equations l1 = l2 = . . . = ln = 0.

Step 4: Construct the BDD for l1 = l2 = . . . = ln = 0 with xi1 , xi2 , . . . , xin as free
variables.

Step 5: Apply add and swap operations to the BDD to resolve and sort the linear
combinations (see Figures 3.4 and 3.5).

Step 6: Computing the weight enumerator: Associate a vector of length (n+1)
of integer values, denoted as (p0, p1, p2, . . . , pn), to each node. For a given node,
pi indicates the number of paths of weight i below this node.

1. Start by setting (1, 0, 0, . . . , 0) as the vector for the true-node at the
bottom. We say there is one path of weight 0 from the true-node to itself
(the empty path).

2. We compute the vectors for the other nodes recursively, from the levels at
the bottom to the ones at the top. Consider a pair of edges from a node T
to a node A below it. The weight distribution vector of A contributes to
the computation of the weight distribution vector of T as follows. If this
pair of edges contributes 0 to the path weight, the weight distribution
below T along this path is the same as for A. When the pair of edges
from T to A contribute 1 to the weight, the paths of weight i below A
become paths of weight i + 1 below T . Hence the weight enumeration
vector for T is obtained by shifting the vector for A by one position to
the right, as shown in Figure 3.8.

3. Having computed the contribution of all edges leading from a node T
(as described in the previous step), we compute the weight distribution
vector of T by summing them together. This is shown in Figure 3.9.

4. Assuming all weight distribution vectors have been computed for the
nodes on one level, we compute the weight distribution for the nodes two
levels above by adding all the weight contributions, shifting them by one
position to the right as needed. This is shown in Figure 3.9.
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(p0, p1, p2, ...pn)

(p0, p1...pn) (0, p0, ...pn−1) (0, p0, ...pn−1) (0, p0, ...pn−1)

Figure 3.8: Shift weight vector by one to the right when the pair of edges indicate
a non-zero GF (4)-element.

(a0, a1, ..an)(b0, b1, ..bn) (c0, c1, ..cn)(d0, d1, ..dn)

(a0, a1, a2, .., an)
+(0, b0, b1, .., bn−1)
+(0, c0, c1, .., cn−1)
+(0, d0, d1, .., dn−1)

Figure 3.9: Computing weight distribution for all paths below a node.

5. Once the algorithm terminates, the weight distribution vector associated
with the root node gives the weight distribution of the code.

The complexity of computing the weight enumeration of a given code represented
as a BDD is O(N), where N is the number of nodes in the BDD, and adding two
integer vectors counts as a unit operation. In terms of single integer additions, the
complexity is O(nN).

We have described the algorithm for computing the weight enumeration for codes
over GF (4). Going back to the case of an [n, k] linear code over GF (2), we can easily
modify the algorithm to compute the weight distribution for any binary linear code
when it is represented as paths in a BDD.

As already mentioned, computing the weight distribution of a code is a hard
problem [127] and, in general, the best known solution is by brute force which has
complexity O(2min(k,n−k)), where k is the dimension of the code. In light of this,
it is not surprising that applying our BDD approach to weight enumeration yields
the same complexity. Nonetheless, in order the achieve the complexity mentioned
above by brute force, one has to explicitly compare the dimensions of the primary
and dual code and apply the MacWilliams identity in the case than k > n/2. Our
approach has the advantage that it automatically achieves this complexity without
having to consider the dimension of the code and its dual.

3.5 Minimum distance

By far one of the most important properties of any code is its minimum distance,
which determines its error-correcting capabilities. Glynn et al. [40] showed that the
minimum distance of a code is equal to one plus the minimum vertex degree over
all graphs in the corresponding LC orbit.

In the following, we summarize some relations between the framework that we
developed in the preceding sections and the problem of computing the minimum
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Figure 3.10: Here filled circles denote vertices and ellipses denote set of vertices. An
edge from a vertex to a set denotes that vertex is adjacent to every vertex in the
set. The vertices u and v are true twins. After LC at u, the degree of v reduces to
1.
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Figure 3.11: The vertices u and v are false-twins and w is a common neighbor of u
and v. After LC operation at w followed by LC operation at u reduces the degree
of v to 1.

distance of a given code.

Lemma 3.5.1. If a connected graph contains a twin-pair, then the minimum dis-
tance of the corresponding code is 2.

Proof. Let u, v be a true-twin pair. Then, after applying a LC operation to u, the
degree of v in the resulting graph is 1. See Figure 3.10.

If u, v is a false-twin pair, and the degree of u and the degree of v are both 1,
then the minimum distance of the corresponding code is trivially 2. In the case when
u, v are not pendants, then after applying an LC operation to a common vertex w,
they become true-twins in the resulting graph. Then, as in the above case, applying
an LC operation at u produces a pendant. See Figure 3.11. Since LC operations
preserve connectivity, this is the minimum possible degree of a vertex over the entire
LC orbit of the graph. Hence, the minimum distance of the corresponding code is
2.

Lemma 3.5.2. Codes with corresponding graphs of rankwidth 1 have minimum dis-
tance 2.

Proof. The graphs of rankwidth 1 are exactly the distance hereditary graphs which
can be constructed recursively by adding a pendant or a twin-pair to an edge. Such
graphs will have either a pendant or a twin-pair. Hence, by Lemma 3.5.1, codes
with corresponding graphs of rankwidth 1 have minimum distance 2.

Lemma 3.5.3. If a graph contains a twin-pair, then every graph in its LC orbit will
contain a twin-pair or a pendant.

Proof. Let u and v be true-twin pairs. An LC operation at either u or v will yield
a pendant. An LC operation at w /∈ N(u) does not effect N(u), hence, u and v will
remain twin pairs. Take some w ∈ N(u) \ {v}. Now, after applying an LC to w, the
nodes u and v become false-twins. See Figure 3.12.

Now, suppose u and v are false-twins. They become true-twins if an LC operation
is performed on w, see Figure 3.11. An LC operation at either u or v or at a vertex
not in their common neighborhood does not change the neighborhood of u or v and
hence, they remain false-twins.
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Figure 3.12: The vertex w is in the common neighborhood of true-twins u and v.
LC at w makes u, v into a false-twin pair.

Lemma 3.5.4. If G does not have a pendant or a twin-pair, then no graph in the
LC orbit of G will have a twin-pair.

Proof. We prove this by contradiction. Suppose that G does not contain a twin-
pair or pendant, but applying an LC operation at a node u of G results in a graph
containing a twin-pair v, w. By Lemma 3.5.3, all graphs in the LC-orbit of the
resulting graph must have either a pendant or a twin-pair. Since G lies in this LC-
orbit as well, it must have a pendant or twin-pair, contradicting the assumption.

Combining Lemma 3.5.1, Lemma 3.5.3 and Lemma 3.5.4, and noting that Type
II codes must have even weight, gives the following theorem.

Theorem 3.5.5. The minimum distance of a self-dual additive code over GF (4) is
at least 4 if and only if the corresponding graph G has no pendants or twin-pairs.

3.6 Conclusion

In this chapter, we introduce a new approach for classifying self-dual additive codes
over GF (4) whose corresponding graphs have rankwidth 1. We show that this
approach provides a significant speed-up in comparison to previously applied proce-
dures. Graphs of higher rankwidth remain an object of ongoing research. It would
be interesting to study graph classes that can be constructed recursively in a manner
similar to distance-hereditary graphs. It remains to experimentally determine up to
what values of n this procedure can be used efficiently in practice.

We note that our use of BDD in the computation of the weight-enumerators
still results in exponential complexity. Since the minimum distance can be obtained
from the weight-enumerator, and it is known that the computation of the minimum
distance is a hard problem, we can not hope to achieve a better complexity than
the existing one. Potential optimizations to the algorithm will be of future interest.
Furthermore, we have characterized the graphs having minimum degree at least 2
over their entire LC-orbit.

In light of the observed results on the the minimum distance of a code, it is in-
teresting to discover and study other classes of graphs having high minimum degree.
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Chapter 4

Reducing Lattice Enumeration
Search Trees

4.1 Introduction

A lattice is a geometric object that can be described as an infinite, regular (not
necessarily orthogonal) n-dimensional grid in Rn. Despite their simplicity, lattices
possess a rich combinatorial structure which has attracted mathematicians over the
last two centuries. Lattices have numerous application in mathematics and computer
science, ranging from number theory and Diophantine equations to cryptography.

The study of lattices in cryptography was marked by two major breakthroughs:

(i) The invention of the well-known LLL lattice reduction algorithm by Lenstra,
Lenstra and Lovász in the early 80s [69], which runs in polynomial time and
finds an approximate solution to many classical problems in computer science.
These include solving integer programs in a fixed number of variables [71],
factoring polynomials over the rationals [69], breaking knapsack based cryp-
tosystems [88], finding solutions to many Diophantine equations [43], and the
cryptanalysis of special cases of RSA and DSA [86, 81].

(ii) Ajtai’s discovery of a connection between the worst-case and average-case hard-
ness of certain lattice problems in the 90s [2]. Until that point, lattices in cryp-
tography were primarily used as tools in cryptanalysis. In complexity theory,
we say that a problem is hard if it is hard for the worst case instances; this is
in contrast to cryptography, where cryptographic constructions are based on
average case assumptions. Ajtai showed how to build cryptographic functions
which are as hard to break in the average case as it is to solve the worst case
instance of a certain lattice problem.

This type of approach kick-started the study of lattices from the point of view
of computational complexity, and, most importantly, led to the study and
resolution of long standing open problems, for example, the NP-hardness of
the shortest vector problem in its exact and approximate versions [87].

The main computational problem associated with lattices is the shortest vector
problem. In this problem, we are given a lattice represented by a fixed set of basis
vectors as input, and our goal is to output the shortest non-zero vector in the lattice.
There are two main algorithmic techniques for solving lattice problems. The first
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technique is lattice basis reduction, which started with the famous LLL algorithm
and was further developed to block-wise reduction algorithms such as the BKZ
algorithm [87]. The main goal of lattice reduction is to transform the vectors of
the given lattice basis into a basis whose vectors have shorter length and the angles
between them are as close to orthogonal as possible. The LLL algorithm runs in
polynomial time, but its approximation factor (that is, the factor expressing the
difference between the norm of the actual shortest vector and the one found by the
algorithm) is asymptotically exponential. The second, and more basic, approach,
which is the focus of our work, is the enumeration technique which started with
Pohst [94], Fincke–Pohst [33, 34] and Kannan [56] and is still an active area of
research.

Lattice enumeration is an exhaustive search to find the best integer combination
of the basis vectors such that the resulting vector has minimal norm. This is done
by searching all lattice points in a bounded region (typically an r-dimensional ball).
Enumeration can be seen as searching for a short lattice vector in a depth first
search tree, where the leaves correspond to the lattice vectors and the internal
nodes correspond to the partial assignments of integers to the coefficients in the
combination. From every node in the tree an interval, or range, of possible integer
values for the coefficients is computed, and the algorithm branches from that node
by trying all values from the range in order to find the shortest vector. The standard
enumeration technique has complexity 2O(n

2), where n is the dimension of the lattice
[109].

In this chapter, we propose two ideas to shorten the ranges of the coefficient
vectors, thereby aiming to reduce the search space.

(i) Hybrid enumeration: in this technique, we compute all possible intervals for
the remaining coefficients (the coefficients that have not yet been branched
for) for a particular node, and choose the shortest one to branch for. This is
a greedy approach that always attempts to minimize the number of nodes in
the next level of the search tree.

(ii) Signed enumeration: in this technique, we estimate the sign (plus or minus)
of the integer values in the computed range. This is a probabilistic approach
and, depending on the confidence measure of the estimated sign, we prune
away some values that have the opposite sign in the interval, thereby reducing
the intervals and, consequently, the size of the search tree.

The state of the art concerning the enumeration technique is lattice enumeration
using extreme pruning [37]. Since enumeration is expensive, extreme pruning at-
tempts to avoid enumerating all the tree nodes by discarding certain branches. The
performance of pruned enumeration leads asymptotically to an exponential speed
up of about 2

n
2 compared to standard enumeration, while maintaining a success

probability of finding the shortest vector of at least 95%.
A natural question is then, how much does our proposed method, which we call

hybrid enumeration, increase the computational efficiency of the standard enumera-
tion technique. The complexity of the latter after LLL reduction of the basis vectors
is 2O(n

2) [109]. Based on our experimental results, we can see that our technique
results in a reduction of the number of nodes, thus making the full enumeration
of the lattice faster. The complexity of the hybrid enumeration algorithm has the
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same asymptotic complexity as standard enumeration, i.e. 2O(n
2). Unfortunately,

this does not yield an exponential speed up compared to extreme pruning, which,
for the time being, remains optimal.

Definition 4.1.1. Let m and n be positive integers with m ≥ n, and let B =
{b1, b2, . . . , bn} be a set of n linearly independent vectors in Rm. A lattice in Rm

is the set L(b1, b2, . . . , bn) = {∑n
i=1 xibi : xi ∈ Z} of all integer combinations of

{b1, b2, . . . , bn} ∈ Rm.

Alternatively, lattices can be defined as discrete additive subgroups of Rm.
Let us now consider some examples of lattices and non-lattices.

• The singleton set {0} ⊂ Rm is a lattice.

• The set of integers Z ⊂ R forms a 1-dimensional lattice, and the set Zm =
{(x1, x2, . . . , xm) : xi ∈ Z} forms a lattice in Rm.

• For a lattice L, its scaling cL = {cx : x ∈ L} by any real number c is a
lattice. More generally, any linear transformation applied to a lattice results
in a lattice.

• The set of all rationals Q is not a lattice in R as it is not discrete. In fact,
every ε-neighborhood of 0 ∈ Q contains infinitely many rationals.

• Not every discrete subset of R is a lattice; for example, the set of primes does
not form a subgroup since 0 is not in the set.

• The subgroup G = Z ⊕ Z
√

2 = {(a, b
√

2) : a, b ∈ Z} is a lattice in R2 with
two linearly independent generators, (1, 0) and (0,

√
2).

The set of vectors {b1, b2, . . . , bn} is called a lattice basis and can be expressed
using a matrix having the basis vectors as columns, which we denote by L(B) =
{Bx : x ∈ Zn}, where Bx is the usual matrix-vector multiplication. Henceforth
we only consider lattices in Rn, and restrict to the case m = n. A given lattice has
many different bases. When the basis B is clear from the context, we can denote
the lattice simply by L instead of L(B).

Definition 4.1.2. Let B = {b1, b2, . . . , bn} ∈ Rn. Then Span(B) = {Bx : x ∈
Rn}.

Note that the difference between L(B) and Span(B) is that one can use arbitrary
real coefficients to combine the basis vectors in Span(B), whereas in L(B) only
integer linear combinations are allowed. We note that Span(B) does not depend on
the particular basis vectors B. If B and B′ are two bases which generate the same
lattice, then Span(B) = Span(B′).

Any set of n linearly independent lattice vectors B′ ∈ L(B) is a basis for
Span(B) as a vector space. However, B′ is not necessarily a lattice basis for L(B).

For example, consider the 2-dimensional basis vectors b1 =

[
1
2

]
, b2 =

[
1
−1

]
.

Let b′1 = b1 + b2 =

[
2
1

]
, b′2 = b1 − b2 =

[
0
3

]
. The vectors b′1 and b′2 are linearly

independent and they form a basis for the plane R2 = Span(b1, b2) as a vector space.
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However, they are not a basis for L(b1, b2) because the lattice vector b1 cannot be
expressed as an integer linear combination of b′1 and b′2.

To gain further insight on the topic, we define the geometric characterization of
linearly independent lattice vectors that generate the whole lattice. For this purpose,
we define the fundamental parallelepiped of a lattice.

Definition 4.1.3. Let L(B) be a lattice basis. The fundamental parallelepiped of
the corresponding lattice is defined as P(B) = {Bx : 0 ≤ xi < 1}.

Recall that a matrix with integer entries and determinant det(U ) = ±1 is called
a unimodular matrix. Two bases B,B′ ∈ Rn generate the same lattice L if and only
if there exists an n× n unimodular matrix U ∈ Zn×n such that B = UB′.

Definition 4.1.4. The determinant of a lattice L(B), denoted det(L(B)), is the
n-dimensional volume of the fundamental parallelepiped P(B) spanned by the basis
vectors.

If B and B′ generate the same lattice, it follows immediately from the above
condition that det(B) = det(U ) det(B′). Geometrically, this corresponds to the
intuition that the areas of the fundamental parallelepipeds P(B) and P(B′) are
exactly the same because the two bases generate the same lattice. The determinant
is a lattice invariant, i.e. it does not depend on the particular choice of basis of the
lattice.

One way to compute the determinant of a lattice is given by the Gram–Schmidt
orthogonalization process. Given any set {b1, . . . , bn} ∈ Rn of n linearly indepen-
dent vectors , the Gram–Schmidt process produces a set of n orthogonal, linearly
independent vectors {b∗1, . . . , b∗n} ∈ Rn by iteratively computing

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j ,

where

µi,j =
〈bi, b∗j〉
〈b∗j , b∗j〉

.

In the above, 〈x,y〉 =
∑n

i=1 xiyi is the usual inner product, or dot product, of two
vectors x and y in Rn. For every i, the vector b∗i is the component of bi orthogonal
to Span(b1, . . . , bi−1). In particular, Span(b1, . . . , bi) = Span(b∗1, . . . , b

∗
i ), and the

vectors b∗i are pairwise orthogonal, i.e. 〈b∗i , b∗j〉 = 0 for all i 6= j. The determinant
of the lattice can be expressed in terms of the orthogonalized vectors as

det(L(B)) =
n∏
i=1

‖b∗i ‖

where ‖x‖ =
√∑

i x
2
i is the Euclidean norm.

It is important to note that the orthogonal vectors b∗i depend on the order of the
original basis vectors. Given a basis matrix B = [b1, . . . , bn], let B∗ be the matrix
whose columns are the orthogonalized vectors [b∗1, . . . , b

∗
n]. The matrix B∗ is a basis

of Span(B) as a vector space but is usually not a basis for L(B).
In general, a lattice does not have a basis consisting of mutually orthogonal

vectors. One can compute det(L(B)) as the square root of the determinant of the

66



Gram matrix BTB, i.e. the n× n matrix whose entry at row i and column j is the
inner product 〈bi, bj〉:

det(L(B)) =
√

det(BTB).

One basic property of a lattice is the length of its non-zero vectors. Our measure
of length is the Euclidean norm ‖x‖ =

√∑
i x

2
i , i.e. the norm corresponding to the

Euclidean distance dist(x,y) = ‖x− y‖ =
√∑n

i=1(xi − yi)2.
The length of the shortest non-zero vector in the lattice is denoted by λ1. It is

the smallest number r such that the lattice points inside a ball of radius r span a
space of dimension at least 1. This definition leads to the following generalization
of λ1 called successive minima.

Let Bn(0, r) = {x ∈ Rn : ‖x‖ < r} be the n-dimensional open ball of radius r
centered at 0. Given an n-dimensional lattice L, we define its successive minima
λ1, . . . , λn as follows. The i-th minimum λi(L) is the radius of the smallest sphere
centered at the origin containing at least i linearly independent lattice vectors:

λi(L) = inf{r : dim(Span(L ∩ B(0, r))) ≥ i}.
Lattices can also be defined as discrete nonempty subsets L of Rn closed under

addition, i.e. having the property that if x ∈ L and y ∈ L, then x + y ∈ L.
Here “discrete” means that there exists a positive real number λ > 0 such that
the distance between any two lattice vectors is at least λ. It follows from the
definition of a lattice as a discrete additive subgroup of Rn that there always exist
vectors achieving successive minima. That is, there are linearly independent vectors
x1, . . . ,xn ∈ L such that ‖xi‖ = λi for i = 1, . . . , n. In particular, λ1(L) =
minx∈L\{0} ‖x‖, the length of a shortest non-zero vector in the lattice. This is also
equal to the minimum distance between any two distinct lattice points.

In the following, we state some standard results from lattice theory. For more
background and a detailed treatment of the subject, we refer to [83].

The following theorem gives a useful lower bound on the length of the shortest
nonzero vector in a lattice.

Theorem 4.1.1. [83] Let B be an n-dimensional lattice basis and B∗ be the cor-
responding Gram–Schmidt orthogonal basis. Then the first minimum of the lattice
satisfies

λ1(L) ≥ min1≤i≤n ‖b∗i ‖ .
We proceed by stating an important theorem on the Minkowski upper bounds

on the product of successive minima of any lattice.

Theorem 4.1.2 (Blichfeld). [83] For any lattice L ⊂ Rn and for any measurable
set S ⊂ Rn, if S has volume vol(S) > det(L), then there exist two distinct points
z1, z2 ∈ S such that z1 − z2 ∈ L.

As a corollary to Blichfeld’s theorem, we obtain the following theorem due to
Minkowski. It states that any sufficiently large, centrally symmetric convex set
contains a nonzero lattice point. A set S is called centrally symmetric if for any
x ∈ S we have −x ∈ S, and it is called convex if for any x, y ∈ S and any λ ∈ [0, 1]
we have λx + (1− λ)y ∈ S, that is, given any two points x, y in the set S, the line
joining them lies entirely inside S.
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Theorem 4.1.3 (Convex body theorem). [83] For any lattice L ∈ Rn and any
convex set S ⊂ Span(L) symmetric about the origin, if vol(S) > 2n det(L), then S
contains a nonzero lattice point x ∈ S ∩ L \ {0}.

Minkowski’s convex body theorem can be used to bound the length of the short-
est vector as follows. Let S = B(0,

√
n det(L)1/n) be the open ball of radius√

n det(L)1/n. If the volume of S is greater than 2n det(L) then by the convex
body theorem there exists a nonzero lattice vector in S ∩L\{0}. Notice that S has
volume strictly greater than 2n det(L) because it contains an n-dimensional hyper-
cube with edges of length 2 det(L)1/n. This shows that for any n-dimensional lattice
L, the length of the shortest nonzero vector (in Euclidean norm) satisfies

λ1(L) <
√
n det(L)1/n.

The above result can be generalized to i-th minima for i > 1 as follows.

Theorem 4.1.4 (Minkowski’s second theorem). [83] For any n-dimensional lattice
L(B), the successive minima (in Euclidean norm) λ1, . . . , λn satisfy

( n∏
i=1

λi)
1/n <

√
n det(B)1/n.

4.2 Computational problems in lattices

Two of the main computational problems involving lattices are:

(i) the closest vector problem: given a lattice in Rn and a target vector x ∈ Rn,
the goal is to find a lattice vector closest to x;

(ii) the shortest vector problem: given a lattice in Rn, find the lattice vector with
the shortest norm.

In this chapter, we focus on the shortest vector problem.
It is clear from Minkowski’s convex body theorem that there is a simple way to

bound the length of the shortest nonzero vector λ1 in a lattice L(B). It is important
to note that λ1 can be much smaller than

√
n det(L)1/n. But in the worst case there

exist lattices for which λ1 > c
√
n det(L)1/n for some constant c. Moreover, the proof

of Minkowski’s theorem is not constructive, meaning that although it guarantees that
a short nonzero vector exists, it does not provide any way of finding such a vector.
Finding such a vector constitutes the well-known shortest vector problem (SVP),
which we formally define below.

Definition 4.2.1 (Shortest vector problem). Given a lattice basis B, the shortest
vector problem (SVP) is to find a nonzero lattice vector s ∈ L(B) such that ‖s‖ =
λ1(L(B)).

There is an approximation variant of this problem. The goal is to output a
nonzero lattice vector whose norm is greater than that of the shortest nonzero vector
by at most some approximation factor γ.

Geometrically, the shortest vector problem can be seen as a generalization of
the computation of the greatest common divisor (GCD). We know that, given two
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integers a, b, the Euclidean algorithm actually computes the smallest nonzero linear
combination of a and b. In the case of two dimensions, an algorithm for solving the
shortest vector problem in polynomial time was given by Gauss (see section 4.3.2).
The formulation of the problem in arbitrary dimension was given by Dirichlet and
studied by Hermite [50], Korkine and Zolotarev [60]. Later, Minkowski founded the
theory of geometry of numbers [21], which deals with the study of lattices and prob-
lems related to them. Algorithms for finding a shortest vector were given by Rosser
[102], Knuth [59] and Dieter [29], but none of these algorithms run in polynomial
time. Later, the development of the LLL basis reduction algorithm [69] was a major
breakthrough in the field (see also section 4.3.3). Using the LLL algorithm, it was
possible to solve the shortest vector problem in any dimension n in polynomial-time
with an approximation factor of 2O(n). The LLL algorithm can be seen as a general-
ization of the Euclidean algorithm to n dimensions. Later, the approximation factor
was improved to 2O(n(log log n)

2/ logn) by Schnorr [106], followed by Ajtai [3] with an
approximation factor of 2O(n log logn/ logn) using a sieve algorithm.

Despite all these improvements, SVP resisted any attempts to devise an exact
polynomial time algorithm for arbitrary dimension. Part of the difficulty of SVP
comes from the fact that a lattice has many different bases and contains very long
vectors. Given the above results, one might expect SVP to be NP-hard to approx-
imate, even within very large factors. However, the best known results show that

approximating SVP to within factors 2(logn)
1
2−ε is NP-hard under quasi-polynomial

time reductions [58] (an algorithm is said to run in quasi-polynomial time if its
worst case time complexity is 2O(log(n)

c) for some fixed constant c). The problem of
approximating SVP to within polynomial factors nc for c > 1

2
is not believed to be

NP-hard [1, 41, 63]. However, the asymptotically fastest known algorithm for SVP
(namely, the AKS Sieve introduced by Ajtai, Kumar and Sivakumar [3]) runs in
probabilistic exponential time 2O(n). In practice, it is not clear for which dimension
n solving SVP becomes really hard or infeasible, since the problem also depends on
the given lattice basis.

4.3 Lattice reduction algorithms

The goal of a lattice reduction algorithm is to transform a given lattice basis to
a basis which is short and as orthogonal as possible. We describe some standard
lattice reduction algorithms in the next section.

4.3.1 Gram–Schmidt orthogonalization

The Gram–Schmidt orthogonalization process may be regarded as a first step in
lattice reduction. More details can be found in Chapter 4 in [36]. Given any n
linearly independent vectors in Rn, the Gram–Schmidt process produces a set of
n orthogonal, linearly independent vectors in Rn. In particular, it may be applied
to a basis B of a lattice L. The resulting orthogonal basis is, in general, not a
subset of L, as the process involves real numbers and not integers. Nevertheless, the
Gram–Schmidt (GS) process gives valuable information on the minimum distance
λ1(L).

For n linearly independent vectors b1, . . . , bn ∈ Rn, we compute the Gram–
Schmidt orthogonalized vectors b∗1, . . . , b

∗
n via an iterative process. First, we define
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b∗1 = b1, and then for i = 2, . . . , n, and j = i− 1, . . . , 1 we define b∗j to be the com-
ponent of bj orthogonal to Span(b1, . . . , bj−1) which is equal to Span(b∗1, . . . , b

∗
j−1).

With µi,j computed as µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

, the Gram–Schmidt process can be described as

follows:

b∗1 = b1

b∗2 = b2 − µ2,1b
∗
1

b∗3 = b3 − µ3,1b
∗
1 − µ3,2b

∗
2

...

b∗n = bn −
∑

1≤j<n

µn,jb
∗
j .

The set {b∗1, b∗2, . . . , b∗n} is an orthogonal basis for the same space as that spanned
by {b1, b2, . . . , bn}. More generally, for any 1 ≤ i ≤ n, the subspace spanned by
{b∗1, b∗2, . . . , b∗i } is the same as that spanned by {b1, b2, . . . , bi}. The procedure for
producing the Gram–Schmidt vectors is given in Algorithm 6.

Theorem 4.3.1. [36] If {b∗1, b∗2, . . . , b∗n} is the orthogonal basis obtained by the
Gram–Schmidt process applied to a lattice L, then λ1(L) ≥ min1≤i≤n‖b∗i ‖.

Thus, applying the GS process yields a lower bound on the length of the shortest
non-zero vector in a given lattice L.

Algorithm 6 Gram–Schmidt algorithm

Input: Ordered basis B = (b1, . . . , bn), bi ∈ Rn

Output: (b∗1, . . . , b
∗
n), the orthogonal Gram–Schmidt basis for B.

b∗1 = b1
for i = 2 to n do
v = bi
for j = i− 1 to 1 do

µi,j = 〈bi, b∗j〉/〈b∗j , b∗j〉
v = v − µi,jb∗j

end for
b∗i = v

end for
return (b∗1, . . . , b

∗
n)

4.3.2 Lattice basis reduction in two dimensions

An algorithm for lattice basis reduction in two dimensions was given by Lagrange and
Gauss ; see [36, p. 366]. This algorithm can be viewed as a generalization of Euclid’s
algorithm to a two dimensional lattice. Given a lattice basis B = (b1, b2), bi ∈ R2,
the goal is to output a basis for the lattice such that the lengths of the basis vectors
are as short as possible (in this case, we actually obtain the shortest vector of length
λ1(L(B)). This procedure is given in Algorithm 7, where we consider an integral
lattice basis, that is, we assume that the basis vectors have integer entries.
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Definition 4.3.1. An ordered basis b1, b2 for R2 is Lagrange–Gauss reduced if
‖b1‖ ≤ ‖b2‖ ≤ ‖b2 + qb1‖ for all q ∈ Z.

Algorithm 7 Lagrange–Gauss reduction

Input: Ordered basis (‖b1‖ ≤ ‖b2‖) b1, b2 ∈ Z2 for a lattice L.
Output: Basis b1, b2 for L such that ‖bi‖ = λi(L).
B1 = ‖b1‖2
µ = 〈b1, b2〉/B1

b2 = b2 − bµeb1 . (b·e means closest integer)
B2 = ‖b2‖2.
while B2 < B1 do

Swap b1 and b2
B1 = B2

µ = 〈b1, b2〉/B1

b2 = b2 − bµeb1
B2 = ‖b2‖2

end while
return (b1, b2)

It is interesting to study lattice reduction in two dimensions because the LLL
algorithm performs a succession of steps of the Lagrange–Gauss algorithm on the
local bases, and it stops when all the local bases are reduced. If b1, b2 ∈ Z2 are such
that ‖bi‖2 ≤ X, where X ∈ Z with X ≥ 2, then the Lagrange-Gauss algorithm
performs O(log(X)3) bit operations.

4.3.3 Lenstra-Lenstra-Lovász (LLL) algorithm

The LLL algorithm, developed by A.K. Lenstra, H.W. Lenstra and L. Lovász in 1982
[69] is an iterative algorithm that transforms a given lattice basis into a basis which
generates the same lattice and which is LLL-reduced (see definition below). The
LLL algorithm runs in polynomial time and finds an approximate solution s to the
shortest vector problem, in the sense that the length of the solution s found by the
algorithm is at most γλ1(L) for some approximation factor γ. The approximation
factor for dimension n is γ = 2O(n).

The LLL algorithm can be regarded as a generalisation of the Gauss–Lagrange
algorithm to higher dimensions. Recall that, given a set of n linearly independent
vectors {b1, b2, . . . , bn} as a basis in Rn, the Gram–Schmidt coefficients are given by

µi,j =
〈bi, b∗j〉
〈b∗j , b∗j〉

.

Definition 4.3.2. Given an ordered basis for the lattice B = {b1, b2, . . . , bn} ∈ Rn

and some δ ∈ (1
4
, 1), we say that B is an LLL-reduced basis if the following holds:

1. For all 1 ≤ j < i ≤ n, |µi,j| ≤ 1
2
. Such a basis is said to be size reduced.

2. For 1 ≤ i < n, δ‖b∗i ‖2 ≤ ‖µi+1,i, b
∗
i + b∗i+1‖2. This condition is called the

Lovász condition. It is usual to take δ = 3
4
, but the algorithm works for any

1
4
< δ < 1.
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The LLL algorithm works as follows (see p. 375 in [36] for more details). Given
an input basis B ∈ Rn, we perform the following operations:

1. Compute B∗, the Gram–Schmidt orthogonalized vectors of the basis B.

2. Let B ← SizeReduce(B), that is |µi,j| ≤ 1/2 for all i, j. The LLL algorithm
ensures that the basis is size reduced, and does not change L(B). The idea
behind the subroutine SizeReduce(B) is that for each i ∈ {2, . . . , n} and

j ∈ {1, . . . , i− 1} we set bi ← bi − ci,jbj, where ci,j = b 〈bi,b
∗
j 〉

〈b∗j ,b∗j 〉
e.

3. If there exists 1 ≤ i < n for which the Lovász condition is violated, i.e.
δ‖b∗i ‖2 > ‖µi+1b

∗
i + b∗i+1‖2, then swap bi and bi + 1 and go back to Step 1.

Otherwise, output B.

Algorithm 8 LLL reduction

Input: Ordered basis (b1, . . . , bn) ∈ Rn, 1
4
< δ < 1.

Output: basis is LLL-reduced (b1, . . . , bn).
Compute the Gram–Schmidt basis (b∗1, . . . , b

∗
n) and coefficients µi,j for 1 < j <

i ≤ n.
k = 2
while k ≤ n do

for j = (k − 1) to 1 do // Size reduction
Let ck,j = bµk,je and set bk = bk − ck,jbj
Update the value µk,j

end for
if ‖b∗k + µk,k−1b

∗
k−1‖2 ≥ δ‖b∗k−1‖2 then // Lovász condition

k = k + 1
else

Swap bk with bk−1
Update the values b∗k, b

∗
k−1 and recompute the µ-matrix

k = max{2, k − 1}
end if

end while

The overall run time of the LLL algorithm is polynomial in the input size as
specified in the following theorem.

Theorem 4.3.2. [36] Let L be a lattice in Rn with basis b1, . . . , bn and let X ∈ Z
with X ≥ 2 be such that ‖bi‖2 ≤ X for 1 ≤ i ≤ n. Let 1/4 < δ < 1. Then the LLL
algorithm with factor δ terminates and performs O(n2 log(X)) iterations.

4.3.4 BKZ reduction

The Blockwise Korkine-Zolotarev (BKZ) reduction algorithm is the fastest known
reduction algorithm and was first introduced by Schnorr and Euchner [107] and later
improved by Nguyen [22]. The BKZ algorithm uses local blocks to achieve reduc-
tion, hence the name. The size of the block is determined by an additional input
parameter to the algorithm called the block-size β. The quality of the reduction
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achieved by this algorithm depends on β, with an increase in block-size leading to
improved reduction.

The BKZ algorithm starts by LLL-reducing a given lattice basis. The quality
of the reduction is then improved iteratively. Given an input lattice basis and the
block-size β, the first block consists of the first β basis vectors. The second block is
constructed similarly with a slight modification: instead of taking the second block
to be b2, . . . , bβ+1, the projections of the aforementioned vectors onto the orthogonal
complement of the first basis vector are used. The remaining blocks are constructed
in the same way. For block i, the basis vectors with index j, satisfying i ≤ j < i+β,
are projected onto the orthogonal complement of the vector space spanned by all
basis vectors b1, . . . , bi−1. This projection forms the local block. The index l of the
last vector in a block is computed as l = min{i+ β, n}, where n is the dimension of
the lattice. That means that the block starting at index n− β + 1 is the last one of
size β. From there on, the size of the last block decreases with each step. The local
blocks are also called local projected blocks.

The algorithm works as follows. Each iteration takes one block at a time and
performs an enumeration on the locally projected lattice to ensures that the first
vector of the block is the shortest vector inside the lattice spanned by this block. If
this is not the case, then a new vector is inserted in the lattice; this newly inserted
vector is in the lattice, and is therefore linearly dependent on the basis vectors. This
means that after inserting the new vector, the local block is not a basis for the local
lattice any longer. To obtain a basis again, the algorithm runs the LLL algorithm on
the expanded block. The LLL algorithm is executed for each local block, no matter
whether an insertion has taken place or not.

Let πi denote the orthogonal projection πi : Rn → Span(b1, . . . , bi−1)
⊥ such

that b − πi(b) ∈ Span(b1, . . . , bi−1). Let L[j,k] denote the locally projected lattice
defined as the lattice spanned by the orthogonal projection of (bj, . . . , bk) onto
(b1, . . . , bj−1)

⊥, where k = min(j + β − 1, n). The local block denoted as B[j,k] =
(πj(bj), πj(bj+1), . . . , πj(bk)) is the result of the projection of the basis vectors. The
block B[j,k] can be obtained using Gram–Schmidt orthogonalization. This means
that all vectors of the locally projected lattice are orthogonal to all basis vectors bi
of L where i < j.

The dimension of the local lattices, i.e. the lattices corresponding to the local
blocks, is determined by the block size. Let the starting index of the local blocks
be j. This is shifted cyclically through 1 to n− 1 in the algorithm, until no further
improvement can be achieved using the local projected lattices for n− 1 subsequent
iteration steps. The end index k is determined as min{j + β − 1, n}. This means
that all blocks but the last one have dimension β, whereas the blocks ending with
index n have gradually decreasing dimension, starting with β and ending with 1.

The reduction process is shown in Algorithm 9. Note that the shortest vector
in the local lattices is obtained using an enumeration algorithm, which is the most
computationally expensive part of the process. To speed up the enumeration sub-
routine, one may use a pruned enumeration algorithm, which has some probability
of failure, i.e. of not finding the shortest vector. No good upper bound on the
complexity of the BKZ algorithm is known. The best upper bound known for the
number of calls to the enumeration subroutine is exponential [44].
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Algorithm 9 BKZ reduction

Input: A basisB = (b1, . . . , bn) ∈ Zn, a blocksize β ∈ {1, . . . , n}, Gram–Schmidt
matrices µij and Gram–Schmidt vectors ‖b∗1‖2, . . . , ‖b∗n‖2.
Output: BKZ-β reduced basis (b1, . . . , bn).
z ← 0
j ← 0;
LLL (b1, . . . , bn, µ) //LLL reduce the basis and update µ.
while z < n− 1 do

j ← (j mod(n− 1)) + 1
k ← min(j + β − 1, n);
h← min(k + 1, n); // define the local block
v ←enum(µk,j, ‖b∗j‖2, . . . , ‖b∗k‖2) // find v = (vj, . . . , vk) ∈ Zk−j+1 − 0 such

that ‖πj(
∑k

i=j vibi)‖ = λ1(Lj,k)
if v 6= (1, 0, . . . , 0) then

z ← 0
LLL(b1, . . . ,

∑k
i=j vibi, bj, . . . , bh, µ) at stage j; // insert the new vector in

the lattice at the start of the current block, then remove the dependency in the
current block, update µ.

else
z ← z + 1
LLL(b1, . . . , bh, µ) at stage h − 1; // LLL-reduce the next block before

enumeration.
end if

end while

4.3.5 Lattice enumeration algorithms

As mentioned earlier, there are two main algorithmic techniques for solving lattice
problems:

1. The lattice basis reduction technique works by applying successive transforma-
tions to the input basis in an attempt to make its vectors shorter and more
orthogonal. The LLL algorithm runs in polynomial time but the approxima-
tion factor it provides is asymptotically exponential.

2. The enumeration technique is an exhaustive search aiming to find a best integer
combination of the basis vectors, i.e. one which results in a vector of minimal
norm. Enumeration algorithms run in exponential time but are guaranteed to
find a shortest vector (as opposed to approximation techniques).

Often these two approaches are combined. In practice, enumeration algorithms
are used in block-based reduction algorithms (in particular, BKZ) as a subroutine
to find short vectors in low dimensional sub-lattices having the block-size as their
dimension. The running time of the enumeration algorithms heavily depends on
the quality of the input basis. Therefore, enumeration algorithms are almost never
applied directly to the given basis. Rather, one first reduces the given lattice basis,
and then runs enumeration on the reduced basis.

As mentioned earlier, given a lattice L(B) = {v1b1 + . . . + vnbn : vi ∈ Z}, the
basic enumeration algorithm is an exhaustive search whose goal is to find integer
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combinations of the coefficients vi such that the resulting combination of the basis
vectors has norm below some given threshold R. The search can be seen as a
depth-first search on a tree whose leaves correspond to lattice vectors, and whose
internal nodes correspond to partial assignments to the coefficients of the integer
combinations.

The first enumeration algorithm was developed by Pohst in the 1980s [94]. This
algorithm is also known as the Fincke–Pohst enumeration algorithm and it is a
deterministic algorithm based on exhaustive enumeration of lattice points within
a small convex set, or hyper-sphere. The complexity of the algorithm for an n-
dimensional lattice in the worst case is of order 2O(n

2). A similar, and better, version
of this algorithm was developed by Kannan, the main difference between the two
being that in Kannan’s algorithm, a long pre-computation on the basis vectors is
performed before starting the enumeration process. The estimated complexity is
2O(n logn) [56]. In 1985, Helfrich [47] refined Kannan’s algorithm and obtained a
procedure with complexity bounded by 2O(

n
2
logn). Even though these algorithms

have low theoretical complexity, in practice they are much slower than standard
enumeration.

The algorithms mentioned above obtain a substantial speedup by means of prun-
ing techniques, which were first introduced by Schnorr–Euchner [109] and Schnorr–
Hörner in the 90s [110]. The rough idea is to prune away subtrees of the search
tree, thereby reducing the search space. Although this reduces the search space to
only a subset of all possible solutions, it introduces some probability of missing the
optimal solutions. The rationale is that this probability is small compared to the
gain in running time.

The current state of the art is enumeration using extreme pruning, which was
introduced by Gamma et al. [37]. They obtained exponential speedups using some
bounding functions that significantly reduce the search space. Their analysis shows
that, for a well-chosen bounding function, it is possible to obtain an exponential
speedup for a dimension n lattice by a factor of 2

n
2 as compared to basic enumeration,

while maintaining a success probability of at least 95%.

4.4 The standard enumeration algorithm

Let L be a lattice with shortest vector s which is unique up to its sign. Assume
that we are given a basis {b1, b2, . . . , bn} of L and an upper bound R on λ1(L) such
that we need to find all vectors w in the lattice L that satisfy ‖w‖ ≤ R.

A shortest vector s ∈ L can be written as s = v1b1 + v2b2 + . . .+ vnbn, where vi
for 1 ≤ i ≤ n are unknown integers. Our goal is to find s.

To find ±s, the enumeration algorithm goes through an enumeration tree formed
by the subspace spanned by vectors whose norm is at most R [107]. The enumeration
tree is a depth first search tree of depth n. Each internal node in the tree is associated
with a particular vi, and each outgoing edge represents an assignment of an integer
value (obtained from a range) to vi. In particular, the root of the tree is the zero
vector, while the leaves represent all vectors of L whose norm is at most R.

At any node, the enumeration algorithm is given an index k of a coefficient not
yet branched for, and obtains a set of integers (an interval range) Ik for the possible
values that vk can take. For each integer t ∈ Ik, the algorithm sets vk = t and calls
itself recursively to compute the interval for the next level. The length bound here
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remains constant throughout the algorithm. For 1 ≤ k ≤ n, the following inequality
needs to be satisfied, essentially defining the interval Ik:(

vk +
n∑

i=k+1

µi,kvi

)2
‖b∗k‖2 +

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2
‖b∗j‖2 ≤ R2. (4.1)

By the inequality above, for each 1 ≤ k ≤ n, the interval range Ik for vk can be
obtained if the values of vj are known for k + 1 ≤ j ≤ n. Before enumeration can
start, the matrix [µi,j] of Gram–Schmidt coefficients, called the µ-matrix, and the
orthogonal basis vectors b∗1, . . . , b

∗
n must be computed. The µ-matrix depends on

the particular order of the basis vectors, and once it is computed, this order remains
fixed throughout the standard enumeration routine.

The actual enumeration starts by computing an interval In using (4.1) such that
‖s‖ ≤ R implies vn ∈ In. The algorithm then fixes an integer value in In for vn,
and based on this choice, computes an interval In−1 such that ‖s‖ ≤ R implies
vn−1 ∈ In−1. Then an integer is selected from In−1 and assigned to vn−1, and the
interval where vn−2 must be found is computed. This continues until a selection for
v1 can be made, in which case we find a lattice vector with length less than or equal
to R, or until an empty interval Ij is computed.

Intervals are computed recursively in the order In, In−1, . . . , I2, I1, and all values
from all intervals must be tested to perform a complete search that guarantees that
a shortest vector will be found. In the following, we denote the length of an interval
Ii by |Ii|.

The complexity of this algorithm is 2O(n
2). A detailed description is given under

Algorithms 10, 11 and 12.

Algorithm 10 Enumeration

Input: {b1, . . . , bn}, bound R
Output: {s1, . . . , sr| ‖si‖ < R}
Compute the Gram–Schmidt coefficients µi,j and the Gram–Schmidt vectors
{b∗1, . . . , b∗n}
a = 0
enum(n, b1, . . . , bn, b

∗
1, . . . , b

∗
n,a, µi,j, ∅, R)

Algorithm 11 enum(k, b1, . . . , bn, b
∗
1, . . . , b

∗
n,a, µi,j, {vk+1, . . . , vn}, R)

if k = 0 then
return a

else
Ik = ComputeInterval(vk+1, . . . , vn, µi,j, b

∗
k, . . . , b

∗
n, R)

for vk ∈ Ik ∩ Z do
a = a+ vkbk
enum(k − 1, b1, . . . , bn, b

∗
1, . . . , b

∗
n,a, µi,j, {vk, . . . , vn}, R)

end for
end if

In the rest of this chapter, we refer to the level containing the root node of the
search tree as level n, the second highest level being level n − 1, etc. That is, if a
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Algorithm 12 ComputeInterval(vk+1, . . . , vn, µi,j, b
∗
k, . . . , b

∗
n, R)

ck = −∑n
i=k+1 µi,kvi

ρk =
∑n

j=k+1

(
vj +

∑n
i=j+1 µi,jvi

)2
‖b∗j‖2

Return

[
ck −

√
R2−ρk
‖b∗k‖

, ck +

√
R2−ρk
‖b∗k‖

]

node is at level k in the search tree, then only the coefficient vk can be selected for
branching at that node.

4.5 Hybrid enumeration

In this section, we study how permutations of the basis vectors of a lattice affect
the running time of enumeration. Based on this we present a strategy for selecting
an order of the basis vectors that results in a reduction of the number of nodes in
the search tree when performing enumeration. We compare this work to standard
enumeration and to extreme pruning, which is the current state of the art.

To compare the efficiency of our hybrid enumeration technique to standard enu-
meration, we run hybrid enumeration on top of standard enumeration, and we
observe a reduction in the number of nodes even though the complexity remains
asymptotically the same.

On the other hand, when comparing the efficiency of hybrid enumeration to that
of extreme pruning, we first run hybrid enumeration on a given input and record
its running time. We then run extreme pruning on the same input, but restrict its
running time to the one measured for hybrid enumeration. We observe that extreme
pruning misses several solutions as opposed to hybrid enumeration.

A detailed description of our experimental results can be found in Section 4.5.5.

One disadvantage of the standard enumeration technique is that the algorithm
depends on the computed Gram–Schmidt (GS) orthogonal basis for computing the
intervals of values that the coefficients vi can take. Once the GS orthogonal basis is
computed, it fixes the order in which we guess the coefficients.

In the case of hybrid enumeration, we take an approach where the basis vectors
are not bound by any particular order and we are free to choose which of the unas-
signed coefficients vi to branch for at any given point in the search tree. We show
that dynamically changing the order of the coefficients vi can lower the number of
nodes in the search tree as compared to the standard enumeration algorithm.

The price to pay for this flexibility is an increased amount of work at each node
of the search tree. The complexity of the computation at each node is O(n4). Hence
the actual time taken to enumerate a lattice using the new method may be longer
than the time taken by the standard GS enumeration. Therefore we only propose to
use the new enumeration technique at the nodes on the highest levels in the search
tree, and then switch to standard GS enumeration for lower levels. This still leads
to a reduction in the number of nodes in comparison to the standard enumeration
method, depending on the type of lattice and the level where we switch to standard
GS enumeration.
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nodes in search tree BKZ-10 BKZ-20
minimum 60.934.596 4.059.025
average 424.300.658 52.886.123
maximum 1.180.735.200 194.214.522
std. deviation 361.710.571 40.202.374

Table 4.1: Number of nodes to fully enumerate the BKZ-reduced SVP40 challenge
lattice for 20 random permutations of the basis. The number of nodes in a search
tree is highly dependent on the particular permutation.

4.5.1 Variations in enumeration complexity from basis per-
mutations

As far as we know, there have been no studies on how the complexity of standard
enumeration varies when the vectors in the input basis are permuted. To motivate
the work that follows, we first present the results of some experiments showing that
the number of nodes in the search tree during full enumeration is highly sensitive to
the order of the basis vectors.

The lattice we use for the demonstration is Darmstadt’s SVP40 challenge [105],
generated from seed 0. All SVPn lattices from [105] have dimension n. The exper-
iment was performed as follows: first, we ran two BKZ-reductions on the SVP40
lattice, one with block size 10, and one with block size 20. Then we performed
full enumeration on each of the two BKZ-reduced lattices, counting the number of
nodes in the search tree. Next, we randomly permuted the two BKZ-reduced bases
20 times each, and ran full enumeration on all of them. The average number of
nodes in the search trees for the randomized bases are shown in Table 4.1, together
with the maximum and minimum numbers observed, and the standard deviation.

When using extreme pruning, in case of failure to find the shortest vector, one
permutes the basis vectors and runs the algorithm again. From the few trials in
Table 4.1, we see that the order of the basis vectors has a big impact on the size of
the enumeration search tree. The standard deviation is of similar size as the average,
showing that the sizes of the search trees vary greatly with the permutation.

Another interesting observation is that the order of the reduced basis as obtained
straight from BKZ is particularly good for enumeration. Enumerating the SVP40
challenge with the basis order given by BKZ-10 gives a tree with 5.968.085 nodes, and
the order given by BKZ-20 gives a tree with 1.232.737 nodes, significantly smaller
than the numbers observed for any of the random permutations.

4.5.2 Strategy for selecting an order for the basis vectors

Basic enumeration assumes the µ-matrix is computed once and for all before actual
enumeration starts, but this is not strictly necessary. We can set every basis vector
bi in the basis as the last one, recompute the µ-matrix, and find the interval of
possible coefficients for Ii. Doing this allows us to make a choice of which vector to
first fix the coefficient for. For instance, we may select the basis vector giving the
shortest interval as the first one to branch for.

The strategy we use for choosing the order of the basis vectors follows a greedy
approach: we always choose the next index i for the coefficient vi as the one with the
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shortest interval Ii. The rationale for this strategy can be explained by the following
lemma.

Lemma 4.5.1. Let J1 ⊆ J2 ⊆ ({1, . . . , n} \ {i}). Let Ii(J1) be the interval for vi
after values of vj for j ∈ J1 have been fixed, and let Ii(J2) be the interval for vi after
some additional vj with j ∈ J2 \ J1 have been fixed. Then |Ii(J1)| ≥ |Ii(J2)|.

Proof. From Equation (4.1), we see that the length of Ii(J1) is determined by the
sum

n∑
j=k+1

(
vj +

n∑
i=j+1

µi,jvi

)2
‖b∗j‖2, (4.2)

while the center of the interval is determined by

n∑
i=k+1

µi,kvi.

When we branch in an unspecified order, (4.2) can be written as∑
j∈J1

t2j ,

where tj are terms decided by the specific order in which the indices in J1 are
chosen. The larger this sum, the smaller |Ii(J1)| will be. The terms in the sum are
all positive, so expanding with the extra terms to create the sum

∑
j∈J2 t

2
j before

branching for vi can only decrease the length of Ii. Hence |Ii(J1)| ≥ |Ii(J2)|.

The point of Lemma 4.5.1 is to show that while basic enumeration tries all
possible values in the computed range, there is a possibility that for some chosen
value of the coefficient vk in the range Ik, the sub tree enumerated for that particular
chosen value might have either: (i) a much shorter range, or (ii) dead ends, i.e. an
empty interval range for the next value. The basic enumeration algorithm tries to
enumerate all possible values is some range until it encounters a dead end.

Lemma 4.5.1 shows that the longer we wait to select a particular vi to branch
for, the shorter its interval Ii will become. The idea for the branching strategy is
that intervals that are long when few vj have been selected will become short by the
time the algorithm is forced to branch on them. This will lead to relatively small
search trees.

One way to more easily see this is in the case when one interval Ii becomes empty
after fixing some of the values vj for j ∈ J . Suppose that the branching order has
been fixed from the start, that the values of vj have been fixed, and that Ii is empty
for this choice of vj, but vi is only to be branched for after another 10 values vk have
been fixed. Even though it is clear that all choices of values for vk will lead to a dead
end, the traditional enumeration algorithm will try all of them before backtracking
away from this sub-tree. By always selecting the next vi to branch for as the one
with the shortest interval, vi will be selected as soon as |Ii| = 0 (the shortest length
possible), and we will immediately backtrack to vj with j ∈ J .
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4.5.3 Cost vs effect for minimizing intervals

The drawback of checking which of the remaining indices to branch for is the ex-
tra work done in each node. If we compute an interval Ii using the µ-matrix of
Gram–Schmidt coefficients, we in general have to recompute the µ-matrix as part
of the process. The complexity for computing this matrix for one index is O(n3)
multiplications, and doing this for every remaining index not yet branched for gives
an overall complexity of O(n4) in each node. These complexities are quite high
considering they have to be done for each node. However, they are still polynomial,
and the number of nodes in a search tree is 2O(n

2), so if the reduction in the number
of nodes is big enough, this can still lead to an improvement.

As we saw in Table 4.1, the number of nodes in a search tree without applying
a minimizing strategy depends heavily on the order of the basis vectors. The order
of the basis vectors does not matter when applying the minimizing strategy, as the
vectors will be sorted as part of the enumeration routine. Hence it is hard to say
anything in general about how large the effect of minimizing intervals will be, since
it depends on how “lucky” the initial order of the vectors is.

4.5.4 Switch level

When many of the coefficients vj have been assigned values (for j ∈ J), the effect of
minimizing intervals for the relatively few remaining indices in {1, . . . , n}\J is small.
On the other hand, applying the minimizing strategy on the very first coefficients vj
to be fixed has a much greater effect. The number of large sub-trees rooted high up
in the full tree when no ordering strategy is applied, becomes significantly smaller
when minimizing intervals. In the extreme case of some interval becoming empty,
the entire sub-tree is pruned away.

Thus we propose to only apply the minimizing strategy to the relatively few
nodes at the highest levels of the search tree. This has the benefit of a relatively
low cost and a potentially high effect. We refer to enumeration with the strategy of
minimizing intervals for the first few levels of the tree as hybrid enumeration.

One parameter for hybrid enumeration is the level in the tree at which we switch
from finding an optimal order based on minimizing intervals to classic enumeration
where the basis is in some given and fixed order. We call this parameter the switch
level.

More precisely, when we reach a node at the switch level, we do the following. We
compute the interval lengths for the remaining indices one last time, and permute
the remaining basis vectors according to these lengths. Indices with the shortest
intervals will be branched for first. Then we perform ordinary enumeration for the
sub-tree rooted at the current node, using this fixed order for the whole sub-tree.
Pseudocode for hybrid enumeration is given in Algorithm 13. The intervals Ii in the
experiments were computed using Algorithm 12.

For B = {b1, . . . , bn}, we regard the root node of the tree (the one at the top)
to be at level n, and the vectors of L(B) to be at level 0. Note that we can run
basic enumeration on the lattice by calling HybridEnumerate(B,R, n+1, n). Calling
HybridEnumerate(B,R, n, n) will also run basic enumeration, but the basis is first
permuted according to the strategy of minimizing intervals. This makes it easy to
estimate the benefit of using hybrid enumeration over basic enumeration.
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Algorithm 13 HybridEnumerate(B,R, sl, l)

Input: The basis vectors B = {b1, . . . , bn} of a lattice L, a length bound R, the
current level l, and the switch level sl.
Output: All vectors s ∈ L with ‖s‖ ≤ R

if l > sl then
Ii ← shortest interval for all remaining bi ∈ B
for vi ∈ Ii do

r ← min. length added to ‖s‖ due to choice of vi
HybridEnumerate(B \ {bi}, R− r, sl, l − 1)

end for
end if
if l = sl then

Compute intervals Ij for all remaining bj ∈ B
Sort B according to |Ij|, basis vectors on bottom of B has shortest intervals
HybridEnumerate(B,R, sl, l − 1)

end if
if l < sl then

Run standard enumeration on B with length bound R
end if

4.5.5 Experiments

We have tested hybrid enumeration on several of the SVP challenges of [105] and
counted the number of nodes that hybrid enumeration gives for different switch
levels. The lattice bases were first reduced by running BKZ-β on them, for β ∈
{10, 20, 30}. For each reduced lattice, we ran hybrid enumeration with switch levels
ranging from n + 1, equivalent to standard enumeration, to n − 4, counting the
nodes in each search tree. The results are shown as plots in Figure 4.1, where
“switch depth” refers to how many levels into the search tree we minimize intervals
before switching to standard enumeration.

We observe a few trends in these plots. First, there is not much difference
between BKZ-20 and BKZ-30 in terms of the quality of the bases. Both of them give
search trees with approximately the same number of nodes after running standard
enumeration, and applying the strategy of minimizing intervals does not change this
by much. The order of the basis vectors given by hybrid enumeration yields search
trees approximately as small as the order given by BKZ. This is in contrast to the
random orders used for computing the numbers in Table 4.1, which shows a large
increase in the number of nodes. Hence the strategy of sorting the basis vectors
according to interval lengths is clearly a good approach for permuting the basis
vectors when iteratively running extreme pruning.

For the BKZ-10 reduced bases, we see a much bigger effect. First, we see that
BKZ-10 gives a significantly weaker reduction than BKZ-20 or BKZ-30, leading to
larger enumeration search trees. The order as given by BKZ-10 is still good for
enumeration, and doing one initial sorting of the basis according to interval lengths
(switch level n) increases the search tree. However, lowering the switch level has a
clear impact and significantly reduces the number of nodes in the search tree beyond
the low number of nodes given by the initial BKZ-order.
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(a) SVP40 (b) SVP46

(c) SVP50 (d) SVP54

Figure 4.1: Number of nodes using hybrid enumeration on lattice bases pre-processed
with BKZ-β for β ∈ {10, 20, 30}.
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Figure 4.2: Fraction of time taken for doing full hybrid enumeration on BKZ-10
reduced lattice bases, compared to time taken for standard enumeration.

Of course, what matters in the end for a lattice enumeration algorithm is its
complexity, measured in the actual time taken. We recorded the times measured
in all the experiments, to see if the extra work done in the nodes at and above the
switch level is worth the effort. For the enumeration of BKZ-20 and BKZ-30 reduced
bases, it is clearly not worth the effort as the number of nodes slightly increases for
the various switch levels. For enumerating the lattices only reduced by BKZ-10,
there is a significant decrease in the number of nodes as the switch level decreases.
The question is whether this is enough to make up for the O(n4) operations done
in each node at and above the switch level.

In Figure 4.2 we have plotted the fraction of time needed for enumerating the
four lattices we have used as compared to standard enumeration, i.e. switch depth 0.
The experiments were coded in C++ and ran on a DELL computer running Linux
with two 2.8 GHz AMD EPYC 7451 24-Core processor and 188 GB of RAM.

We observe a few things from Figure 4.2. First, except for SVP46, the time it
takes to do hybrid enumeration is less than the time for doing standard enumeration
for some values of the switch level. Using switch level n leads to a longer running
time due to an increase in the number of nodes. For a larger switch depth, the
reduction in the number of nodes is worth the extra work done in the few nodes at
the top. Second, for the bigger lattices, the time saved is largest with full hybrid
enumeration, with the computation for SVP54 using switch level 51 only taking
34.8% of the time it takes to do full standard enumeration. Third, we also see that
there is an optimal switch level. For SVP40 and SVP50, hybrid enumeration takes
longer for switch level n− 3 than for n− 2, even though the number of nodes is less
for switch level n− 3. The reduction in the number of nodes is thus not worth the
extra work performed for all nodes on level n− 3.

Figure 4.2 pertains only to BKZ-10 reduced bases, and for better BKZ reductions
we do not demonstrate an improvement in running time. However, the lattices we

83



are able to do full enumeration for in practice have dimensions in the range from
40 to 60, and a block size of 20 and 30 when running BKZ is then a large portion
of that. We see in the plots that there is not much difference between BKZ-20 and
BKZ-30 reduced bases, and there is hardly any improvement to be done for these
cases. They appear to be quite optimal from the start.

We conjecture that for higher dimensions, like n = 150, BKZ-30 would not
give an optimally reduced basis, and that hybrid enumeration would then show the
same improvements as we see with the BKZ-10 reduced bases in our experiments.
All in all, we claim that if one wants to do full enumeration on large lattices that
are not optimally reduced (meaning that running BKZ with larger block sizes would
improve the quality of the basis further), then hybrid enumeration will be faster than
standard enumeration. However, the speedup might very well be asymptotically
negligible, as the experiments from SVP50 and SVP54 indicate that the enumeration
time is reduced only by a factor of 2 and 3, respectively.

4.5.6 Comparison between extreme pruning and hybrid enu-
meration

Lattice Run time (sec) # of vectors found by
extreme pruning

# of vectors found by
hybrid enumeration

SVP40 40 1 2
SVP42 120 5 5
SVP44 408 6 6
SVP46 1167 9 10
SVP48 2893 7 9
SVP50 9260 5 5
SVP52 30931 6 9
SVP54 65810 8 11

Table 4.2: Number of unique short vectors found by hybrid enumeration and extreme
pruning.

To compare the efficiency of hybrid enumeration with that of extreme pruning,
we ran experiments on the Darmstadt lattices SVPn with an even dimension for n
between 40 and 54. In the experiment we searched for all vectors of length less than
the bound given by [105], i.e. all vectors within 5% of the Gaussian heuristic:

R ≤ 1.05 · Γ(n/2 + 1)1/n√
π

· | det(L)|1/n.

We first ran hybrid enumeration with the optimal switch level, and measured
its running time for each instance. Then, we iterated extreme pruning on the same
instance, but limited its running time to the same time that hybrid enumeration
used. Finally, we compared the number of unique short vectors found by both
methods.

We observe that in many cases, extreme pruning misses solutions that hybrid
enumeration successfully finds. This demonstrates that given the same running time,
it is possible to obtain more solutions using hybrid enumeration.
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Our experimental results are summarized in Table 4.2. The particular lattices
given in the first column were taken from [105], and the running time (in seconds)
of hybrid enumeration applied to these lattices are given in the second column.
From the table, we can see that extreme pruning misses solutions for dimensions
n ∈ {40, 46, 48, 52, 54}.

4.6 Sign-based pruning

The second technique we provide is to estimate the signs of each vk. The main
idea behind the algorithm is to exploit the dot-product function which contains
information about the length and angle between the basis vectors. Given two vectors
a and b, if the angle between them is less than 90 degrees, then their sum a+ b is
longer (in terms of norm) than both a and b, and their difference a − b is shorter
than at least one of a and b. To get a short vector, we thus need to subtract one
from another, which implies that the sign of these vectors are opposite with respect
to each other. Similarly, when the angle between them is more than 90 degrees,
then addition gives a short vector, so their relative signs should be the same.

We generalize this observation to n vectors, developing a method for estimating
the signs of each coefficient vk together with a confidence measure for each estimate.
We then give a pruning strategy using which the interval computed for each vk is
cut down using the estimate of the sign and confidence factor. Unlike other pruning
methods, this leads to a one-sided pruning where we only cut away a portion of
possible values for vk for which the sign is believed to be wrong.

4.6.1 Sign-estimation

Going back to the expansion of a shortest vector in terms of the basis vectors s =∑n
i=1 vibi, an enumeration algorithm computes possible values for each coefficient

vi. The equation for computing the coefficients vi indicates that the range Ii for
vi will contain both positive and negative values when the absolute value of the
center of Ii is smaller than the length given by (4.2). As both s and −s are shortest
vectors, we are content in finding either of those. If we could know a priori the sign
of these integers (that is, whether vi ≤ 0 or vi ≥ 0), we could discard appropriate
values from Ii, making the enumeration tree smaller. This would effectively provide
us with another strategy for pruning. In this subsection, we describe an algorithm
for making educated guesses for the signs of these coefficients and how to use them
for pruning.

First, we show how to compute the signs of the coefficients of the shortest vector
when the dimension of the given lattice is only 2. Let us consider a lattice in 2
dimensions with basis vectors {b1, b2}. If b1 and b2 are obtuse to each other, i.e. the
angle between them is more than 90 degrees, then a shortest vector s = v1b1 + v2b2
can only be obtained if the signs of v1 and v2 are the same. Similarly, if they are
acute to each other, i.e. the angle between them is less than 90 degrees, a shortest
vector can only be obtained if the signs of v1 and v2 are opposite to each other. It
is easy to see this, since a (positive) sum of two vectors pointing in approximately
the same direction can only increase in length.

To extend this observation to higher dimensions, we consider the inner product
matrix M = BBT , where Mij = 〈bi, bj〉. Two vectors have a positive inner product
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when the angle between them is less than 90 degrees, and a negative inner product
when the angle between them is larger than 90 degrees. Moreover, the magnitude
of 〈bi, bj〉 relative to 〈‖bi‖, ‖bj‖〉 is a measure of how parallel or anti-parallel bi and
bj are.

The algorithm for computing the estimated sign of coefficients is shown in Algo-
rithm 14. The algorithm computes a vector σ of signs with entries +1 or −1. The
signs of the coefficients vi are computed one at a time, and the estimated sign of vi
depends on the signs of coefficients that have already been computed. Intuitively,
the algorithm compares each basis vector with some reference vector to estimate the
sign of the corresponding coefficient.

The sign of the first basis vector b1 is set to be positive by default, so σ1 = +1.
This can be assumed without loss of generality since both s and −s are shortest
vectors and at least one of them must have non-negative v1. The vector b1 is set
as the reference vector a for the next basis vector. The first row of M contains the
inner product of b1 = a with all the other basis vectors. The basis vector with the
largest inner product in absolute value is both a relatively long vector, and makes
an angle close to 0 or 180 degrees with b1. Let us denote this vector by bi. Then
the sign of vi is set to −1 if M1,i > 0, and otherwise σi is set to +1. The reference
vector is updated to a = a+ σibi.

Now we want to find a basis vector which is most parallel or anti-parallel to a.
To do this, we look at the largest entry in the vector D = M1 + σiMi, where M1

is the top row of M and Mi is the i-th row of M . The largest entry in absolute
value in D (except for the ones with index 1 and i) indicates the third vector, say
bj, for which the sign is to be estimated. If Dj > 0 then σj = −1, and if Dj ≤ 0,
then σj = +1. The vector σjbj is added to a and D is updated to D = D + σjMj.
The proceeds in the same manner until the signs for all basis vectors have been
estimated.

The signs computed in Algorithm 14 are not necessarily correct for a shortest
vector. For each variable vi, we compute a number 0 ≤ γi ≤ 1 to denote how
confident we are that the computed σi is correct. When γi = 1, we are certain that
the corresponding σi is correct, and γi = 0 means that we have no knowledge of
whether the sign for vi should be positive or negative. We compute the confidence
values of the estimated signs as follows. Let J ⊂ {1, . . . , n} be the set of indices for
which values have been fixed, and let the reference vector be a =

∑
j∈J σjbj. Then

the confidence value for the σi-estimate is given as γi = | 〈a,bi〉〈‖a‖,‖bi‖〉 |.
The intuition behind this measure of confidence is that if two vectors are very

close to being parallel, then having the same sign on the coefficients of these vectors
will always lead to their sum being a longer vector that points approximately in the
same direction as the other two. In order to be part of a short vector s, the other
basis vectors must be able to offset this long vector. If the signs of the coefficients
are opposite, a sum of the two approximately parallel basis vectors would be much
shorter. It is easier to sufficiently offset a short vector than a long one in order to
find the shortest vector overall.

When two vectors are close to being parallel, then 〈a,bi〉
〈‖a‖,‖bi‖〉 is close to being 1,

and when they are close to being anti-parallel, then 〈a,bi〉
〈‖a,‖bi‖〉 is close to being −1. In

both cases, γi ≈ 1.
On the other hand, when a and bi are close to orthogonal, i.e. 〈a, bi〉 ≈ 0, then

a + bi and a − bi will be of roughly equal lengths, and it is difficult to distinguish
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Algorithm 14 ComputeSign(B)

Input: The basis vectors B of the lattice L.
Output: A vector σ that contains the estimated sign of each coefficient vi in
s =

∑
i vibi where s is a shortest vector, and a vector γ of real values indicating

the confidence for each estimate.

Compute dot-product matrix M such that Mij = 〈bi, bj〉.
Initialize D := M1 where M1 is the top row of M .
Set σ1 = +1 and γ1 = 1.
Set reference lattice vector a = b1
Set the counter ns = 1.
while ns ≤ n do

Let i be the index of max{‖Dj‖σj is not already fixed}.
if Di > 0 then

Set σi = −1
else

Set σi = +1
end if
Set a = a+ σibi
Set D = D + σiMi

Compute γi = | 〈a,bi〉〈‖a‖,|bi‖〉 |
Set ns = ns + 1

end while

which of the two cases will be most easily offset by the other basis vectors. The
confidence value will therefore be close to 0 in this case.

We now explain how to use the confidence values to prune intervals in the search
tree.

4.6.2 Pruning intervals based on sign estimation

We can use the sign estimations and their confidence values to reduce the intervals
computed for enumeration, while still maintaining a high probability that we do not
prune away all shortest vectors.

For a node in the search tree where possible values for vi are tried, let Ii be the
interval computed for vi. Let I+i = Ii ∩ [0,∞) and I−i = Ii ∩ (−∞, 0] denote the
positive and negative part of the interval, respectively. For an interval I = [l,m]
and a positive number α ∈ R, let us define the interval αI to be [αl, αm]. If
σi = −1, then Ii is pruned to Ii = (1− γi)I+i ∪ I−i . If σi = +1, then Ii is pruned to
Ii = (1 − γi)I−i ∪ I+i . In other words, we cut away a portion of the interval where
we believe a correct value for vi will not be found. The size of portion cut away is
proportional to the confidence we have in our estimate.

Sign-based pruning does not depend on how the intervals are computed. This
pruning strategy reduces the search tree as long as the given intervals are non-empty,
and cuts away integer values whose sign is opposite to the estimated sign.
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4.6.3 Experiments on sign-based pruning

We used a few of the SVP challenge lattices to test the sign-based pruning strategy.
We measured both the reduction in the number of nodes in the search tree, and
whether the pruning failed to find a shortest vector. The results are summarized in
Table 4.3.

Lattice Pre-processing node fraction shortest vector found
SVP40 BKZ10 0.670 yes
SVP40 BKZ20 0.745 yes
SVP40 BKZ30 0.665 yes
SVP46 BKZ10 0.682 yes
SVP46 BKZ20 0.750 yes
SVP46 BKZ30 0.800 yes

Table 4.3: Measure of effect of sign-based pruning. The node fraction is the num-
ber of nodes in pruned search tree compared to the number of nodes in the full
enumeration search tree.

We see from Table 4.3 that in the experiments we never failed to find the shortest
vector, and that the number of nodes was reduced by a modest but still significant
fraction. One explanation for the modest node reduction is that we cut away the ends
of the intervals which only takes away small subtrees from the whole enumeration
tree. The values for vi found at the ends of the intervals are those that consume much
of the length limit R when selected, probably quickly leading to dead ends anyway.
Cutting away these values may not prune away very large parts of the search tree.
Still, it is worthwhile to apply sign-based pruning as it costs practically nothing in
terms of extra complexity. The actual run times compared to standard enumeration
are cut down by almost the same fraction as the reduction in the number of nodes.

4.7 Conclusion

Public key encryption schemes based on lattices are one of the most promising
approaches for achieving post-quantum cryptography, and it is important to under-
stand the hardness of the SVP problem on which they are based. Lattice enumer-
ation plays a central role in the best known methods for solving SVP, so studying
how to speed up lattice enumeration is important for assessing the security of lattice-
based encryption. In this chapter we have explored two different ideas for speeding
up lattice enumeration.

First, we looked at how permuting the basis vectors of a lattice affects the running
time of the standard enumeration algorithm. We demonstrated that the particular
order of the basis vectors has a big impact on the number of nodes in the search
tree and the running time. Next, we identified particular permutations that give
relatively small search trees. Dynamically finding the best permutations has a high
cost on its own. In order to extract the best increase in performance from this, we
only applied this strategy to the first few levels in the search tree.

The state of the art which we compare our work to is the standard enumeration
technique and extreme pruning. Even though pruning strategies give better results,
the reason why we tried to improve the standard enumeration technique is that both
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extreme pruning and the BKZ algorithm use standard enumeration in trying to solve
SVP. We were curious to see if we can improve standard enumeration by applying
our ideas and whether this will have a positive impact on either the extreme pruning
or BKZ algorithms.

To compare the efficiency of hybrid enumeration to standard enumeration, we
ran both algorithms, and we observed a reduction in the number of nodes of the
search tree using hybrid enumeration. Despite this, the complexity remained asymp-
totically 2O(n

2).
We noticed that if extreme pruning and hybrid enumeration are run for the same

amount of time on the same input instance, in many cases extreme pruning misses
some of the short vectors which are found by hybrid enumeration. This gives hybrid
enumeration an advantage over extreme pruning if it is necessary to reliably find all
short vectors within some time bound.

Secondly, we looked at the possibility of estimating the signs of the coefficients
giving a shortest vector. We can only estimate the signs with some degree of confi-
dence, but the estimates and the confidence values lead directly to a pruning strategy.
This work can be compared to the current state of the art which is extreme pruning.
Unlike the extreme pruning strategy which cuts away values from both ends of the
interval of possible values for a coefficient vi, sign-based pruning only cuts off values
from one side of the interval, namely, the side where the values have the sign that
we believe is wrong.

We ran experiments for sign-based pruning on top of both standard enumeration
and extreme pruning. In the case of running sign-based pruning on the top of
standard enumeration, we observed a reduction in the number of nodes in the search
tree, but this reduction was not significant. However, we never failed to find the
shortest vector using sign-based pruning. This may indicate that the pruning we
employed from the confidence measure is not aggressive enough, and that larger
parts of the intervals could be cut away without sacrificing too much accuracy in
solving the SVP.

In the case of running sign-based pruning on the top of extreme pruning, unfortu-
nately, our method did not lead to any improvement. Further studies of sign-based
pruning is a topic for future work.
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Chapter 5

Estimates on Class Numbers -
Elliptic and Hyperelliptic Curves

5.1 Introduction

The arithmetic of quadratic fields, i.e. degree two extensions of the rational field
Q, has interesting applications in cryptography. Many public key cryptosystems are
based on intractable computational problems in number theory, such as integer fac-
torisation, discrete logarithms, etc. A number of problems involving the structure
of the class groups of these fields are believed to be intractable. The class group
of a number field K is the quotient of the multiplicative group of the fractional
ideals by the subgroup consisting of the principal ideals. Intuitively, it measures
how much the ring of integers in K deviates from being a principal ideal domain.
Consequently, corresponding cryptographic implementations built on these prob-
lems could be considered secure given large enough parameters. Instances of such
problems include key exchange protocols using imaginary quadratic fields [18] and
real quadratic number fields [103], the NICE (New Ideal Coset Encryption) cryp-
tosystem based on the hidden kernel problem [92], one-way functions based on ideal
arithmetic in number fields, and the Diffie-Hellman problem [16]. It is also worth
mentioning the discrete logarithm problem for class groups of imaginary quadratic
fields, for which no efficient algorithm is known [17].

All of the problems mentioned above involve the computation of the class num-
bers, i.e. the number of elements in the class group, of imaginary quadratic ex-
tensions. Factoring the discriminant would allow one to compute the order of the
elements of the class group. However, factoring the discriminant appears to be a
hard problem in itself.

An algebraic curve is the set of zeros of a polynomial in two variables. An elliptic
curve E defined over a field k is given by a cubic polynomial equation of the form
Y 2 = X3 + a2X

2 + a4X + a6. The solutions (X, Y ) to the above equation are the
points of the curve E. The set of points of E, along with a point at infinity, forms
an Abelian group, whose group operation is given by rational functions.

The genus g of a curve E is an integer associated to the curve which can be
computed from the degree of the polynomial equation defining the curve. Infor-
mally, the genus describes the number of “holes” when the points of the curve are
considered as a topological space over complex numbers. For example, an elliptic
curve corresponds to a topological space in the form of a torus, and therefore has
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genus 1.

See [116] for more background on elliptic curves, including the formal definitions
of e.g. the group operation and the genus of a curve, which we have described above
only informally for the sake of brevity and since we do not use them in our work.

Let E be an elliptic curve given by the equation Y 2 = X3 + a2X
2 + a4X + a6

over a field of characteristic not equal to 2. The theory of quadratic forms over the
function field k(X) of discriminant D(X) = −X3 + a2X

2 + a4X + a6 was developed
by Hellegouarch [49]. In [48], Hellegouarch et al. established a connection between
the elliptic curve E and the quadratic field k(X)(

√
D(X)). They showed that the

ideal class group of k(X)(
√
D(X)) is isomorphic to the Jacobian, J(k), of E. A

Jacobian is an algebraic variety that can be associated to an algebraic curve. The
formal definition of the Jacobian is beyond the scope of this text and is omitted here;
see e.g. [116] for details. Intuitively, the motivation for considering the Jacobian
is that the points on a given curve do not, in general, form a group, whereas the
points of the Jacobian do. This allows one to more easily extract information about
the original curve through the Jacobian.

Soleng [121] adapted this theory to the polynomial ring Z[X]. In his paper,
Soleng considers the rational points of the curve E, which he calls the set of primitive
points of E. He then defines a family of homomorphisms from a certain finite index
subgroup of the primitive points to the ideal class groups of a family of suitable orders
in imaginary quadratic number fields. First, he proves a conjecture of Hellegouarch
[49], which essentially says that the order of the ideal classes corresponding to the
points of infinite order on the curve will approach infinity as the discriminant of
the order tends to infinity. Second, he constructs a family of imaginary quadratic
number fields whose ideal class group contains a subgroup isomorphic to the torsion
group of the elliptic curve.

Elliptic curves can be generalized to hyperelliptic curves, which can have genus
g ≥ 1. A hyperelliptic curve of genus g ≥ 1 over a field k corresponds to an equation
of the form y2 + h(x)y = f(x), where f(x) and h(x) are polynomials over k with
deg(f) = 2g + 1, and deg(h) ≤ g. The hyperelliptic curves of genus g = 1 are
precisely the elliptic curves. See [82] for more background on hyperelliptic curves.

The generalization of Soleng’s result to hyperelliptic curves was obtained by Jean
Gillibert [39]. In our work, we establish a bound on an effective estimate (defined
below) of these results in both the elliptic and hyperelliptic curve cases, and provide
a bound on the effective estimate for the class numbers of the corresponding family
of imaginary quadratic fields.

In this chapter we consider the results of Soleng [121] and Gillibert [39] regard-
ing certain families of imaginary quadratic extensions arising out of some natural
homomorphisms in the arithmetic of elliptic curves and hyperelliptic curves. These
results show that the class groups will become arbitrarily big when a parameter n
tends to plus or minus infinity.

The objective of this chapter is to derive a bound on the effective estimate for the
orders of the class groups of a family of imaginary quadratic number fields. That is,
we estimate how small or large the parameter n needs to be in order for the associated
class group to have size greater than some pre-defined value M . At present we don’t
see any immediate application of this result to the field of cryptography; the result
thus remains of independent interest.
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5.2 Effective estimate in the case of elliptic curves

Definition 5.2.1. (Effective estimate) Suppose f(n) is a sequence of positive num-
bers tending to infinity. Given any positive real number L, an effective estimate is
to find the smallest positive integer N = N(L) depending on L, such that f(n) > L
for all n > N .

Our first problem is to obtain a bound on the effective estimate from the following
theorem from [121].

Theorem 5.2.1 (Soleng). [121] Let E be an elliptic curve over Q defined by the
equation Y 2 = X3 + a2X

2 + a4X + a6 with coefficients in Z. Let P = (A/C2, B/C3)
be an integral point of infinite order on the curve. For a positive integer n, let In be
the class of the ideal

(A+ nC2,−Bk +
√
−n3 + a2n2 − a4n+ a6)

in the order Rn = Z(
√
−n3 + a2n2 − a4n+ a6), where k is an integer such that

kC3 ≡ 1 (mod A+ nC2). Then, as n approaches inifinity, so does the order of In.

In general, the order Rn in Soleng’s theorem is not the full ring of integers in
the field Q(

√
−n3 + a2n2 − a4n+ a6). Nevertheless, results of Hooley on square free

cubic polynomials [53] imply that Rn is indeed the full ring of integers if n belongs to
a congruence class Λ of positive density. Thus, for this congruence class of integers,
Soleng’s theorem does guarantee that the orders of the class groups of the full ring
of integers in the corresponding quadratic extension tend to infinity.

Thus, given a constant M > 0, we want to find N such that the order of the
ideal class In in Rn (provided by the homomorphism) is greater than M for n > N .
Following the proof of the main result in [121] (given in the theorem below), we
derive a concrete value for N which satisfies the above conditions.

Theorem 5.2.2. (Soleng) [121] Suppose that P1 = (A1/C1
2, B1/C1

3) and P2 =
(A2/C2

2, B2/C2
3) are two rational points on the elliptic curve Y 2 = X3 + a2X

2 +
a4X + a6 such that P1 6= P2. Given a positive integer n, we associate to P1 and P2

the following quadratic forms of the discriminant D = 4(−n3 + a2n
2 + a4n− a6):

f1(X, Y ) = (A1 + nC1
2)X2 + 2k1B1XY +

k21B
2
1−D/4

A1+nC2
1
Y 2,

f2(X, Y ) = (A2 + nC2
2)X2 + 2k2B2XY +

k22B
2
2−D/4

A2+nC2
2
Y 2,

where k1 and k2 are integers satisfying kiC
3
i ≡ 1 mod (Ai+C

2
i n) for i = 1, 2. Then,

for large enough values of n, the two forms will be inequivalent and neither of them
will be equivalent to the identity.

We now provide an estimate for a value N such that all n > N have the properties
described in Theorem 5.2.2. We do this by following the proof of the theorem, as
shown below.

Lemma 5.2.3. Assume the same notation as in Theorem 5.2.2. For any integer n
satisfying

n > max

{
3|a2 + C2

1C
2
2 |,
√

3|A1C2
2 + A2C2

1 − a4|, 3
√

3|A1A2 + a6|
}
,

the forms f1 and f2 are inequivalent and neither of them is equivalent to the identity.
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Proof. According to Soleng’s proof of Theorem 5.2.2, the two ideals in Rn (or, equiv-
alently, the corresponding binary quadratic forms) are in distinct equivalence classes,
provided that the following inequality holds:

(A1 + C2
1n)× (A2 + C2

2n) <
−D

4
= (n3 − a2n2 + a4n− a6).

We shall now find a condition on n for which this holds. Rearranging the terms,
the inequality above can be written as

n3 − (a2 + C2
1C

2
2)n2 + (a4 − A1C

2
2 − A2C

2
1)n− (a6 + A1A2) > 0.

It is clear that the term n3 will dominate, and make the left-hand side positive
for some value of n depending on the constants a2, a4, a6, A1, A2, C1 and C2. The
inequality can be rewritten as

(
1

3
n3 − (a2 + C2

1C
2
2 )n

2

)
+

(
1

3
n3 + (a4 −A1C

2
2 −A2C

2
1 )n

)
+

(
1

3
n3 − (a6 +A1A2)

)
> 0.

If n is large enough, all the expressions inside the parentheses above will be positive,
and the inequality will be satisfied. The first expression is positive for n > 3|a2 +
C2

1C
2
2 |, the second one is positive for n >

√
3|A1C2

2 + A2C2
1 − a4|, and the third one

is positive for n > 3
√

3|A1A2 + a6|. So for

n > max

{
3|a2 + C2

1C
2
2 |,
√

3|A1C2
2 + A2C2

1 − a4|, 3
√

3|A1A2 + a6|
}
,

and by Theorem 5.2.2, the forms f1 and f2 are inequivalent to each other and to the
identity.

Now we will provide an explicit estimate for n and In in Theorem 5.2.1. More
precisely, given a point P and a positive integer M > 0, we shall find N such that
for all n > N , the ideal class In from Theorem 5.2.1 has order strictly greater than
M .

Let P = (A/C2, B/C3) be a point on E such that gcd(A,B,C) = 1. The height
of P is defined as H(P ) = max{|A|, C2}.

Theorem 5.2.4. In the setting of Theorem 5.2.1, given a positive integer M , the
ideal class In has order at least M provided that

n > cEH(P )M
2/2,

where cE is a constant depending only on the curve E.

Proof. The map P 7→ In defined in Theorem 5.2.1 is a group morphism. It follows
that the image of P has order strictly larger than M if and only if the image of MP
is not zero, in other words, the quadratic form in Theorem 5.2.2 associated to MP
is not equivalent to the trivial form X2−DY 2. Letting MP = (AM/C

2
M , BM/C

3
M),

this holds (by adapting the proof of Theorem 5.2.2 to this situation) if
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(AM + C2
Mn) <

−D
4

= (n3 − a2n2 + a4n− a6),

which, by the definition of height, is satisfied if

2nH(MP ) < n3 − a2n2 + a4n− a6.

Now, if n is large enough with respect to |a2|, |a4| and |a6|, it suffices to ensure that

2nH(MP ) <
n3

2
,

i.e.
2
√
H(MP ) < n.

On the other hand, it is well-known that there exist constants c1 and c2 [114,
115], depending only on E, such that, for all M ,

c1H(P )M
2 ≤ H(MP ) ≤ c2H(P )M

2

.

The above inequalities show that H(MP ) = O(H(P )M
2
). In particular, the

condition 2
√
H(MP ) < n is satisfied if

2
√
c2H(P )M

2/2 < n.

5.3 Effective estimates in the case of hyperelliptic

curves

The generalization of Soleng’s construction to the case of hyperelliptic curves was
done by Gillibert [39]. In his paper, Gillibert has proved a similar qualitative ana-
logue of Soleng’s result. The following theorem presents this generalization. In our
work, we simply estimate the values of nf , n0 and n1 given in the paper. For more
background on the topic, we refer to reader to the original paper [39].

Theorem 5.3.1. (Gillibert) Let C : Y 2 = f(X) be a hyperelliptic curve of genus
g and degree 2g + 1. Let the point L on the Picard variety of C be given (as per
Mumford representation) by the quadratic form [A

e
, 2B
e
, C
e
] as in Lemma 3.7 in [39].

For integers n sufficiently negative (n < min{nf , n0, n1}) and belonging to the index
set Λ ⊂ Z as defined in Lemma 4.3 of [39], the orders of the specific class group
elements in Q(

√
f(n)) for n ∈ Λ tend to infinity.

We obtain the following bound on the effective estimate from Gillibert’s result.
The values U , V and W given in the theorem are estimates for the values of nf , n0

and n1 from Theorem 5.3.1, respectively.

Theorem 5.3.2. Let M be a positive integer, f(x) = x2g+1 + α0x
2g + . . . + α2g

and h(x) = β0x
d + . . . + βd, d ≤ 2g be defined as in Lemma 4.3 in [39]. Let

(f ± h) = x2g+1 + γ0x
2g + . . . + γ2g. The orders of the elements in the ideal class
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groups in Q(
√
f(n)) as determined by Gillibert are greater than M when n ∈ Λ,

and n < min{U, V,W}, where

U = min{b−|αk(2g + 1)| 1
k+1 c|0 ≤ k ≤ 2g},

V = min{b−|M−dβk
β0
| 1k c|1 ≤ k ≤ d},

W = min{b−|γk(2g + 1)| 1
k+1 c|0 ≤ k ≤ 2g}.

Remark: The results of Hooley et al. [53] imply that the set Λ is a subset of
positive density which can be computed effectively. This implies the existence of an
infinite sequence of families of imaginary quadratic fields having class groups whose
orders are greater than M .

The proof for the estimates of nf , n0 and n1 is presented in the following three
subsections.

5.3.1 Proof of the estimate for nf

Let f(x) = x2g+1 + α0x
2g + . . . + α2g be a hyperelliptic curve of genus g. We have

limn→−∞ f(n) = −∞. Let nf ∈ Z be the largest integer such that f(n) < 0 for all
n ≤ nf .

There are in total 2g + 2 terms in f . By distributing the highest-degree term
out on all other terms, the polynomial f can be written as

f = x2g+1

2g+1
(2g + 1) + (α0x

2g + . . .+ α2g)

=
(
x2g+1

2g+1
+ α0x

2g
)

+
(
x2g+1

2g+1
+ α1x

2g−1
)

+ . . .+
(
x2g+1

2g+1
+ α2g

)
.

It is sufficient to ensure that the expression inside every bracket is negative in
order to guarantee that f is negative. These expressions are negative for αk if
x2g+1

2g+1
+ αkx

2g−k < 0 for all k ∈ {0, 1, 2, . . . , 2g}.
From the above equation for αk, we obtain by simple algebra:

αkx
2g−k <

−x2g+1

2g + 1
,

−(2g + 1)αkx
2g−k > x2g+1.

We now examine two cases:

Case 1: k is even: Consider the inequality −(2g+1)αkx
2g−k > x2g+1. When k is

even, the exponent 2g − k is even and x2g−k is positive. We get −(2g+ 1)αk > xk+1

by dividing by x2g−k on both sides. If αk < 0, then the inequality is trivially satisfied

for any x < 0. If αk > 0, the inequality is satisfied for x < −(αk(2g + 1))
1
k+1 .

Case 2: k is odd: when k is odd, the exponent 2g − k is odd and x2g−k becomes
negative for negative x. We get −(2g + 1)αk < xk+1 by dividing by x2g−k on both
sides. If αk > 0, then the inequality is trivially satisfied for any x < 0. If αk < 0,

the inequality is satisfied for x < −|αk(2g + 1)| 1
k+1 .

Let U = min{b−|αk(2g + 1)| 1
k+1 c| : 0 ≤ k ≤ 2g}. Then U provides a bound on

the effective estimate for nf . Now, whenever n ≤ U , we have f(n) < 0.
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5.3.2 Proof of the estimate for n0

Let the polynomial h(x) be defined as h(x) = dLA(x) where A(x) is defined in
Lemma 4.1 in [39], and let n0 be an integer which depends on the polynomial h(x).

By Lemma 4.3 in [39], deg(h) < deg(f). Let h(x) = β0x
d + β1x

d−1 + . . . + βd
be a polynomial of degree d < 2g + 1 with β0 6= 0. According to [39], we want
|h(x)| ≥ M , or, equivalently, |β0xd + β1x

d−1 + . . . + βd| ≥ M . We distribute the
dominating term xd to all other terms:

|h(x)| =
∣∣∣∣(β0xdd + β1x

d−1
)

+

(
β0x

d

d
+ β2x

d−2
)

+ . . .+

(
β0x

d

d
+ βd

)∣∣∣∣ > M.

Assume without loss of generality that the leading term satisfies β0x
d > 0 for

x < 0. We will find values of x for which h(x) > M , and similarly we will find values
of x for which h(x) < −M if β0x

d < 0.
We want to make the expression inside each bracket in the inequality above

greater than M
d

, which will ensure that h(x) > M . For 1 ≤ k ≤ d, we get by simple
calculation

(β0x
d

d
+ βkx

d−k) > M
d
,

β0x
d + dβkx

d−k > M,
β0x

k + dβk > M
xd−k

.

For x negative, with |xd−k| ≥ 1, it is enough to find x such that β0x
k +dβk > M .

We can rewrite this inequality as

β0x
k > M − dβk,
xk > M−dβk

β0
,

x < −|M−dβk
β0
| 1k .

Take x < −max{|M−dβk
β0
| 1k : 1 ≤ k ≤ d}, and let V be min{b−|M−dβk

β0
| 1k c : 1 ≤

k ≤ d}. Then V is a bound on the effective estimate for n0, i.e. whenever n < V ,
we have |h(n)| ≥M .

5.3.3 Proof of the estimate for n1

According to [39], we need to find n1 ∈ Z such that for all n ≤ n1 we have ±h(n) +
f(n) < 0. The proof of this estimate for n1 is analogous to that of the estimate for
nf .

Here (f ± h)(n) is a polynomial of degree 2g + 1 which can be written as (f ±
h)(x) = x2g+1 + γ0x

2g + . . . + γ2g, where all the coefficients γk are of the form
γk = αk ± βk. The estimate for n1 can be derived in exactly the same way as that
for nf . Let

W = min{−b|γk(2g + 1)| 1
k+1 c : 0 ≤ k ≤ 2g}.

Then W is a bound on the effective estimate for n1, so that whenever n < W , we
have (f ± h)(n) < 0.

This completes the proof of Theorem 5.3.2. The numbers U, V,W are effectively
computable in terms of the coefficients of f and h, and if we take n < min{U, V,W}
and n ∈ Λ, the ideal class in Q(

√
f(n)) determined by Theorem 5.3.1 has order

greater than M .
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5.3.4 Bounds in terms of height

It is appropriate to express the estimates U , V and W as a function of the height H
of the polynomials f(x) and h(x) which represent the equations of the hyperelliptic
curve and the point on the Jacobian, respectively. The height of any polynomial
P (x) = pnx

n + pn−1x
n−1 + . . .+ p0 is defined as H(P ) = max{|pk| : 0 ≤ k ≤ n}.

First, consider U = mink{b−|αk(2g + 1)| 1
k+1 c}. Clearly,

|αk(2g + 1)| 1
k+1 ≤ |αk|(2g + 1)

and
max{|αk(2g + 1)| 1

k+1 | : 0 ≤ k ≤ 2g} ≤ H(f)(2g + 1)

So the bound U can also be given as U = −H(f)(2g + 1).

We have V = min{b−|M−dβk
β0
| 1k c : 1 ≤ k ≤ d}, and since β0 ∈ Z, we have 1

|β0| ≤ 1.

So taking V = −(M + dH(h)) will be a bound.
Similarly as for U , we can take W = −H(f±h)(2g+1) as a bound. Consequently,

for
n < min{−(H(f)(2g + 1),−M − dH(h),−H(f ± h)(2g + 1)},

we can guarantee that the orders of the elements in the ideal classgroups in Q(
√
f(n))

will be greater than M .

5.4 Conclusion

The work of Soleng and Gillibert shows the existence of a family of elements in
the class groups of a sequence of imaginary quadratic fields (which arise from the
arithmetic of elliptic and hyperelliptic curves) whose orders tend to infinity. In this
chapter, we have obtained bounds on the effective estimates for the orders of these
elements using the theory of binary quadratic forms. Even though we have not
estimated how tight our bounds are, we believe that they can be improved further.
Although hard problems are used in cryptography, we have not found any direct
application of our work to cryptography, and for the time being, our results remain
of independent interest.
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[52] G. Höhn. “Self-dual codes over the Kleinian four group”. In: Mathematische
Annalen 327.2 (2003), pp. 227–255. issn: 1432-1807. doi: 10.1007/s00208-
003-0440-y. url: https://doi.org/10.1007/s00208-003-0440-y.

[53] C. Hooley. “On the square-free values of cubic polynomials.” In: Journal für
die reine und angewandte Mathematik 229 (1968), pp. 147–154. url: http:
//eudml.org/doc/150838.

101



[54] S. Horie and O. Watanabe. “Hard instance generation for SAT”. In: Algo-
rithms and Computation. Ed. by H. W. Leong, H. Imai, and S. Jain. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1997, pp. 22–31.

[55] A. Joux and C. Pierrot. “Technical history of discrete logarithms in small
characteristic finite fields - The road from subexponential to quasi-polynomial
complexity”. In: Designs, Codes and Cryptography 78.1 (2016), pp. 73–85.

[56] R. Kannan. “Improved algorithms for integer programming and related lat-
tice problems”. In: Proceedings of the Fifteenth Annual ACM Symposium on
Theory of Computing - STOC ’83. ACM Press, 1983, pp. 99–108.

[57] K. Kensuke. BDDs Naturally Represent Boolean Functions, and ZDDs Nat-
urally Represent Sets of Sets. 2018. arXiv: 1806.10261 [cs.LO].

[58] S. Khot. “Inapproximability Results for Computational Problems on Lat-
tices”. In: The LLL Algorithm - Survey and Applications. Ed. by P. Q.
Nguyen and B. Vallée. Information Security and Cryptography. Springer,
2010, pp. 453–473. doi: 10.1007/978-3-642-02295-1\_14. url: https:
//doi.org/10.1007/978-3-642-02295-1%5C_14.

[59] D. Knuth. The Art of Computer Programming. Vol. 4. Addison-Wesley Pro-
fessional, 2009.

[60] A. Korkine and G. Zolotareff. “Sur les formes quadratiques”. In: Mathema-
tische Annalen 6.3 (1873), pp. 366–389.

[61] M. Kumar, H. Raddum, and S. Varadharajan. “Reducing Lattice Enumera-
tion Search Trees”. In: Infocommunications XI.4 (2019), pp. 8–16.

[62] M. Kumar, S. Varadharajan, and H. Raddum. “Graphs and Self-dual Codes
over GF (4)”. In: presented at WCC 2019 (2019).

[63] J. C. Lagarias, H. W. Lenstra, and C.-P. Schnorr. “Korkin-Zolotarev bases
and successive minima of a lattice and its reciprocal lattice”. In: Combina-
torica 10.4 (1990), pp. 333–348.

[64] Lagrange. Recherches d’arithmétique. Nouveaux mémoires de l’Académie royale
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