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Abstract

The number and scale of distributed computing systems being built have increased
significantly in recent years. Primarily, that is because: i) our computing needs
are increasing at a much higher rate than computers are becoming faster, so we
need to use more of them to meet demand, and ii) systems that are fundamentally
distributed, e.g., because the components that make them up are geographically
distributed, are becoming increasingly prevalent. This paradigm shift is the source
of many engineering challenges. Among them is the straggler problem, which is a
problem caused by latency variations in distributed systems, where faster nodes
are held up by slower ones. The straggler problem can significantly impair the
effectiveness of distributed systems—a single node experiencing a transient outage
(e.g., due to being overloaded) can lock up an entire system.

In this thesis, we consider schemes for making a range of computations re-
silient against such stragglers, thus allowing a distributed system to proceed in
spite of some nodes failing to respond on time. The schemes we propose are
tailored for particular computations. We propose schemes designed for distributed
matrix-vector multiplication, which is a fundamental operation in many computing
applications, distributed machine learning—in the form of a straggler-resilient first-
order optimization method—and distributed tracking of a time-varying process
(e.g., tracking the location of a set of vehicles for a collision avoidance system). The
proposed schemes rely on exploiting redundancy that is either introduced as part
of the scheme, or exists naturally in the underlying problem, to compensate for
missing results, i.e., they are a form of forward error correction for computations.
Further, for one of the proposed schemes we exploit redundancy to also improve
the effectiveness of multicasting, thus reducing the amount of data that needs
to be communicated over the network. Such inter-node communication, like the
straggler problem, can significantly limit the effectiveness of distributed systems.
For the schemes we propose, we are able to show significant improvements in
latency and reliability compared to previous schemes.
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4 Background

1.1 Introduction
Over the past few decades, the amount of data that is stored, processed, and
transferred has increased exponentially.1 Meanwhile, the interest in making sense of
and learning from data is also increasing, with a constant stream of novel systems
and algorithms being proposed in the machine learning, data analytics, and
artificial intelligence communities.2 However, as a result of increasingly complex
algorithms being applied to ever larger datasets, the computational complexity
associated with learning from data has increased substantially. For example, the
total number of floating-point operations required to train large machine learning
models has increased by more than 10 orders of magnitude since the 80s and 90s,
see Fig. 1.1. In fact, this trend has been especially strong in recent years—the
number of operations required doubled about every 2 years until about 2010 and
has been doubling about every 3 to 4 months since then.
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Figure 1.1: Total number of operations required to train large machine learning models,
measured in days of computation when performing 1015 floating-point operations (i.e., a
petaflop) per second. The data is obtained from OpenAI and each marker corresponds to
a specific machine learning project; see [3] for details.

Building systems for effectively performing these computations is challenging,
and has been the source of a great deal of research in academia and industry [2,4].
The main takeaway of this research is that dealing with data at this volume has
required a fundamental shift in how information technology systems are designed.
In particular, we have seen the rise of large-scale distributed systems. These
systems are self-healing, largely autonomous, and may span thousands, or even
tens of thousands, of servers spread across continents. The reason for this shift is
that processors are not becoming faster at nearly the same rate as our computing
needs are increasing—single-core processor performance has increased by less than
3 orders of magnitude since the 90s—and that it is becoming increasingly difficult

1For example, Cisco estimates that global internet traffic increased by about 7 orders of magnitude
between 1992 and 2017 [1].

2See, e.g., Chapter 3 and [2, Ch. 2.4] for examples.
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to increase processor performance [5]. Instead, we must turn to distributed systems
consisting of a large number of processors that cooperatively perform demanding
computations. Of particular interest to us are so-called warehouse-scale computers
(WSCs) [2].

A WSC is a building containing a large number of servers (in some cases tens
of thousands [6]) and is similar to traditional data centers.3 However, WSCs differ
from traditional data centers in that all servers are managed through a central
entity, referred to as the cluster scheduler (see, e.g., [6–8]), that dynamically
assigns compute and storage tasks to servers. These jobs may be very large,
potentially spanning all servers that make up the WSC [6,9]. This is in contrast
with traditional data centers, which consist of many small disjoint compute systems
that run separate applications. WSCs also differ from so-called high-performance
computing (HPC) systems, which are homogenous distributed computing systems
built from specialized (and hence expensive) hardware to accelerate certain compute
and network operations. In contrast, WSCs are highly heterogeneous and built
from commodity hardware to be as cost-effective as possible, at the expense of
reliability and predictability. Further, each server in a WSC is typically running
several jobs simultaneously to increase utilization, whereas a HPC server typically
only runs a single application at a time to ensure that latency and performance is
predictable.

As a result of WSCs being a cost-effective way to gain access to large amounts
of compute and storage, as well as the recent availability of software to help
alleviate the issues inherent to WSCs (e.g., heterogeneity, unreliability, and the
sheer number of servers to be managed), many companies now rely on WSCs for
their computing and storage needs, often through one of the public cloud offerings,
e.g., Google Cloud Platform, Amazon Web Services (AWS), Microsoft Azure, or
IBM Cloud.4 However, there are still several significant challenges associated with
WSCs. One such challenge is the so-called straggler problem, which is the primary
focus of this thesis.

The straggler problem arises in distributed computations where multiple nodes
in a network need to cooperate and is a consequence of the heterogeneous and
distributed nature of the system. Consider a computation for which a coordinator
node needs to aggregate results computed by several worker nodes. Such collective
computations are prevalent in distributed systems and are often used, e.g., for
machine learning applications, either to increase throughput through parallelization
or because the data is distributed. In this case, the coordinator may only be able to
proceed once it has received results from all worker nodes, i.e., the overall latency
is determined by the slowest node in the network. Further, in large systems the
latency of the slowest node may be orders of magnitude higher than the average
latency, since the probability that any one node is experiencing a transient outage
(e.g., because the network is overloaded) is close to 1 when the number of nodes is
large. These slow nodes are known as stragglers, and the severity of the straggler
problem increases with the scale and heterogeneity of the system. Hence, it is a

3The notion of a WSC as something different from a data center was popularized by engineers working
at Google; see [2] for much more on the topic.

4For example, Netflix uses AWS for nearly all of its computing and storage needs; see https:
//aws.amazon.com/solutions/case-studies/netflix/.
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major issue in WSCs [10]. Further, the problem is even more prevalent in so-called
edge computing systems, where some nodes are located close to the user (e.g., to
provide low latency for certain operations), i.e., at the network edge, and some may
be located in a remote WSC. Examples include intelligent transportation systems,
where some of the nodes are located at the roadside to facilitate low-latency
communication with passing vehicles.

In this thesis, we show how the straggler problem can be alleviated for several
important problems through straggler-resilient distributed methods of computation.
In particular, we propose schemes tailored for matrix-vector multiplication, learning
from data, and tracking a time-varying process. These schemes improve speed and
reliability by exploiting redundancy to compensate for missing results, i.e., it is a
form of forward error correction for computations. In addition, one of the schemes
tailored for matrix-vector multiplication also exploits redundancy to reduce the
amount of data that needs to be moved over the network during the computation,
thus further reducing overall latency.5

1.2 Thesis outline
This thesis comprises two parts:

• Part 1, which introduces the field and problems considered, and

• Part 2, which is composed of several previously published research papers6

(i.e., this thesis is an omnibus).

The remainder of Part 1 is organized as follows. In Chapter 2, we cover the
anatomy of distributed systems (in particular, WSCs and edge computing systems)
and, in Chapter 3, we introduce several important machine learning and data
analytics problems. In Chapter 4, we give an overview of two classes of schemes
for alleviating the straggler problem for the problems covered in Chapter 3:

• coded computing and

• stochastic optimization.

Finally, in Chapter 5, we give an overview of the papers contained in Part 2, and,
in Chapter 6, we draw some conclusions.

1.3 Thesis scope
This thesis is on the topic of straggler-resilient distributed computing schemes.
Related topics outside the scope of this thesis include:

5Such so-called data shuffling may account for a significant portion of the overall latency of distributed
computations. For example, for a particular cluster at Facebook, communication accounted for more
than 50% of overall latency in 26% of cases and more than 70% of latency in 16% of cases [11].

6With one exception, which is under review.
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1. Practical studies of distributed computations, e.g., measuring latency varia-
tions for different classes of distributed computations and systems.

2. Modelling and analysis of the costs and benefits associated with introducing
redundancy to distributed computations.

The work on the first of the above topics is necessary to quantify the extent of
the straggler problem under different scenarios—it is the basis of research on the
straggler problem. See, e.g., [12–18]. The work on the second of the above topics
is necessary to understand the impact of introducing redundancy to distributed
computations. In particular, it helps answer the question of which type (e.g.,
replication or coding) and amount of redundancy to introduce for a particular
scenario. See, e.g., [19–22] and references therein for an overview. Once these
questions have been answered, this thesis describes several methods for achieving
a particular type and level of redundancy for specific classes of computations.

1.4 Notation
Throughout Part 1 of the thesis, we use the following notation:

• Lowercase letters (e.g., x) denote scalars, lowercase bold letters (e.g., x) de-
note vectors, uppercase bold letters (e.g., X) denote matrices, and uppercase
calligraphic letters (e.g., X ) denote sets.

• Vectors are row vectors unless otherwise specified.

• We denote the set of real numbers by R.

• We denote set cardinality by | · |.
• We denote vector and matrix transposition by ·T.

• We denote vector inner product by ⟨·, ·⟩.
• We denote the Frobenius norm by ∥·∥F.

For the papers that make up Part 2, we introduce the notation used on a per-paper
basis.
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2.1 Warehouse-scale computers
In this section, we describe the architecture of a modern WSC and how it gives
rise to the straggler problem. Primarily, WSCs are designed to provide large
amounts of compute and storage resources at low cost. The hardware and software
architectures of WSCs, and the associated issues, are a direct consequence of this
goal. In particular, WSCs are built from commodity components and are designed
to be easily scalable to very large sizes—the median compute cluster at Google is
composed of on the order of 10 000 servers [6]. Cost-effectiveness is paramount,
since at the scale of modern compute systems—Google’s energy usage suggests that
they run close to a million servers in total [23, Ch. 1.1.2]—even a small increase in
cost-effectiveness translates to large savings.

2.1.1 Hardware architecture

First, we consider the hardware architecture. A WSC is made up of on the order of
thousands of servers that are networked together. Typically, these are commodity
servers of a few different types, with, e.g., differing CPUs, amount of memory, and
access to hardware for accelerating particular computations (so-called accelerators),
e.g., graphics processing units. As a result, the time required to perform a particular
computation may vary depending on where it is performed. These servers are
arranged in racks, each of which contains tens of servers, and are networked
together in a heterogeneous manner, typically using Ethernet interconnectcs. This
is in contrast with HPC systems, which typically use high-speed (e.g., InfiniBand1)
interconnects and a relatively uniform network structure. In particular, the network
of a WSC is typically a fat tree with 2 or 3 levels [2, Ch. 3].2 We illustrate such
an architecture with 3 levels in Fig. 2.1. Here, the servers within each rack are
connected with a so-called top-of-rack (ToR) network switch. The racks are in turn
arranged in groups, such that the ToR switches of all racks within the same group
are connected via a set of group-level network switches. Finally, the group-level
switches are connected together via a set of network switches at the topmost layer
of the tree.

. . . . . . . . .

Figure 2.1: A WSC is made up of thousands of commodity servers, potentially equipped
with different hardware, that are connected in a heterogeneous manner. Here, servers
are arranged in racks, which, in turn, are arranged into groups, with differing numbers
of network hops between any two servers. As a result computation and communication
latency may vary significantly within a WSC.

1InfiniBand and other high-speed interconnects can provide latencies orders of magnitude lower than
that of Ethernet, but are more expensive.

2This is sometimes referred to as a Clos network.
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The aggregate network bandwidth within a layer of the tree (e.g., between
servers in the same rack) is typically much higher than the bandwidth between
layers (e.g., between a ToR switch and the group-level switches it is connected to),
i.e., the links between layers of the tree are oversubscribed [2, Ch. 3]. As a result,
communication latency and bandwidth is heterogeneous and may vary significantly
depending on where the communicating servers are located within the network,
and to what extent other servers utilize the shared communication links.

2.1.2 Hardware failure statistics
As a result of the large number of commodity components that make up a WSC,
hardware failure is a common occurrence. For example, the yearly failure statistics
of WSCs at Google have been reported as [24]:

• ≈ 20 rack failures (40–80 machines disappear for 1–6 hours).

• ≈ 5 racks go “wonky” (40–80 servers see ≈ 50% packet loss).

• ≈ 8 network maintenances (≈ 30-minute random connectivity loss).

• ≈ 12 router reloads (transient large-scale network failure).

• ≈ 3 router failures (have to immediately reroute traffic for an hour).

• ≈ 1000 server failures (out of tens of thousands servers in total).

• ≈ 1000s of hard drive failures.
In addition, every second there are 1000s of random delays on the order of
milliseconds, and every day there are 10s of random delays on the order of
seconds. Removing all variability by using more reliable hardware (if even possible)
would be prohibitively expensive. Instead, these issues need to be dealt with in
software [2, 10].

2.1.3 Software architecture
Similar to how the operating system of a single computer allows developers to write
applications without considering the exact workings of the underlying hardware,
WSCs run a software layer that provides a layer of abstraction between the
applications of a WSC and the servers that make it up. For the purposes of this
thesis, this software layer consists of three main components:

1. Virtualization, for managing the application environment (e.g., dependencies
and configuration) and isolating applications sharing the same physical
machine.

2. The cluster scheduler, which assigns applications to physical machines de-
pending on resource availability and requirements.

3. Application programming frameworks, that provide high-level APIs for writ-
ing applications of specific types.

We go into some detail for each of these components in the following sections.
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Virtualization

Virtualization is a set of technologies for creating an isolated virtual environment
that an application or a set of applications can reside in. In effect, a virtualized
environment makes it look to the applications it contains as though there are
no other applications sharing the same physical machine. The purpose of this
is twofold. First, it ensures that the application sees a consistent environment
(e.g., in terms of software dependencies and configuration files) regardless of which
physical machine it is deployed to. Second, it keeps applications sharing the same
physical machine from interfering with each other by dividing the resources of the
physical machine between the virtual environments it hosts.

There are two main categories of virtualization technologies that achieve this
goal in slightly different ways:

• virtual machines (VMs) and

• containers.

VMs virtualize the hardware of the machine, i.e., the VM creates virtual CPUs,
memory, etc., and translate calls to the virtual components made by the application
running inside the VM into calls to the underlying physical hardware. Examples
include QEMU [25], KVM [26], Oracle VirtualBox [27], WMware Workstation [28],
VMware EXSi [29], and XEN [30]. Because VMs virtualize the hardware layer,
each VM runs its own operating system, which may differ from that of the physical
machine acting as the host.

Containers, on the other hand, virtualize operating system resources, e.g., the
file system and process identifiers. As a result, despite sharing the same operating
system, containers can be isolated from each other. For example, files can be
created inside a container without being visible from within other containers.
Containers provide a lower level of isolation compared to virtual machines, but do
so at a much lower overhead (e.g., in terms of memory usage). As a result, Google
runs internal applications inside containers and applications belonging to customers
of its public cloud offering, Google Cloud Platform, in virtual machines [6]. Note,
however, that even though virtualization technologies limit the resource usage
of applications to reduce interference, the behavior of one application may still
significantly affect the performance of another due to contention over resources
not managed by the VM or container, e.g., memory bandwidth and processor
caches [8,31].3 Further, the cluster scheduler may dynamically reduce the resources
available to an application to make those resources available to higher-priority
applications. Examples of container technologies include Docker [32] and Open
Containers Initiative containers [33], for the Linux kernel, and Jails [34] on the
FreeBSD operating system.

WSCs use virtualization extensively since it allows for increasing utilization of
scarce hardware resources [8]. In particular, it becomes possible to fully utilize
the hardware of a machine by running multiple applications that each utilize
a fraction of it, with each application residing in separate VMs or containers.
Without virtualization, it would in many cases not be possible to do so, since

3This is known as the noisy neighbor problem.
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applications would interfere with each other, and malicious applications could
potentially manipulate or spy on other applications—an especially salient concern
in the public cloud (e.g., AWS or Microsoft Azure). In addition, because the
VM or container encapsulates any dependencies or configuration required by the
application, it becomes possible to run the application on any machine in the
WSC, and to easily move it between physical machines. The system for managing
this process is referred to as the cluster scheduler.

Cluster schedulers

Users of a WSC are not themselves responsible for assigning applications4 to
physical machines. Instead, users submit their applications to a so-called cluster
scheduler, which decides where to run each application, accounting for the hardware
requirements of the application and the available resources. We illustrate this
process in Fig. 2.2. As a result, performance may vary between instances of an
application depending on, e.g., if the instance was scheduled on a busy machine or
not, and may change over time. In some cases, the scheduler may even preempt
(i.e., kill) applications that exceed their resource quota, or make room for other
applications with higher priority. For example, AWS provides so-called “Spot
Instances”, which are VMs that can be preempted by the scheduler at any time,
at a discount since it allows them to use spare resources.5

Scheduler . . . ← tasks

Server 1 Server 2

. . .

Server K

Network

Figure 2.2: A central entity—the cluster scheduler—is responsible for assigning incoming
storage and compute tasks (i.e., applications) to servers. Each server is typically assigned
several tasks simultaneously to increase utilization, at the expense of increased contention.

Examples of cluster schedulers include Borg [6], Omega [7], and Kubernetes [35],
see [8] for an overview. Borg, Omega, and Kubernetes were all started at Google,
but while Borg and Omega are internal systems used at Google, Kubernetes is
open source and has seen widespread adoption. Another example is the open
source Apache Mesos project [36].

4Throughout this section, we refer to the VM or container containing an application simply as “the
application”.

5See https://aws.amazon.com/ec2/spot/.
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Application programming frameworks

To simplify application development, there are several well-known frameworks for
expressing specific classes of distributed applications. Perhaps the most well-known
example is MapReduce [9, 37], where a computation is expressed as a set of map
and reduce operations. We illustrate MapReduce with the following example.

Example 1 (MapReduce). Consider the problem of large-scale matrix-vector
multiplication, i.e., the problem of computing

y = Mx, (2.1)

where M is a large matrix and x is a vector. By partitioning the rows and columns
of M into an N × M grid, i.e.,

M =


M1,1 . . . M1,M

... . . . ...
MN,1 . . . MN,M

 ,

and letting

x =


x1
...

xN

 ,

we can equivalently write (2.1) as

y =


y1
...

yN

 ,

where
yi ≜

M∑
j=1

yi,j and yi,j ≜ Mi,jxi. (2.2)

To express a task in the MapReduce framework, one defines the functions map,
which maps an input value to an intermediate key-value pair, and reduce, which
reduces all key-value pairs with the same key to an output value. As a result, the
number of calls to the map function is equal to the number of input values and
the number of calls to the reduce function is equal to the number of unique keys
output by the map function. To express (2.1), we define

map(i, j) → i : yi,j and reduce(i) → yi,

where yi,j and yi are defined in (2.2). Once defined, the MapReduce framework
automatically creates the application instances responsible for running each map
and reduce function, schedules those instances for parallel execution across the
WSC, and configures each instance of the map function to send its output to the
correct instance of the reduce function. When each reduce function has finished,
all vectors yi have been computed.
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One of the main advantages of frameworks such as MapReduce is that they
hide much of the complexity associated with writing applications designed to run
across potentially thousands of machines. For example, MapReduce automatically
handles hardware failures by restarting failed computations [9]. Hence, using
the MapReduce framework, large-scale, resilient, distributed applications can be
written in a few lines of code. As a result, since the proposal of MapReduce, a range
of frameworks have been proposed for various classes of computations. For example,
Apache Spark [38, 39] extends the MapReduce model to computations modeled
as a directed acyclic graph, i.e., there may be an arbitrary number of stages and
each stage may be composed of arbitrary functions. Naiad [40] implements a
similar model. Another example is Pregel [41], which is a specialized framework
for graph computations. In all cases, the role of the framework is, in large part,
to automatically compensate for the hardware failures that inevitably occur in
large-scale distributed computing. Further, if the framework is improved (e.g., by
adding features to alleviate the straggler problem), all applications expressed in
the framework immediately benefit without the applications themselves needing
to be updated.

2.2 The straggler problem
WSCs solve a wide range of problems, but also give rise to several challenges. In
particular, acheiving low latency and high reliability is difficult. One of the main
reasons is the straggler problem, i.e., the problem of some servers (the stragglers)
responding more slowly than others. We illustrate the straggler problem in Fig. 2.3.
Straggling servers can significantly increase overall latency and reduce resource
utilization, since the faster servers need to wait for the stragglers.

Time

Server 3

Server 2

Server 1

Task 1 completed Task 2 completed Task 3 completed

Figure 2.3: The effect of straggling servers on a computation consisting of a sequence
of subtasks when distributed over 3 servers; a single slow server (i.e., a straggler) can
significantly increase overall latency and decrease hardware utilization.

Fundamentally, the straggler problem is caused by latency variation between
servers. Some of the variation is inherent to the components that make up the
WSC, but a significant portion of it is due to a combination of

• resource contention and interference from other users and applications, and

• component heterogeneity and unpredictable scheduling.
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The straggler problem is an especially salient concern for WSCs (compared to,
say, HPC systems) due to the large number of heterogeneous components and due
to being designed to be large, cheap, and to maximize resource utilization, at the
expense of contention.

As a result, applications running on WSCs may experience large latency
variations [10]. For example, for applications scheduled through AWS Lambda,6
I/O and networking throughput have been observed to vary by as much as a factor
19 when multiple tasks contend for the servers’ resources [14]. Further, because the
user has no control over scheduling or other users’ applications, resource contention
is dynamic and unpredictable [15,16,42]. In particular, the authors of [16] found
that the response time of a web application running in a VM on AWS increased
by up to a factor 4 for brief periods of time as a result of contention. On the
other hand, some VM types (e.g., AWS T3 instances7) can burst to significantly
higher performance for brief periods of time [42]. Further, on Azure Functions
(Microsoft’s serverless product), a particular task was scheduled on servers with
up to 9 different CPU configurations, differing by CPU type and/or number of
cores allocated to the task, when called repeatedly [14]. On the other hand, the
authors of [17] observed a 25% reduction in performance for a particular web
application when it was scheduled on an especially busy server compared to the
baseline. These latency variations are largely due to factors outside the control of
the user [43].

In the two following sections (Sections 2.2.1 and 2.2.2), we show the impact of
stragglers for two specific scenarios for which we have collected latency traces on
on AWS and Azure.

2.2.1 Round-trip latency on AWS
Here, we provide latency traces collected on AWS to illustrate the extent to which
communication latency varies in WSCs. We conducted the experiment on AWS
region eu-north-1 using two VM instances of type t2.micro. Both instances are
located in the same WSC. In particular, we measure the latency of

1. sending an ICMP echo probe (i.e., a ping) and receiving a response, and

2. transferring a set amount of data between two nodes over a TCP connection.

We use the fping utility to record ping latency and the iperf3 utility to record
data transfer latency.8 We use the client-server mode of iperf3, such that one
node (the client) establishes a TCP connection with the other node (the server),
which runs a daemon that accepts the connection. Once the TCP connection is
established, the client node transfers a set amount of data to the server node and
records the time until the server node reports having received the data.9

6AWS Lambda is Amazon’s serverless product for running applications in lightweight containers,
where the AWS cluster manager automatically handles creating application instances.

7See docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.
html.

8See https://fping.org and https://iperf.fr, respectively.
9We make available the scripts used to record these traces; see https://github.com/severinson/

network-delay-trace.
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Figure 2.4: CCDF of the round-trip latency measured using the fping and iperf3
utilities between two instances of type t2.micro on AWS. The latency of a particular
operation can vary by several orders of magnitude.

In Fig. 2.4, we show the empirical complementary cumulative distribution func-
tion (CCDF) of the latency associated with these operations. Note that, even for
these relatively simple operations, latency may vary by several orders of magnitude.
Further, consider how this behavior would affect distributed applications running
over a large number of nodes. For example, when waiting to receive 1 MB from
a single worker node, the probability of the latency exceeding 10−2 seconds is
about 10−4. However, with 100 nodes, the probability that all nodes have finished
the transfer within 10−2 seconds is about 10−2, and with 1000 nodes it is about
10−1.10 There are two important takeaways. First, it becomes impossible to run
latency-critical operations in a distributed environment, such as a WSC, unless
steps are taken to mitigate the straggler problem. Second, some of the workers
participating in a particular computation may spend most of their time waiting
for stragglers, leading to low hardware utilization.

Here, we considered communication latency for two particular worker instances
on AWS. In the next section, we consider both communication and computation
latency, and we consider to what extent latency varies between workers.

2.2.2 Heterogeneous communication and computation latency
on AWS and Azure

In Section 2.2.1, we considered how latency varies for a particular pair of nodes.
Here, we quantify the extent to which the mean and variance of the computation
and communication latency vary between nodes in a WSC. To do so, we record
latency traces for distributed principal components analysis (PCA), which is a
particular data analytics computation, on AWS (region eu-north-1) and Azure
(region West Europe), using instances of type c5.xlarge and F2s_v2 for AWS

10In fact, it may be even worse since a larger number of nodes using the network simultaneously may
increase network contention.



18 Distributed systems

0 0.2 0.4 0.6 0.8 1
·10−3

10−11

10−10

10−9

10−8

10−7

10−6

Mean

Va
ria

nc
e

Communication latency

0

1

0 1 3.4 3.5 3.6 3.7 3.8
·10−3

0

2

4

6 ·10−8

Mean

Computation latency

0

1

0 1

Figure 2.5: Scatter plot of the mean and variance of the per-worker communication (left)
and computation (right) latency recorded for 30 048 bytes communicated and p = 320
partitions on AWS, and their marginal distributions. For reference, we also plot the CDF
of log-normal distributions fitted to the data, shown with black dashed lines. Performance
can differ significantly, even between instances of the same type (in this case c5.xlarge),
i.e., AWS is a heterogeneous platform. In this case, workers come in two classes with
different communication speed, which we plot using different colors and markers.

and Azure, respectively. Specifically, we record the latency associated with sending
from a coordinator node to a worker node a matrix V and for the worker to
respond with the result of the computation

XT
i XiV , (2.3)

where Xi is a matrix selected at random from the set of matrices that make up a
larger data matrix X, i.e.,

X = [XT
1 , . . . , XT

p ]T,

where p is the number of partitions the rows of X are divided into. The data
matrix is derived from the 1000 Genomes phase-3 dataset [44] and is a sparse
matrix of size 81 271 767 × 2504. Further, V is of size 2504 × 3, and the number
of bytes communicated is 30 048 (15 024 bytes in each direction). We give more
information on these experiments in Paper III, and the recorded traces and the
source code of the software used to record them are available at [45].

We record communication and computation latency separately: the coordinator
records the time between sending V to the worker and receiving a response, and
the worker records the time between starting to process the received matrix and
having a response ready. We take the latency recorded by the worker as a sample
of the computation latency, and the difference between the latency recorded by
the worker and coordinator as a sample of the communication latency. Hence, we
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Figure 2.6: Scatter plot of the mean and variance of the per-worker communication (left)
and computation (right) latency recorded for 30 048 bytes communicated and p = 320
partitions on Azure, and their marginal distributions. Black dashed lines indicate the
CDF of log-normal distributions fitted to the data.

record the round-trip communication latency, which includes the time required for
data to be sent over the wire and any queuing at either end. For each worker, we
perform at least 100 iterations of (2.3).

In Fig. 2.5, we show a scatter plot of the mean and variance of the communication
and computation latency recorded for several workers on AWS—each marker
corresponds to a worker. We also plot the marginal distributions of the mean
and variance, and, for reference, the cumulative distribution function (CDF) of
a log-normal distribution fitted to the data. Note that, even though all workers
are of the same type and located in the same region, the average communication
latency varies by more than a factor 4 between workers. Further, there are two
distinct behaviors, which we differentiate by plotting with different colors and
markers, perhaps because AWS is using different classes of servers to provide
the same instance type (Amazon only specifies an “up to” network speed), or
because the instances are located at different places in the WSC (the workers with
low communication latency may be located in the same rack as the coordinator).
In Fig. 2.6, we show a corresponding plot for Azure. Here, we do not see different
classes of workers. However, the amount of variation in computation latency is
much greater—up to about 25%.

2.3 Edge computing

WSCs enable a wide range of applications at low cost. However, for devices in
remote areas, or for applications requiring low latency, relying on a remote WSC
for processing may not be feasible. For example, the 3GPP set out the following



20 Distributed systems

latency requirements as part of the work on 5G [46]:

• Automated cooperative driving: 15 to 75 ms at > 99.9999% (6 nines).

• Factory automation: 0.5 ms at > 99.9999% (6 nines).

• Power plant control: 4 to 16 ms at > 99.999 999 9% (9 nines).

Achieving these goals in the cloud (i.e., while communicating with a remote server
on the Internet) would be very challenging. Instead, to achieve stringent latency
targets, data has to be processed close to where it is generated, i.e., at the network
edge, possibly with the support of a remote WSC for operations that are not
latency critical. As a result, edge computing is one of the pillars of 5G [47],
and several edge computing architectures have been proposed. Among them
is multi-access edge computing, proposed by the European Telecommunication
Standards Institute, which suggests placing general-purpose servers within the core
network of mobile network providers, i.e., within the network connecting mobile
access points with the Internet, or co-located with the mobile network access
points themselves [46–48]. Doing so can reduce latency significantly compared to
communicating with a server on the Internet.

To illustrate how the location of a remote server affects latency between the
server and a device located at the network edge, in Fig. 2.7 we plot the distribution
of the latency associated with:

• Sending a data packet over the air between a wireless modem and an LTE
radio access point—separately for uplink (UL) and downlink (DL)—in i)
a lab setting, with the parameters of the mobile network tuned to reduce
latency (results due to [49]), and ii) in a commercial LTE network deployment
(results due to [50]).

• Sending a data packet from an LTE mobile network access point over the
wired core network to the point at which the core network connects to the
Internet, in the same commercial deployment as referred to in the previous
bullet (results due to [50]).

• Setting up a TCP connection between a client with a wired connection
to the Internet and a server on the Internet part of the Akamai content
delivery network (CDN), which is composed of thousands of servers that are
distributed over the world to reduce latency,11 without transferring any data
over the connection (see [51] for details).

We also plot the latency associated with sending a 1-byte message from one
Internet-of-things (IoT) device to another using Bluetooth Mesh and OpenThread,
which are popular IoT communication protocols (see [52] for details).

As seen, the latency of communicating with a server on the Internet may be
prohibitively high—even for this relatively simple operation, the latency exceeds
100 ms in about 20% of the cases. Further, wireless communication between a

11See https://akamai.com/solutions/content-delivery-network and https://akamai.com/
our-thinking/cdn/what-is-a-cdn.
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Figure 2.7: Distribution of the latency between a wireless LTE device at the edge and
a server co-located with the mobile network base station (results due to [49,50] for the
lab and real-world setting, respectively). We also show the distribution of the latency
between the mobile network base station and the point at which the mobile network
operator core network connects to the internet Internet (results due to [50]) and between
a wired edge device and a server on the Internet (results due to [51]). Finally, we show
the latency distribution associated with sending a message consisting of a single byte
between two IoT devices using the OpenThread and Bluetooth Mesh communication
protocols (results due to [52]). Latency may vary significantly even in controlled settings.

device and a mobile network base station, or even between IoT devices, often
requires tens of milliseconds. While it is possible to achieve low latency in mobile
networks, mobile networks are often setup to prioritize throughput and fairness,
as opposed to latency [49,50]. Indeed, the lower latency achieved in [49] compared
to [50] is largely due to turning off features designed to fairly divide bandwidth
between concurrent users.

Hence, even under ideal conditions, to reliably offload processing to remote
servers (at the network edge or otherwise), the protocols and algorithms need
to be robust against significant latency variations, e.g., by more intelligently
allocating scarce resources and utilizing multiple servers and/or communication
links simultaneously. This is a relatively new research area in which there is still
much work to be done.
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Chapter 3

Machine learning and data analytics



24 Machine learning and data analytics

1

2

Feature

O
ut

co
m

e
Traning data
Learned model

−1

0

1

Feature

O
ut

co
m

e

Traning data
Learned model

Figure 3.1: Linear (left) and logistic regression (right); we wish to predict an unknown
outcome from an observed feature by fitting a line to the training data.

3.1 Introduction
One of the main motivations of today’s large-scale distributed computing systems
is extracting useful information from large datasets. In this chapter, we introduce
several important problems in this domain and explain what fundamental oper-
ations they reduce to. In particular, we consider linear and logistic regression,
PageRank and PCA, and a filtering problem. Further, we introduce the gradient
descent (GD) method for solving optimization problems, the power method for
solving eigenvalue problems, such as PageRank and PCA, and show how the power
method is a special case of GD. As it turns out, many important problems (e.g.,
linear and logistic regression, PCA, and training neural networks) reduce to either
matrix multiplication or to computing gradients with respect to a dataset (or
both). In the next chapter, we will show two classes of schemes for performing
these operations in a distributed manner that are resilient to stragglers.

3.2 Linear regression
Consider the problem of predicting the price that a property will be sold for based
on features of the property (e.g., its size in square meters and how far it is from
the beach). This is known as a regression problem, where one wishes to predict
an unobserved quantity, referred to as the outcome, from one or more observed
features, and is a common data analytics problem in a wide range of applications.
We first consider linear regression, i.e., we constrain the prediction

ŷi = ⟨xi, v⟩ + c

to be a linear function of the observed features, where xi is the vector of features
(size and distance to the beach) and v is a vector of length equal to the number of
features (2 for the example considered) that, together with an offset c, captures
the relationship between the observed features and the quantity to be predicted
(the price). The scalar c is commonly referred to as the intercept, and the pair
(c, v) is referred to as the model. We illustrate the problem in Fig. 3.1 (left), where
we plot the outcome as a function of a single input feature for a sample dataset
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(what the feature and dataset represent is not important for the example), where
v = [1] and c = 1.

Now, the linear regression problem is to find a vector v that minimizes the
expected error between the predicted and true outcome, with the error typically
measured as the squared difference

(ŷi − yi)2
,

where yi is the true outcome. Because we cannot measure the expected error
directly, one typically attempts to find a vector v that minimizes the mean squared
error (MSE) between the predicted and true outcomes of a training dataset
composed of historical data, for which the true outcomes are known, in the hope
that the obtained model will generalize well to new data for which we do not yet
know the true outcomes.1 In this setting, the linear regression problem can be
expressed as

v∗ = arg min
v

1
n

n∑
i=1

(ŷi − yi)2
 = arg min

v

1
n

n∑
i=1

(⟨xi, v⟩ + c − yi)2
 , (3.1)

where [x1, . . . , xn] and [y1, . . . , yn] are the n feature vectors and corresponding
known outcomes that make up the training dataset. Before proceeding, for brevity
we move the intercept (c) into the model, such that the prediction of the i-th
outcome is written as

ŷi = ⟨xi, v⟩ ,

by letting
xi =

[
1, x′

i,1, . . . , x′
i,n

]
and v = [c, v′

1, . . . , v′
d] ,

where x′
i,j denotes the j-th entry of the i-th sample and v′

j the j-th entry of the
model, prior to moving the intercept into the model.

The expression inside the brackets of (3.1) is referred to as the loss function,
and the solution to (3.1) minimizes the loss with respect to the training dataset.
However, in practice one often uses a slightly updated problem definition

v∗ = arg min
v

R(v) + 1
n

n∑
i=1

(ŷi − yi)2
 , (3.2)

where R is a so-called regularization function that serves to bias the solution toward
ones that are thought to better generalize to data outside of the training dataset,
i.e., to reduce overfitting, which is the problem of good fit to test data but poor
generalization. Regularization can also serve to make the resulting optimization
problem easier to solve, and to transform non-convex optimization problems to
convex problems. Commonly used regularization functions include the L1 and L2
norm, defined as

R(v) = λ
d∑

j=1
|vi| and R(v) = λ

2
d∑

j=1
|vi|2 ,

1This approach is known as empirical risk minimization.



26 Machine learning and data analytics

respectively, where λ is a scalar known as the regularization coefficient and d is
the length of the vector v, i.e., its dimension.2

3.3 Logistic regression
So far, we have assumed that the data is of the form

yi = ⟨xi, v⟩ + ϵi, i = 1, . . . , n, (3.3)

where ϵi is a noise term that accounts for behavior not captured by the model.
However, this relation is not always a good fit. For example, see Fig. 3.1 (right),
where each outcome takes one of two discrete values in {−1, +1}. Problems where
one whishes to predict outcomes from a discrete set of possibilities are known
as classification problems, and binary classification problems (i.e., there are two
possible outcomes), like the one shown in Fig. 3.1 (right) can be solved with
the help of (non-linear) regression.3 Like with linear regression, we wish to fit
a continuous (possibly non-linear) function of the features to the data. Next,
to predict a class (either −1 or +1), we round the function value to the closest
outcome. Further, the difference between the function value and −1 or +1 can be
interpreted as a measure of how certain the outcome is. For example, a function
value of 0.999 could be interpreted as high certainty of +1 being the true outcome,
whereas a function value close to zero is interpreted as +1 and −1 being close to
equiprobable.

To address the classification problem, we need a more general relationship
between the features and the outcome than the one in (3.3). A popular choice is
to model the relationship between features and outcome by

yi = g (⟨xi, v⟩) + ϵi,

for some function g with scalar input and output, i.e., the predictions made by
the model are of the form ŷi = g (⟨xi, v⟩), where, as for linear regression, the
model is captured by the vector v. For classification problems, like the one shown
in Fig. 3.1 (right), g is often chosen to be the sigmoid function (scaled and shifted
to span (−1, 1)), i.e.,

g(z) = 2
1 + e−z

− 1. (3.4)

Here, g serves to map a scalar in (−∞, ∞) to a value between −1 and +1. Next,
we need a loss function to asses how well a particular model (captured by v) fits
the data. A popular choice is to define the problem as

v∗ = arg min
v

R(v) + 1
n

n∑
i=1

log [1 + exp (−yi ⟨xi, v⟩)]
 , (3.5)

2The factor 1/2 is included to make the gradient of the regularization function simpler to express.
Regression with L1-regularization is sometimes referred to as lasso regression, whereas regression with
L2-regularization is sometimes referred to as ridge regression.

3There are also extensions for the case where there are more than two possible outcomes, see,
e.g., [53, Ch. 5].
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in which case the problem is referred to as logistic regression (from the logit
function, the inverse of the sigmoid function). See [53, Ch. 5] for a motivation of
this choice. We plot (3.4) with z = ⟨x, v∗⟩ for a sample dataset in Fig. 3.1 (right).
Next, we consider how to solve the linear and logistic regression problems.

3.4 Gradient descent
As it turns out, both linear and logistic regression, as well as a wide range of
other optimization problems (e.g., training neural networks), can be solved using a
simple iterative procedure, in which one makes gradual improvements to an initial
guess at the solution. This procedure is referred to as gradient descent (GD), and
it is used for solving

v∗ = arg min
v

[F (v)] , (3.6)

for some differentiable function F , by performing updates of the form

v(t+1) = v(t) − η∇F (v(t)),

where ∇F denotes the gradient of F , η is the step size, which is a scalar that
controls the magnitude of the changes, the superscript t is the iteration index,
and v(0) is the initial solution (which may be chosen, e.g., at random or set to the
all-zeros vector). GD is often likened to descending a mountain in the fog; you
take one step at a time in the direction leading downward, without being able to
see more than one step ahead, in the hope of eventually reaching the bottom.

In the case of linear and logistic regression, as well as for other optimization
problems over a training dataset, the loss function has a finite-sum structure
(see (3.2) and (3.5)),4 i.e.,

F (v) = R(v) + 1
n

n∑
i=1

fi(v),

where fi is the loss with respect to the i-th sample of the training dataset. Hence,
the gradient of the loss function is given by the sum

∇F (v) = ∇R(v) + 1
n

n∑
i=1

∇fi(v),

where ∇fi denotes the gradient of fi and ∇R is the gradient of the regularization
function. For linear and logistic regression,

∇fi (v) = 2 ⟨xi, v⟩ xT
i − 2yix

T
i and ∇fi (v) = (g (⟨xi, v⟩) − yi) xT

i , (3.7)

respectively, where g is given by (3.4). We remark that, for linear regression, the
gradient can be expressed succinctly as

n∑
i=1

fi(v) = 2XTXvT − 2XTy,

4Optimization problems where the loss function has this structure are referred to as finite-sum
optimization problems.
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where
X ≜

[
xT

1 , . . . , xT
n

]T and y ≜ [y1, . . . , yn] , (3.8)
i.e., GD for linear regression can be reduced to matrix-vector multiplication.
Further, the gradient of R for L1 and L2 regularization is

[∇R(v)]j = λ · sign(vj), j = 1, . . . , d, and ∇R(v) = λv, (3.9)

respectively.5
GD has several advantages that has led to it becoming a popular optimization

method for a wide range of problems. Of particular interest to us is that GD
is easily distributed by using multiple workers to compute the terms of the sum
in (3.7) in parallel, which are then aggregated by a coordinator. Doing so can
enable fitting machine learning models over very large datasets quickly.

First-order optimization
GD is part of a larger family of so-called first-order iterative optimization methods,
referred to as such because they rely only on the gradient of the loss function.
These methods differ from each other in two orthogonal ways. First, the methods
are either exact, in which case they use the exact gradient (as is the case for GD),
or stochastic, in which case the method relies on a stochastic approximation of ∇F .
A commonly used stochastic method is stochastic GD (SGD), which processes a
randomly selected subset of the samples of the training dataset in each iteration,6
i.e., ∇F is approximated by

∇F̂ (v) = ∇R(v) + |I|
n

∑
i∈I

∇fi(v), (3.10)

where I is the set of indices of the sampled subgradients. Note that the estimate
is scaled by the fraction of samples processed to ensure that it is an unbiased
estimate of the gradient, i.e.,

E
[
∇F̂ (v)

]
= ∇F (v),

where the expectation is taken over the possible sets I.7 We do not estimate ∇R
since it is typically easy to compute it exactly. SGD is otherwise equal to GD, i.e.,
it performs updates of the form

v(t+1) = v(t) − η∇F̂ (v(t)),

although one typically has to reduce the step size compared to GD, due to the
noisy gradient estimate. Other stochastic methods differ by how the gradient
is estimated. Stochastic methods can significantly reduce iteration complexity

5Note that, for L1-regularization, the gradient is undefined if vj = 0 for some j.
6This version of SGD is referred to as mini-batch SGD, to differentiate it from the version of SGD for

which exactly 1 sample is processed per iteration.
7If the sampling probability is non-uniform, we instead need to scale the loss with respect to each of

the sampled indices by the inverse of the associated sampling probability.
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relative to GD, which can speed up convergence (when measured as a function
of time, as opposed to number of iterations)—it is often better to perform many
fast iterations instead of fewer, but more accurate, iterations. However, stochastic
methods do not converge to the optimum—there is an irreducible error—unless a
variance-reduction strategy is employed, which serves to increase the accuracy of
the gradient estimate as the algorithm progresses (see Chapter 4).

The other way in which first-order optimization methods differ is in how they
use the gradient (estimated or exact) to update the iterate. One such example
is GD with momentum [54, 55], which dampens oscillations in the sequence of
iterates v(0), . . . , v(t), by including a fraction of the previous update vector in its
iterate update. It performs updates of the form

v(t+1) = v(t) − θ(t), θ(t) = γθ(t−1) + η∇F (v(t)),

for some scalar γ (it is common to use γ = 0.9 or similar), and where θ(0) is initial-
ized to the all-zeros vector. Other popular examples include accelerated GD [56]
and L-BFGS-B [57]. See [58] for a comparison of GD variants. Further, one can
mix and match, e.g., combining the SGD gradient estimate with momentum [59],
resulting in an update rule

v(t+)1 = v(t) − θ(t), θ(t) = γθ(t−1) + η∇F̂ (v(t)),

where ∇F̂ is given by (3.10).
Next, we consider eigenvalue problems, which is a another class of important

problems in data analytics. However, as we will see, eigenvalue problems can also
be cast as optimization problems of the form (3.6) with a loss function of the
form (3.7), and be solved using first-order optimization methods, e.g., GD.

3.5 PageRank
One of the most well-known eigenvalue problems is PageRank, which is the problem
of computing the relative importance of nodes in a graph based on its network
structure. PageRank was originally proposed as an algorithm for ranking webpages
by their importance, and has been used by Google to rank search results [60]. Since
then, PageRank and variants thereof have been studied extensively, see, e.g., [61,62]
and references therein8, and have seen a wide range of applications, e.g., being
used to estimate the importance of research papers, linked by citations [63–66],
and to figure out who the best tennis player of all time is [67]. In describing the
algorithm, we will use ranking webpages as our running example.

PageRank works as follows. Consider a directed graph with n nodes, each
of which corresponds to a webpage, where a directed edge from one node to
another corresponds to a hyperlink from the source webpage to the target webpage.
The intuition behind PageRank is that webpages with many incoming links from
important webpages are themselves important, and that webpages with a small
number of incoming links, or webpages only linked to by unimportant webpages,
are less important. In particular, PageRank is based on the idea of someone

8The explanation of PageRank given here draws primarily from [62].
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randomly surfing the web, starting at a randomly selected webpage and repeatedly
performing one of the following actions:

1. With probability 1 − p, the surfer follows a link on the current webpage to
another webpage.9 All links on a webpage are assumed to be selected with
equal probability.

2. With probability p, the surfer goes directly to another webpage, selected
uniformly at random from all nodes in the graph.

The PageRank problem is the problem of, for each webpage, computing the
probability that, after k steps, the surfer will be visiting that particular webpage
as k → ∞, i.e., to compute the stationary probability distribution over the nodes
of the graph. Denote by nj the number of outgoing hyperlinks from the j-th node
and by A ∈ Rn×n the hyperlink matrix, for which the (i, j)-th entry is

ai,j =
1/nj if the j-th node links to the i-th node

0 otherwise.

For nodes with no outgoing links (e.g., pictures) an artificial link to another node,
e.g., one of the pages linking to that page, is added to simulate a back button, so
that nj > 0, ∀j. Denote by v(k) ∈ Rn the vector storing the probability distribution
over the nodes after k steps, i.e., the j-th element of v(k) is the probability of the
surfer visiting node j after performing k actions. Note that the process of moving
between nodes in the graph is a Markov chain, and that, given the transition
matrix of the Markov chain, which we denote by M , the probability distribution
over the nodes after k state transitions is

v(k) = Mv(k−1), (3.11)

where v(0) in the initial probability distribution (typically initialized as vi = 1/n, ∀i).
The Markov chain transition matrix corresponding to the first action (following a
link) is A, and the transition matrix corresponding to the second action (moving
directly to another webpage) is 1/n · 1n×n, where 1n×n denotes an n × n all-ones
matrix. Hence, the state transition matrix for the overall process is

M = (1 − p)A + p

n
1n×n.

Now, we are interested in computing the stationary probability distribution,
defined as the vector v∗ satisfying

v∗ = Mv∗. (3.12)

This vector is guaranteed to exist since, because we added artificial links and the
surfer sometimes goes directly to another randomly selected page, there are no
cycles or sink nodes, i.e., the surfer will never get stuck at any page or in an
endlessly repeating cycle. More formally, M is a positive stochastic matrix, i.e., all
of its entries are positive and all of its columns sum to 1, which can be shown (by

9In the original publication, p = 0.15 was suggested [60].
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Perron’s theorem [68], see [62] for details) to have a unique largest eigenvalue of 1
(i.e., all eigenvalues other than the largest, which is equal to 1, are smaller than 1)
and to have a unique eigenvector, for which all entries are positive, corresponding
to the eigenvalue 1. Hence, we are guaranteed that v∗ exists and is unique since it
is, by its definition, the eigenvector of M corresponding to the eigenvalue 1. Next,
we consider how to compute v∗ using the so-called power method.

3.6 The power method
Consider a symmetric positive semidefinite matrix M ∈ Rn×n with eigenvalues
λ1, λ2, . . . , λn (not to be confused with the regularization coefficient in Section 3.2)
and corresponding eigenvectors u1, u2, . . . , un, which, because M is symmetric
positive semidefinite, form an orthogonal basis of Rn. Here, we present the power
method, which is an iterative method for compting u1 for matrices with a single
dominant eigenvalue, i.e., for which the eigenvalues can be ordered such that
|λ1| > |λ2| ≥ · · · ≥ |λn|. Let v(0) be an arbitrary vector, which we can write as

v(0) =
n∑

i=1
αiui

for some scalars α1, . . . , αn. Hence, by multiplying v(0) on the left by M k, we have

M kv(0) =
n∑

i=1
λk

i αiui = α1λ
k
1

u1 +
n∑

i=2

αi

α1

(
λi

λ1

)k

ui

 . (3.13)

Now, because |λ1| > |λ2| ≥ · · · ≥ |λn|, the ratio (λi/λ1)k → 0 and, hence, M kv(0) →
α1λ

k
1v1 (assuming α1 ̸= 0)10 as k → ∞, with a rate of convergence approximately

proportional to |λ2|/|λ1|—eigenvalues smaller than λ2 typically have negligible impact
beyond the first few iterations. While the power method gets its name from (3.13),
it is typically not implemented in this way; it is much more computationally
efficient to implement the power method recursively as

v(k) = M kv(0) = Mv(k−1),

i.e., despite its name, the power method is not implemented based on computing
powers of M . Further, to avoid arithmetic underflow and overflow, the iterate is
normalized at each step, i.e.,

v(k) = z(k)

|z(k)| , where z(k) = Mv(k−1).

This process is repeated until the series v(0), . . . , v(k) satisfies some convergence
criterion, e.g., until |v(k) − v(k−1)|2 is smaller than some threshold.

This concludes the description of the power method, which can be used to
solve, e.g., the PageRank problem. Like GD, one of its strengths is that it is easily
distributed, which can enable solving very large eigenvalue problems.11

10The probability that α1 = 0 is negligible if v(0) is chosen at random. Further, even if v(0) is
deliberately chosen such that α1 = 0, floating-point arithmetic rounding errors quickly introduce a
non-zero component in the direction of u1.

11For example, the number of nodes in the graph used by Google to rank webpages (and hence the
number of rows and columns of the corresponding hyperlink matrix) is in the order of 1010 [62].
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Computing multiple eigenvectors
While the power method only gives the eigenvector of M corresponding to its
dominant eigenvalue, it can be extended to compute the r ≤ n eigenvectors
corresponding to its r largest eigenvalues. The extension is referred to as the
orthogonal power iteration method, and is defined by the update rule

V (k) = G
(
MV (k−1)

)
,

where V is a matrix with r columns and number of rows equal to that of M , and
G(·) is the Gram-Schmidt operator, i.e., G(·) takes an input matrix and applies the
Gram-Schmidt orthogonalization procedure to its columns such that the columns
of the resulting matrix form an orthonormal basis with the same span as the
columns of the input matrix.12

3.7 Eigenvalue problems as optimization problems
Since the PageRank problem reduces to finding an eigenvector of a matrix ((3.12)),
we may be interested in casting the problem of computing eigenvectors as an
optimization problem, as, in doing so, we can use optimization solvers, e.g.,
from the family of first-order methods, to solve PageRank (and other eigenvalue
problems). In fact, as we will see, the power method is a special case of GD.

Denote by
ρM (v) ≜ ⟨Mv, v⟩

⟨v, v⟩
the Rayleigh quotient of M . The Rayleigh quotient has several interesting proper-
ties. In particular, it is the scalar closest to an eigenvalue for an arbitrary vector
v. More precisely,

ρM (v) = arg min
α

|Mv − αv|2 ,

and, in particular, ρM (ui) = λi, where λi is the i-th largest eigenvalue of M and
ui the corresponding eigenvector. Further, the Rayleigh quotient is a continuos
function that attains all values in the range [λ1, λn] (see, e.g., [69, Sec. 2.7] for
proofs), i.e.,

λ1 ≥ ρM (v) ≥ λn.

Now, let
F (v) = R(v) − ρM (v)

2 = R(v) − ⟨Mv, v⟩
2⟨v, v⟩ ,

and define the optimization problem

v∗ = arg min
v

[
F (v) ≜ R(v) − ⟨Mv, v⟩

2

]
s.t. |v| = 1,

(3.14)

12Alternatively, one may use QR factorization instead of Gram-Schmidt, resulting in the QR-method
for computing eigenvectors, which typically includes several other optimizations to improve convergence;
see [69, Ch. 3] for an overview.
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where we have dropped the ⟨v, v⟩ in the denominator by constraining v to have
unit length, and R is a regularization function. Note that, if R is the identity
operator, the solution to (3.14) is the eigenvector of M corresponding to its largest
eigenvalue, since the Rayleigh quotient attains its maximum (λ1) for the input u1.

GD applied to (3.14) results in

v(k) = z(k)

|z(k)| , where z(k) = v(k−1) − η∇F
(
v(k−1)

)
. (3.15)

This is referred to as projected GD, since in each iteration we project the iterate
onto a subspace, which in this case is the unit ball.13 Further, the gradient of F is

∇F (v) = ∇R(v) − Mv,

and, hence, (3.15) becomes

z(k) = v(k−1) − η
(
∇R(v(k−1)) − Mv(k−1)

)
.

Now, by letting R(z) = 1/2 · |z|2 (i.e., L2-regularization) and choosing the step size
to be η = 1, (3.15) becomes

z(k) = v(k−1) − η
(
v(k−1) − Mv(k−1)

)
= Mv(k−1),

which is the update rule of the power method, i.e., the power method is a special
case of projected GD, for a particular choice of objective, regularization function,
and step size. Note that, because we constrain the iterate to have unit norm,
L2-regularization only adds a constant to the loss function.14 This insight is useful,
since it allows us to use, e.g., stochastic optimization techniques, or acceleration,15

in solving eigenvalue problems.

Computing multiple eigenvectors
Similarly, the top r ≤ n eigenvectors are given by the solution to

V ∗ = arg min
V ∈Rn×r

F (V ) ≜ R(V ) −
tr
(
V TMV

)
2


s.t. V TV = I,

(3.16)

where tr is the trace operator, I is the identity matrix, and the columns of V ∗

make up the computed eigenvectors.16 We have

∇F (V ) = ∇R(V ) − MV .

13In the literature, it is common to consider proximal GD, which allows for introducing a penalty to
iterates outside of a particular set. Projected GD is a special case of proximal GD, where the penalty is
∞.

14For more information, including a remark on the connection between regularization and the convexity
of (3.14), see [70] and [71, Sec. 26.2].

15There are even accelerated versions of the power method [72], corresponding to accelerated GD.
Further, combining the power method with approximate matrix multiplication methods (e.g., [73])
corresponds to SGD.

16See [71, Sec. 26.2] for a remark on the convexity of (3.16).
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Figure 3.2: PCA; high-dimensional data points are compressed by projecting them onto
a subspace. The original points and their projections onto the subspace are connected
with black lines.

Thus, by choosing R(V ) = 1/2 · ∥V ∥2
F (and, hence, ∇R(V ) = V ) and η = 1, GD

applied to (3.16) results in

V (k) = G
(
MV (k−1)

)
,

where G(·) is the Gram-Schmidt operator, i.e., the orthogonal power iteration
method (see Section 3.6), like the power method, is a special case of GD.

3.8 Principal component analysis
PCA relates to dimensionality reduction, i.e., how to best represent a set of points
in d dimensions with some lower number of dimensions, here denoted by r (r < d).
For example, the set of 2-dimensional points shown in Fig. 3.2 could be represented
using only 1 coordinate per point if, instead of storing each point as a pair of
coordinates (dimension 1 and dimension 2), we represented each point by its closest
position along the line shown in the figure, thus reducing the number of coordinates
required per point to 1. Note that we also need to store some representation of
the line to map points along it back into 2 dimensions. Doing so typically leads to
some information loss (the projections do not correspond exactly to the original
points), but, for datasets with a high level of redundancy, the loss may be small,
and may lead to requiring significantly less storage to represent the dataset. Hence,
PCA is often used as a pre-processing step in machine learning.

More formally, PCA is the problem of finding a linear subspace (i.e., a hyper-
plane) of Rd of some dimension r < d that best captures a set of n points, denoted
by x1, . . . , xn, in the sense that the MSE between the points and their orthogonal
projection onto the subspace is minimized. In Fig. 3.2, the subspace is shown
as a straight line, with squares indicating the orthogonal projection of the data
points (circles) onto the subspace. The model is captured by a matrix V ∈ Rd×r
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with orthonormal columns, i.e., V TV = I, such that the columns of V form an
orthonormal basis of the subspace, and V V T is a projection matrix. Hence, the
projection of the point xi onto the subspace is xiV V T. The columns of V are
referred to as the principal components. The PCA problem is defined as

V ∗ = arg min
V ∈Rd×r

[
F (V ) ≜

∥∥∥X − XV V T
∥∥∥2

F

]
,

s.t. V TV = I,

(3.17)

where
X ≜

[
xT

1 , . . . , xT
n

]T
.

The solution to (3.17) is often expressed in terms of the singular value decomposition
(SVD) of the data matrix, which we denote by

X = W SUT,

where the columns of W ∈ Rd×k, k = min(n, d), are the left-singular vectors of X
(i.e., the eigenvectors of XXT), the columns of U ∈ Rd×k are the right-singular
vectors of X (i.e., the eigenvectors of XTX), and S ∈ Rk×k is a diagonal matrix
with the singular values σ1 ≥ · · · ≥ σk of X (i.e., the squared eigenvalues of XXT

and XTX) arranged along the diagonal. The columns of W and V are mutually
orthonormal, i.e., W TW = I and V TV = I.

Denote by wi and ui the i-th column of W and U , respectively. We can
equivalently express the SVD of X as the sum of k rank-1 matrices,

X =
k∑

i=1
σiwiu

T
i =

k∑
i=1

Xuiu
T
i = XUUT,

where we have used the fact that wi = 1/σi · Xui. Hence, X can be approximated
by selecting the r (r ≤ k) first elements of this sum, corresponding to the r largest
singular values, i.e.,

X ≈ X̂ ≜
r∑

i=1
Xuiu

T
i = XU1:rU

T
1:r,

where U1:r denotes the matrix consisting of the first r columns of U . Further, by
the Eckart–Young theorem, X̂ is the rank-r matrix closest to X in terms of the
Frobenius norm, i.e., the solution to (3.17) is17

V ∗ = U1:r.

Hence, the PCA problem reduces to the problem of computing the r eigenvec-
tors of XXT—or XTX, whichever is easier, since we can recover U1:r from
W1:r—corresponding to its r largest eigenvalues. As a result, (3.17) can be solved
using, e.g., orthogonal power iterations (Section 3.6) or first-order optimization
(Section 3.7).
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Figure 3.3: Using the Kalman filter to track the longitudinal and latitudinal position
and speed of a moving vehicle (we only plot the position component of the estimate).
Combining noisy observations of the vehicle’s position (e.g., taken using a GPS receiver)
with a model of the expected behavior of the system results in higher accuracy compared
to relying only on observations.

3.9 Filtering

Finally, we consider a slightly different data analytics problem, namely filtering,
i.e., the problem of estimating the state of a process based on (noisy) observations.
Throughout this section, all vectors are column vectors. Specifically, we consider a
discrete process that evolves over time according to

x(t+1) = F x(t) + q(t),

where x(t) ∈ Rd is a vector that captures the state of the process at time step t,
F ∈ Rd×d is a model of the expected behavior of the process (referred to as the
state transition matrix), and q ∈ Rd is a noise vector drawn from a zero-mean
Gaussian distribution with covariance matrix Q. The noise vector accounts for
changes to the state of the process not captured by the model. At each time step,
we make an observation of the process, which is given as

z(t) = Hx(t) + r(t),

where H ∈ Ro×d is a matrix that captures the relationship between the state
vector and the observation,18 and r is zero-mean Gaussian noise with covariance
matrix R. For example, if we consider the problem of tracking the position and
velocity of a vehicle using a GPS receiver, then x(t) could have 4 entries—position
and speed in the longitudinal and latitudinal directions—and H could be a matrix

17See, e.g., [74] for proofs.
18The observation matrix H may be time-varying. We consider a static matrix for notational simplicity.
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of size 2 × 4 that selects only the position elements of x(t), i.e.,

x(t) =


lat. position

long. position
lat. speed

long. speed.

 and H =
[
1 0 0 0
0 1 0 0

]
.

Now, we wish to estimate the state of the process at each time step, i.e., we wish
to produce a sequence of estimates

x̂(0), x̂(1), x̂(2), . . . ,

such that the MSE is minimized, i.e., we wish to minimize

E
[(

x(t) − x̂(t)
)2]

.

In computing each estimate, we may use all observations captured and state
estimates made up to that point.

This problem is solved optimally (i.e., with minimal MSE) by the Kalman
filter [75]. At a high level, the Kalman filter is an iterative procedure for producing
estimates that performs updates of the form(

x(t−1), z(t)
)

−→ Kalman filter −→ x(t).

Note that the Kalman filter relies only on the current estimate and an observation;
all information recorded up to step t − 1 is captured by the current estimate.
The Kalman filter is popular for this reason since it reduces memory usage and
simplifies implementation. In addition, the Kalman filter tracks the covariance
matrix of the estimation error

x(t) − x̂(t),

which we denote by P (t). The Kalman filter is used for a wide range of applications,
including guidance, navigation and control of vehicles, robotics, and time series
analysis, see [76] for an overview.

The Kalman filter works as follows. Let
y(t) = z(t) − Hx(t)

and denote by S(t) = R + HP (t)HT its covariance matrix. The quantity y(t)

is often referred to as the innovation and is a measure of how surprising the
observation is. Then, the updated state estimate produced by the Kalman filter is

x̂(t) = x̂(t−1) + K(t)y(t),

where
K(t) = P (t)HT

(
S(t)

)−1

is the so-called Kalman gain that determines how the observation should influence
the updated estimate. The covariance matrix of the error x̂(t) − x(t) is also
computed recursively as

P (t) =
(
Id − K(t)H

)
P (t),

where Id is the unit matrix of size d × d. We plot the position component of the
estimate produced by the Kalman filter for the vehicle tracking problem mentioned
above in Fig. 3.3. For more on the mathematics of the Kalman filter, including its
derivation, see, e.g., [77].
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Chapter 4

Straggler mitigation
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4.1 Introduction
In the previous chapter, we outlined several important problems in machine learning
and data analytics, and the underlying operations that they rely on—matrix
multiplication and computing gradients of finite sums. In this chapter, we give
an overview of two sets of methods that have been proposed to perform these
operations in a distributed manner that is resilient to delays and erasures, that, as
we saw in Chapter 2, are common occurrences in large-scale distributed systems. In
particular, we consider coded computing, which is a method for adding redundancy
to computations, such that the result of a distributed computation can be recovered
from a subset of the intermediate results computed by the worker nodes, and
variance-reduced stochastic optimization. However, we first introduce erasure-
correcting codes.

4.2 Erasure-correcting codes
Error-correcting codes were proposed in 1948 to enable reliable communication
over unreliable communication channels. More precisely, we wish to send a message
through a communication channel (e.g., a wireless link or a fiber-optic cable) that
may distort the message in some unknown way (i.e., it is a noisy channel), and
yet be able to recover the original message at the destination. Error-correcting
codes solves this issue by adding redundancy to the message before to sending it
over the channel, such that, even if the message is distorted, it can be recovered
at the destination. The act of adding redundancy is referred to as encoding, and
recovering the original message is referred to as decoding. At a high level the
overall process is

source −−→
m

encoding −−→
x

noisy channel −−→̂
x

decoding −−→
m̂

destination,

where m is the original message and m̂ is the output of the decoder, which, if
decoding is successful, is equal to the original message. Both m and m̂ are vectors
of length k. Denote by x the channel input (i.e., the encoded message) and by
x̂ the channel output (i.e., the input to the decoder). We are interested in a
particular channel, referred to as the memoryless erasure channel, for which the
i-th element of the channel output is

x̂i =
xi with probability 1 − p

“?” with probability p
.

Here, “?” denotes an erasure, indicating that the recipient did not receive xi,
i.e., each element of x is received correctly or not at all, and the recipient knows
which elements were received. Each element is erased with probability p, which
is referred to as the erasure probability. The erasure channel is often used to
model digital communications. Codes designed to protect against erasures (as
opposed to errors) are referred to as erasure-correcting codes (ECCs). One of the
most common ECCs are repetition codes, which encode a message by repeating
it, such that the message can be recovered from any of its replicas. Repetition
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codes are widely used due to their simplicity, but are highly suboptimal in terms
of the amount of redundancy required. For example, a backup hard disk drive is a
2-repetition code.

In practice, one typically uses linear ECCs, of which repetition codes is a special
case, for which an (n, k) code, where k is the number of source symbols (the length
of m) and n is the length of x, is represented by a generator matrix of size n × k,
denoted by G, and the encoded message is

x = GmT.

For an (n, k) code, n is referred to as the code length, k as the dimension of the
code, and r = k/n as the code rate. For example, consider a message m = [m1, m2]
and a (3, 2) code for which x = [m1, m2, m1 + m2]. In this case, the generator
matrix is

G =

1 0
0 1
1 1

 , (4.1)

and we can recover m from any 2 out of the 3 elements of x, i.e., we can tolerate
n − k = 1 erasure. For linear ECCs, decoding reduces to solving a system of linear
equations. Denote by xe the vector composed of the element of x̂ corresponding
to the received elements (i.e., those that were not erased) and by Ge the matrix
composed of the corresponding rows of G. We can recover m from x̂, even if some
if its elements are erased, by solving the system of equations

Gem
T = xe. (4.2)

For the example in (4.1), if x1 is erased, the system becomes[
0 1
1 1

]
m =

[
m2

m1 + m2

]
,

from which we can solve for m = [m1, m2]. Note that decoding can only succeed
if Ge is of full rank, i.e., if rank (Ge) = k. Decoding that is guaranteed to succeed
if Ge is of full rank is referred to as maximum-likelihood decoding. For example,
Gaussian elimination is a maximum-likelihood decoding algorithm. In some cases,
sub-optimal decoding algorithms, which may fail even when Ge is of full rank, are
used since they can be made more computationally efficient. A class of ECCs of
particular interest is maximum distance separable (MDS) codes, which have the
property that the matrix Ge corresponding to any set of at most n − k erasures is
of full rank, i.e., Ge is always of full rank if the number of non-erased symbols is
at least k. Reed-Solomon codes are a well-known class of MDS codes. Another
class of ECCs of particular interest is fountain codes.

Fountain codes

Fountain codes (also known as rateless codes) are a class of linear ECCs, which,
unlike the codes discussed so far (that are referred to as block codes), do not have
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a pre-determined code length. Instead, a fountain code can be used to generate an
endless stream of coded symbols

x1, x2, . . .

from a message m, each of which is a linear combination of the elements of m,
i.e.,

xi = ⟨gi, m⟩
for some vector gi. The number of non-zero entries of gi is referred to as the degree
of the symbol, and is chosen at random according to a probability distribution
over the integers 1, . . . , k, which is referred to as the degree distribution of the
code. We denote the degree of the i-th symbol by di and the degree distribution
by Ω. Using a fountain code, each coded symbol is generated as follows:

1. Select the degree of the symbol (di) according to the degree distribution Ω.

2. Select di source symbols according to some process (e.g., uniformly at random
or in a round-robin fashion), which specify the location of the non-zero entries
of gi.

3. Populate the di non-zero entries of gi (e.g., by setting them to 1).

4. Compute xi = ⟨gi, m⟩.
This process can be repeated an indefinite number of times to generate a stream
of coded symbols, and can be terminated, e.g., when the recipient signals that
decoding has been successful. The recipient can attempt to decode at any time
by setting Ge equal to the concatenation of the vectors gi corresponding to each
received coded symbol1 and attempting to solve the resulting system of linear
equations for m. Fountain codes are non-MDS, i.e., the recipient must typically
collect k + δ coded symbols before decoding can succeed, for some small δ.

The first practical fountain code to be proposed was Luby Transform (LT)
codes [78]. In particular, LT codes combine a computationally efficient, but
suboptimal, decoding process known as peeling decoding with a degree distribution
(known as the Soliton distribution) designed specifically to ensure that the peeling
decoding process succeeds with high probability. LT codes have since largely been
superseded by Raptor codes [79], which improve upon LT codes by first encoding
the message with a high-rate block code (i.e., a code with a pre-determined number
of output symbols), and then generating the fountain code symbols from the coded
symbols generated by the block code.2 Raptor codes are designed specifically
for a particular decoding algorithm known as inactivation decoding [80],3 which
is an efficient maximum-likelihood decoding algorithm that primarily relies on
computationally efficient peeling decoding, but falls back on an optimal decoding
process when necessary. There are two standardized versions of Raptor codes

1To avoid needing to include the vectors gi with the message, the sender typically includes a random
seed with each coded symbol that allows the recipient to re-create gi locally.

2This is known as a concatenated code.
3As part of my work on this thesis, I have developed what I believe to be the fastest open-source

implementation of inactivation decoding; see github.com/severinson/FountainCodes.jl.
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Figure 4.1: Coded distributed matrix multiplication. The results returned from any two
workers are sufficient to decode the overall computation output.

that are known as Raptor10 [81] and RaptorQ [82] codes, respectively, both of
which are heavily optimized and are close to being MDS in terms of the level of
redundancy required. In particular, RaptorQ codes have a greater than 99.9999%
probability of decoding success when the number of received symbols is k + 2 or
greater.

4.3 Coded computing
Coded computing was proposed in 2015 as a method of making distributed
computations more resilient through the use of ECCs [83].4 The idea is to use
ECCs to add redundancy to the input of a distributed computation (thus increasing
the amount of work assigned to each worker), such that the final result can be
recovered from a subset of the intermediate results computed by a set of workers,
typically via a decoding operation—like how a message can be recovered even
when the data sent over the channel is partly erased. In particular, the authors
of [83] showed that coded computing can speed up distributed computations by
treating the results computed by straggling workers as erasures, thus obviating
the need to wait for the results computed by those workers.

Coded computing schemes are designed with specific computations in mind,
and the first scheme to be proposed (in [83]) was designed for matrix-vector
multiplication. A later work introduced gradient codes, which are designed to
recover sums (e.g., the gradient of a loss function with a finite-sum structure) [84].
In addition, many variants of and improvements to these schemes have been
proposed. For example, matrix-vector multiplication is considered in [85–89],
matrix-matrix multiplication in [90–97], polynomial evaluation in [98], and gradient
codes in [84,99–104]. Below, we give an overview of the matrix-vector multiplication
scheme of [83] and gradient codes of [84].

Coded matrix-vector multiplication
Coded matrix-vector multiplication is similar to ECCs for communication. We
illustrate the scheme with the following example, and, pictorially, in Fig. 4.1.

4The paper was first made available in 2015 and was published at a conference in 2016.
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Example 2 (Coded matrix-vector multiplication). Consider the problem of com-
puting the matrix-vector product

Mv

over a set of k = 3 worker nodes. To tolerate any worker not responding, split M
row-wise into 2 submatrices, i.e.,

M =
[
M1
M2

]
,

and define

X =

X1
X2
X3

 =

 M1
M2

M1 + M2

 .

Each worker is responsible for computing one of the matrix-vector products

X1v, X2v, and X3v.

Now, since
M1v = X3v − X2v and M2v = X3v − X1v,

M1v, M2v, and M3v, and hence Mv, can be recovered from the results received
from any 2 out of 3 workers.

In general, to compute the matrix-vector product Mv over a set of n straggling,
or otherwise unreliable, workers, such that we can tolerate up to n − k workers
not responding, we divide M row-wise into k equally-sized submatrices (possibly
after zero-padding M so that the number of rows is divisible by k), i.e.,

M =


M1

...
Mk

 .

Next, encode these submatrices to produce n encoded submatrices, i.e.,

M1, . . . , Mk −→ encoding −→ X1, . . . , Xn.

By treating each of M1, . . . , Mk as elements of a matrix field, we can express the
encoding process as 

X1
...

Xn

 = G


M1

...
Mk

 ,

where G is a generator matrix of size n × k. Similarly,
X1v

...
Xnv

 = G


M1v

...
Mkv

 . (4.3)

Hence, we can recover M1v, . . . , Mkv by solving the system of linear equa-
tions (4.3), even if some results are not received (i.e., the results are erased),
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Figure 4.2: Worker subtask latency distribution (a) and latency distribution of the
overall computation (b) when distributed over 27 workers. In the coded case, the input
matrix is split into 18 submatrices that are encoded using a (27, 18) MDS code, i.e., the
final computation output can be decoded from the results returned by any 18 servers.
Coding can reduce overall latency despite increasing the latency of each subtask, since
the coordinator does not need to wait for straggling workers.

if the matrix Ge composed of the rows of G corresponding to non-erased results
is of full rank—just like with linear ECCs used for communication. Coding can
thus be used for, e.g., the power method and to compute the gradient of linear
regression (which can be expressed as matrix-vector multiplication).

Note that coded matrix-vector multiplication works because the linear relation-
ships between the encoded submatrices introduced by the ECC propagate through
the computation, which is also linear.

In the following example, we show how coding can speed up distributed matrix-
vector multiplication.

Example 3 (Latency of coded and uncoded matrix-vector multiplication). In [83],
the time taken by each worker to perform its subtask is assumed to be a random
quantity that is distributed according to the shifted-exponential distribution, with
CDF

F (t) =
1 − e−( t

β −1) for t ≥ β

0 otherwise
,

where β is a parameter that affects the shift and tail of the distribution. The
shift (equal to β) is the minimum amount of time the subtask can be completed in,
whereas the tail accounts for transient disturbances, e.g., transmission and queuing
delays. The tail of the distribution is the cause of the straggler problem. Here,
we set β equal to the number of scalar operations (additions, multiplications, and
divisions) required to perform each subtask. Latency is assumed to be independent
and identically distributed (i.i.d.) between subtasks.

In Fig. 4.2, we plot the probability density function (PDF) of the latency
associated with computing the matrix-vector product Mv over 27 workers with and
without coding. The time axis is scaled by the value of β for the uncoded case. In
the coded case, the input matrix is split into 18 submatrices that are encoded using
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a (27, 18) MDS code, i.e., the final computation output can be decoded from the
results returned by any 18 servers. In the uncoded case, the input matrix is split
into 27 submatrices. Thus, each server has to do 27/18 times more work in the coded
case than in the uncoded case. Hence, coding increases subtask latency. However,
the expectation of the latency associated with the 18-th subtask to be completed
in the coded case is lower than that of the 27-th subtask to be completed in the
uncoded case.5 Coding has thus sped up the computation. Further, the variance of
the latency is significantly lower for the coded computation than for the uncoded.
Note that we are not accounting for time needed for decoding.

4.4 Gradient codes
Here, we give an overview of gradient codes, which differ from coded matrix-vector
multiplication in that, instead of recovering a set of elements, e.g., ∇f1, . . . , ∇fk,
we wish to recover their sum,

∇f =
k∑

i=1
∇fi.

We show how gradient codes work with the following example.
Example 4 (Gradient codes). Say that we wish to compute the gradient

∇f = ∇f1 + ∇f2 + ∇f3. (4.4)
Because computing each of ∇f1, ∇f2, ∇f3 may be computationally expensive, we
wish to distribute the work over n = 3 workers. In the uncoded case, the workers
would compute one of ∇f1, ∇f2, ∇f3 each, and we collect the results at a coordinator
responsible for computing their sum. With gradient codes, the three workers would
instead compute

1/2 · ∇f1 + ∇f2, ∇f2 − ∇f3, and 1/2 · ∇f1 + ∇f3,

respectively, i.e., each worker does twice as much work as in the uncoded case.
However, we can tolerate any 1 result being erased (e.g., because the worker assigned
to compute it is straggling), since

• if the 1st result is erased, ∇f = (∇f2 − ∇f3) + 2 (1/2 · ∇f1 + ∇f3),

• if the 2nd result is erased, ∇f = (1/2 · ∇f1 + ∇f2) + (1/2 · ∇f1 + ∇f3), and

• if the 3rd result is erased, ∇f = 2 (1/2 · ∇f1 + ∇f2) − (∇f2 − ∇f3).
In general, gradient codes are described by two matrices A ∈ Rr×n and

B ∈ Rn×k, where n is the number of workers, k is the number of partitions the data
is divided into, and r is the number of erasure patterns tolerated. In Example 4,

A =

0 1 2
1 0 1
2 −1 0

 and B =

1/2 1 0
0 1 −1

1/2 0 1

 . (4.5)

5The k-th smallest out of n random variables is known as the k-th order statistic of those random
variables. For i.i.d. exponential random variables, the k-th order statistic is a Gamma-distributed random
variable; see [105].
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Here, B describes what each worker sends to the coordinator. The rows of B
correspond to workers and the columns to data partitions, such that the first
row of B in (4.5) means that the first worker sends 1/2 · ∇f1 + ∇f2 and so on.
On the other hand, A describes how to recover the overall sum for a particular
erasure pattern. The columns of A correspond to workers and the rows to
erasure patterns, with zeros indicating erasures. For example, the first row of
A in (4.5) indicates that if the first result is erased, ∇f can be recovered by
computing the sum of the second result and the third result multiplied by 2 (i.e.,
∇f = (∇f2 − ∇f3) + 2 (1/2 · ∇f1 + ∇f3)). Hence, for any valid code construction
we require that

AB = 1r×k.

Two such constructions are proposed in [84] (which one to use depends on n, k,
and r). Further, the authors show that, to tolerate that any set of up to s results
are erased, each worker must be assigned at least s + 1 data partitions, i.e., each
worker must be assigned s + 1 times more work compared to the uncoded setting.

4.5 Variance-reduced stochastic optimization
Recall that the learning problems we considered in Chapter 3 (as well as many
other problems) can be expressed as a so-called finite-sum optimization problem
of the form

v∗ = arg min
v

F (v) ≜ R(v) + 1
n

n∑
i=1

fi(v)
 ,

and can be solved using first-order iterative optimization methods, for which the
computationally expensive step is to compute the gradients

∇f1, . . . , ∇fn.

One such method is SGD, which performs updates of the form

v(t+1) = v(t) − η∇F̂ (v(t)),

based on an estimate of the gradient

∇F̂ (v) = ∇R(v) + |I|
n

∑
i∈I

∇fi(v),

where I is a randomly selected subset of {1, . . . , n}. Hence, SGD is naturally
straggler-resilient—simply let I be the indices of the results received from the first
workers to respond, and preempt or discard any remaining results. However, there
are two issues with this approach, which is known as ignoring-stragglers SGD.
First, even at the optimum, the gradient used to update the iterate is noisy, i.e.,

∇F̂ (v∗) ̸= ∇F (v∗).

As a result, the method does not converge to the optimum—there is an error
floor. Second, if a particular set of workers are straggling over several subsequent
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iterations (stragglers tend to remain stragglers), data stored by those workers may
never factor into the learning process. This problem is especially severe if the
data stored by each worker is not representative of the full dataset, which could
be the case, e.g., in a federated learning setting, since data generated by one user
is generally not representative of all users.6 This issue can lead to both a lower
rate of convergence and worse performance of the final model. Coded computing
was introduced as a way to make distributed computations resilient to stragglers
without reducing the quality of the computed result.

However, there are stochastic optimization methods, known as variance-reduced
methods, for which

∇F̂
(
v(t)

)
−→ ∇F (v∗) as t → ∞,

i.e., the gradient estimate tends to the gradient at the optimum as the method
progresses—the variance of ∇F̂ is reduced. Informally, the method simultaneously
learns the gradient at the optimum and the iterate that minimizes the loss function.
As a result, despite relying on a stochastic estimate of the gradient of F , these
methods converge to the optimum. The simplest example of a variance-reduced
method is SGD with gradually decreasing step size, which can be shown to converge
to the optimum [107]. However, a smaller stepsize reduces the rate of convergence,
and it is difficult to determine the correct rate at which to reduce the stepsize.
Hence, we are interested in variance-reduced methods that can be used with a
constant step size, and thus achieve a higher rate of convergence. Methods with
this property rely on information contained in previous iterates and/or gradients.
Examples include SAG [108], SAGA [109] (including a peer-to-peer version [110]),
SARAH [111], SVRG [112], SEGA [113], and MARINA [114]. We compare the
rate of convergence of SAG, SGD, and GD for a logistic regression problem
in Fig. 4.3. Despite being stochastic, SAG, like GD, but unlike SGD, converges to
the optimum. For the remainder of this section, we will briefly describe a family
of variance-reduced methods, of which SAG and SAGA are special cases.

Gradient estimation
Consider the problem of estimating the sum

∇f
(
v(t)

)
≜ 1

n

n∑
i=1

∇fi

(
v(t)

)
under the constraint of only being allowed to compute one of the terms

∇f1
(
v(t)

)
, . . . , ∇fn

(
v(t)

)
at a time. Further, after computing any of these, the iterate is updated, which
causes the gradients to change in some unknown way, i.e., ∇fi

(
v(t+1)

)
̸= ∇fi

(
v(t)

)
in general. The estimate used by SGD is

∇f̂
(t)

SGD = ∇fi

(
v(t)

)
.

6As a trivial example, consider learning over the MNIST dataset [106], which consists of handwritten
digits 1 to 10, and assigning all samples corresponding to a particular digit to a straggling worker—with
ignoring-stragglers SGD, samples of that digit may never factor into the learning process.
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Figure 4.3: The rate of convergence of SAG, which is variance-reduced, SGD, and GD, all
with constant step size, for a particular logistic regression problem. On the vertical axis,
we plot the suboptimality gap, i.e., the difference in loss between that of the computed
iterate and the optimum. For SAG and SGD, we process 10% of the dataset in each
iteration. Performing many fast, but inexact iterations, as with SAG and SGD, speeds
up initial convergence. However, for SGD, there is an irreducible error due to relying on
an estimate of the gradient. SAG, despite being stochastic, converges to the optimum
because the variance of its gradient estimate tends to zero. For more details about the
problem, see Paper III; the results shown here are those for logistic regression on AWS
with w = 100 presented there.

Note that, if i is chosen uniformly at random from {1, . . . , n},

E
[
∇f̂

(t)
SGD

]
= ∇f

(
v(t)

)
and Var

(
∇f̂

(t)
SGD

)
= Var

(
∇f(v(t))

)
,

where the expectation if taken with respect to the choice of i, i.e., it is an unbiased
estimate. However, estimate accuracy does not improve with the number of
iterations. SAG [108] and SAGA [109] improve on this estimate by relying on
gradients computed in previous iterations. Define7

∇f̂ (t)
α ≜ α

[
∇fi(t)

(
v(t)

)
− z

(t−1)
i(t)

]
+ 1

n

n∑
j=1

z
(t−1)
j ,

where α is a scalar parameter, i(t) is the index of the term computed in the t-th
iteration, and z

(t)
1 , . . . , z(t)

n is a table of previously computed gradients, recursively
obtained as

z
(t)
j =

∇fi(t)

(
v(t)

)
if j = i(t)

z
(t−1)
j otherwise

.

7This explanation is due to [109].
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Hence, ∇f̂ (t)
α is an estimate of ∇f(v(t)) that relies on gradients computed in

previous iterations to improve accuracy. There are several strategies for initializing
the table entries z

(0)
1 , . . . , z(0)

n , e.g., z
(0)
i = 0 or z

(0)
i = ∇fi

(
v(0)

)
[108,109].

The expectation and variance of ∇f̂ (t)
α are

E
[
∇f̂ (t)

α

]
= αE

[
∇f

(
v(t)

)]
+ (1 − α)E

1
n

n∑
j=1

z
(t−1)
j


and

Var
(
∇f̂ (t)

α

)
= α2

Var
(
∇f

(
v(t)

))
+ Var

1
n

n∑
j=1

z
(t−1)
j


−2Cov

∇f
(
v(t)

)
,

1
n

n∑
j=1

z
(t−1)
j

 ,

respectively. Hence, the variance is reduced compared to if the covariance between
∇f̂

(t)
SGD and the average of the table entries is large enough—this is true if the

step size is small enough, since in that case the gradients do not change too
much between iterations. Further, note that by choosing α = 1 the estimate is
unbiased. In fact, the SAGA optimization method [109] uses exactly this estimate,
i.e., ∇f̂

(t)
SAGA = ∇f̂

(t)
1 . However, by choosing a smaller α, we can further reduce

the variance of the estimate at the expense of it becoming biased. Indeed, SAG
uses α = 1/n, i.e., ∇f̂

(t)
SAG = ∇f̂

(t)
1/n

—in this case the estimate is equal to the sum of
the table entries.

We have considered three different estimators (SGD, SAG, SAGA). When used
with gradient descent, the iterate update becomes

(SGD) v(t+1) = v(t) − η∇fi(t)

(
v(t)

)
,

(SAG) v(t+1) = v(t) − η

∇fi(t)

(
v(t)

)
− z

(t)
i(t)

n
+ 1

n

n∑
j=1

z
(t−1)
j

 ,

(SAGA) v(t+1) = v(t) − η

∇fi(t)

(
v(t)

)
− z

(t)
it + 1

n

n∑
j=1

z
(t−1)
j

 ,

where we have omitted the table update. Note that the SAGA estimate is unbiased
because it places more weight on the most recently sampled entry, relative to the
table entries, compared to SAG.
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Overview

In this chapter, we give an overview of the papers that make up Part 2 of this thesis.

Block-diagonal and LT codes for distributed computing with straggling
servers (Paper I)

In Paper I, we consider the problem of multiplying a matrix by a set of vectors. In
particular, we propose two schemes that use codes to reduce both computation time
and the amount of data that needs to be communicated, when the computation
is carried out in a distributed manner over a set of (straggling) servers. These
schemes are based on a previous scheme, proposed in [86], which uses MDS codes
to achieve these goals. The problem with the approach of [86], which we address
in Paper I, is that the encoding and decoding complexity of long MDS codes (i.e.,
MDS codes with a large number of source and coded symbols) may be prohibitively
high. Hence, in the performance results of [86], the time needed for encoding and
decoding is not accounted for, despite encoding and decoding being crucial for the
scheme to work.

In Paper I, we show that in many scenarios the scheme of [86] results in in-
creased overall latency compared to uncoded multiplication when the time needed
for encoding and decoding is accounted for. We address this problem by showing
how MDS codes can be replaced by LT codes, which is a type of computationally
efficient rateless codes, and a special code construction that we propose, referred
to as block-diagonal codes (BDCs). These codes are non-MDS, i.e., decoding
typically requires access to more coded symbols than for an MDS code, which
could mean that a larger number of servers must complete their computations
before decoding can succeed. However, for BDCs, we show that encoding and
decoding complexity can be reduced significantly without increasing the number
of servers required. Both schemes of Paper I result in significantly lower latency
compared to the scheme of [86], and outperform uncoded multiplication in many
cases. To the best of our knowledge, the schemes proposed in Paper I are still
among the state-of-the-art for coded matrix-vector multiplication.

A droplet approach based on Raptor codes for distributed computing
with straggling servers (Paper II)

One of the principal inefficiencies of coded computing schemes (with a few excep-
tions) is that they are all-or-nothing, in the sense that either all values computed
by a server are utilized, or none are—a server that has completed almost all of
its computation contributes no more than a server that has completed none of it.
This is a consequence of the decoding stage, which operates over symbols, and
of considering the output of a server as a single symbol. In Paper II, we address
this limitation by assigning many small computations to each server, the results
of which are streamed back to a coordinator (hence, it is a droplet approach)
responsible for decoding once enough information has been collected. As in Paper
I, we consider matrix-vector multiplication. Further, we utilize Raptor codes,
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a state-of-the-art rateless code design, which can reduce the overhead required
(measured in the number of results collected by the coordinator) before decoding
can succeed and improve decoding complexity compared to the schemes in Paper
I. Compared to previous schemes in the literature, the scheme proposed in Paper
II achieves lower computational delay when the decoding time is taken into account.

DSAG: A mixed synchronous-asynchronous iterative method for straggler-
resilient learning (Paper III)

In Papers I and II, we consider matrix-vector multiplication, since it is an important
component of many applications, including for many learning problems. In Paper
III, we consider learning directly and propose a straggler-resilient first-order
optimization method, which is based on asynchronicity and variance-reduction.
One of the main advantages of coded computing methods over ignoring-stragglers
SGD—which is naturally resilient against stragglers—is that coded computing
can achieve straggler-resiliency without any loss in quality, i.e., coded computing
methods typically arrive at the same result as a method based on waiting for all
servers to complete their computations. Ignoring-stragglers SGD, on the other
hand, only produces an approximate result. However, in Paper III, we show that
by combining asynchronicity with variance-reduction, it is possible to get the best
of both worlds. In particular, we propose a scheme, which we refer to as DSAG,
that is naturally resilient against stragglers and that can produce the same result
as a synchronous method that waits for all servers to finish their computations, i.e.,
there is no loss in quality. In addition, DSAG requires no encoding and decoding,
instead relying on the redundancy that already exists naturally in large datasets,
and on the correlation between gradients computed in subsequent iterations, to
compensate for missing results.

The design of DSAG is motivated by behavior observed in cloud computing
systems. In particular, we collect latency traces on AWS, Azure, and a local
cluster and find that a given worker typically straggles over extended periods of
time. This behavior differs from what is often considered in the coded computing
literature, where latency is typically modeled as random variables that are iden-
tically distributed between workers. We implement DSAG, and we validate its
performance by running experiments on clusters composed of up to 100 servers on
AWS, Microsoft Azure, and a local cluster. For the scenarios we consider, DSAG
is much faster than coded computing and GD, while converging to the same result.
We make available the source code and the latency traces we have collected.

Coded distributed tracking (Paper IV)

For Papers I through III, we were primarily interested in learning problems. For
the two final papers, Paper IV and Paper V, we consider a different problem:
tracking the state of a process that evolves over time in a distributed setting,
with multiple observers each observing parts of the state. This is a fundamental
information processing problem with a wide range of applications, and in Paper
IV we propose a cloud-assisted scheme where the tracking is performed over the
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cloud. In particular, to provide timely and accurate updates, and alleviate the
straggler problem, we propose a coded distributed computing approach where
coded observations are distributed over multiple workers. The proposed scheme
is based on a coded version of the Kalman filter that operates on data encoded
with an ECC, such that the state can be estimated from partial updates computed
by a subset of the workers. We apply the proposed scheme to the problem of
tracking multiple vehicles, which is required for, e.g., autonomous driving and
collision avoidance systems. We show that replication achieves significantly higher
accuracy than the corresponding uncoded scheme. The use of MDS codes further
improves accuracy for larger update intervals. In both cases, the proposed scheme
approaches the accuracy of an ideal centralized scheme when the update interval
is large enough.

Improving age-of-information in distributed vehicle tracking (Paper V)

In Paper V, which is the final paper of the thesis, we consider a particular aspect
of the vehicle tracking problem considered in Paper IV: the age-of-information
(AoI) of estimate updates. Here, AoI is the time that has passed since the sensor
readings that were used to produce the most recent state estimate were taken.
Maintaining low AoI is crucial for tracking applications. For example, relying on
stale information could result in accidents in a vehicle collision avoidance system.
In particular, we derive the AoI of estimate updates and show that replication
significantly improves the AoI. Further, we derive the probability that the error of
the position estimate exceeds some threshold for a given AoI.
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6.1 Conclusions
Based on our current trajectory, it seems distributed systems will only increase in
prevalence, and that, over the coming years, an increasing number of applications
will be distributed. Distributed systems are fundamentally different from their
centralized counterparts, and many of the (simplifying) assumptions that can be
made in designing applications for centralized systems are not valid for distributed
systems. In particular, distributed systems are never entirely homogeneous, and
are susceptible to many novel partial failure scenarios (e.g., the temporary outage
of a subset of the nodes that make up the system). This property of distributed
systems is the cause of the straggler problem. In contrast, centralized systems are
much more homogeneous and typically fail completely when they do fail.

There are two possible approaches for designing reliable and low-latency dis-
tributed applications:

1. Designing abstractions that attempt to hide the complexity of the underlying
system, such that applications relying on those abstractions can be written
under the assumption that no partial failures occur.

2. Designing methods that are inherently tolerant towards partial failures. These
methods are to some extent stochastic.

Coded computing (with the exception of approximate coded computing methods),
as considered in Papers I and II, is an example of the first approach. This approach
significantly simplifies application development. Stochastic optimization methods,
including the scheme proposed in Paper III, is an example of the second approach.
This approach can result in more performant applications (the scheme of Paper III
is much faster than any coded computing method), at the expense of making
application development more challenging. The schemes of Papers IV and V can be
implemented in either an exact or stochastic manner, i.e., they can be considered
examples of either approach.

If the first approach results in a sufficiently performant application (e.g., using
coded computing methods for reliable distributed matrix multiplication), it is
unnecessary to attempt the second approach, since it may result in a much
more complex application. However, in using the first approach, it is important
to account for the overhead imposed by the abstraction layer when evaluating
application performance. In the case of coded computing methods, this means
accounting for the time needed for encoding and decoding, which, paradoxically,
is often both significant and ignored in the coded computing literature. In this
thesis, we have attempted to rectify this omission. In particular, in Papers I and
II, we account for encoding and decoding delay, and proposed coded computing
schemes with low encoding and decoding overhead, which can lead to significant
performance improvements:

• Paper I: A reduction in computational delay by about a factor 20 (with about
a 1% increase in the amount of communication needed) compared to the
previous coded computing scheme that the work is based on, for a particular
matrix multiplication problem.
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• Paper II: An overall delay that is less than half that of the most closely
related previous scheme when the number of server is large (on the order
of 200). The advantage is smaller than for Paper I since, in Paper II, we
consider a matrix multiplication problem for which encoding and decoding
accounts for a smaller portion of the overall complexity.

However, the first approach is problematic for two reasons. First, for any
particular application, the abstraction layer may take away too much or too little
of the complexity of the underlying system. Second, any abstraction invariably
leaks, i.e., the complexity of the underlying system will shine through for some
failure scenario, and the application will misbehave unless designed with that failure
scenario in mind.1 Hence, even when using the first approach, we cannot completely
disregard the complexity of the underlying system. Instead, to achieve the highest
reliability and performance possible, applications should be designed to do the
best they can with the resources available at each point in time. Such applications
are necessarily stochastic,2 but can be very performant. For example, the scheme
proposed in Paper III is more than twice as fast as any coded computing method
and up to about 50% faster than the most closely related stochastic optimization
method for a particular learning problem. The schemes of Papers IV and V
lie between the two approaches, in the sense that they achieve performance (as
measured by tracking accuracy) close to that of an ideal centralized system up to
a point, after which additional failures result in significantly reduced performance.

6.2 Future work
Large-scale distributed systems have only recently become commonplace, and,
hence, much work remains in this area and on related topics (see Section 1.3).
Here, we give a few ideas.

Joint distributed storage and compute schemes
In WSCs, data is typically stored in a distributed manner and is either replicated
or encoded to protect against node or hard drive failures. If data is encoded, it is
done so at the byte level, i.e., the linear combination of two pieces of data is the
linear combination of the sequences of bytes that make up those pieces, regardless
of what those bytes represent. As a result, the first step of coded computing
schemes is to read (and decode, if encoded) the data needed for the computation
and then encode it in a data-aware manner. For example, if the data being stored
consists of 64-bit floating point numbers, the linear combination of two pieces of
data is the linear combination of those 64-bit floating point numbers. This is a
time-consuming process that may require moving data across the network. Hence,
we suggest researching joint storage and compute schemes, for which data-aware
codes are used for reliable storage, such that coded computing can be performed

1See https://joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/ for more on
the topic.

2To see why, consider a distributed system that produces an exact answer if no error occurs and “?”
otherwise. This system is stochastic, since both outcomes occur with some probability.
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directly on the data stored on disk, without needing to re-encode it. It may even
be possible to store the coded output directly, without needing to immediately
decode it.

Distributed coordination
For both of the two approaches explained in the previous section, most proposed
schemes are based around the idea of a single coordinator node responsible for
aggregation, which has to always be available. Hence, the coordinator is a single
point of failure. Further, as systems grow, the speed at which the coordinator
is able to process results computed by the workers will at some point become
the limiting factor. For these reasons, it becomes important to develop ways
of distributing the work of the coordinator node (we do this to an extent in
Papers IV and V). For coded computing, this involves distributing the work of
decoding, and, likely, the design of new codes. For distributed learning, it involves
designing methods of exchanging information between coordinator nodes that may
have received different sequences of results from the workers. Such distributed
coordination schemes sit somewhere between schemes with a central coordinator
and peer-to-peer systems, where all nodes are tasked with producing an end result.

Coded computing and sketch-and-project
Another exciting topic is sketch-and-project methods, i.e., methods for approxi-
mating a quantity from one or more rank-deficit sketches, and their relationship
with linear codes. For example, a sketch of a vector is the product of a rank-deficit
sketching matrix and the vector. The sketch can be used to improve an estimate by
projecting the current estimate onto the set of vectors consistent with the sketch.3

In particular, for encoding, each coded symbol can be considered a sketch, and
projection reduces to decoding (i.e., solving a system of linear equations) if the
sketches combined have full rank. Hence, sketch-and-project gives an answer for
how a system should behave if decoding fails, thus making it possible for coded
computing methods to give an approximate result.

Applications and understanding of stochastic optimization
Many promising stochastic optimization methods have been proposed in the
mathematical optimization literature recently (e.g., [114]) that could potentially
be used as the basis for straggler-resilient distributed computing schemes (as we
did in Paper III). However, much work remains on designing, implementing, and
understanding those schemes. Especially since, in designing these schemes, we will
need to understand how these stochastic methods behave under a wide range of
partial failure scenarios.

The principal challenge of stochastic methods may be in understanding their
performance characteristics and how to tune them for a particular scenario. For
example, it is often not clear what guarantees they offer, and the analysis that

3The Kalman filter can be interpreted as projection.
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does exist is often overly pessimistic, in the sense that actual performance (as
measured, e.g., in convergence rate for a learning problem) may be much higher
than the analysis would indicate. Developing a more precise understanding will be
important for applications where we require some guarantee on the accuracy of
the computed result.



Conclusions
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Abstract

We propose two coded schemes for the distributed computing problem of multiplying a matrix by a set of
vectors. The first scheme is based on partitioning the matrix into submatrices and applying maximum distance
separable (MDS) codes to each submatrix. For this scheme, we prove that up to a given number of partitions
the communication load and the computational delay (not including the encoding and decoding delay) are
identical to those of the scheme recently proposed by Li et al., based on a single, long MDS code. However,
due to the use of shorter MDS codes, our scheme yields a significantly lower overall computational delay
when the delay incurred by encoding and decoding is also considered. We further propose a second coded
scheme based on Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes may reduce
the delay over the partitioned scheme at the expense of an increased communication load. We also consider
distributed computing under a deadline and show numerically that the proposed schemes outperform other
schemes in the literature, with the LT code-based scheme yielding the best performance for the scenarios
considered.

✦

1 INTRODUCTION

D ISTRIBUTED computing systems have emerged as one of the most effective ways of solving increasingly
complex computational problems, such as those in large-scale machine learning and data analytics

[1], [2], [3]. These systems, referred to as “warehouse-scale computers” (WSCs) [1], may be composed of
thousands of relatively homogeneous hardware and software components. Achieving high availability and
efficiency for applications running on WSCs is a major challenge. One of the main reasons is the large number
of components that may experience transient or permanent failures [3]. As a result, several distributed
computing frameworks have been proposed [4], [5], [6]. In particular, MapReduce [4] has gained significant
attention as a means of effectively utilizing large computing clusters. For example, Google routinely performs
computations over several thousands of servers using MapReduce [4]. Among the challenges brought on by
distributed computing systems, the problems of straggling servers and bandwidth scarcity have recently
received significant attention. The straggler problem is a synchronization problem characterized by the
fact that a distributed computing task must wait for the slowest server to complete its computation, which
may cause large delays [4]. On the other hand, distributed computing tasks typically require that data
is moved between servers during the computation, the so-called data shuffling, which is a challenge in
bandwidth-constrained networks.

Coding for distributed computing to reduce the computational delay and the communication load between
servers has recently been considered in [7], [8]. In [7], a structure of repeated computation tasks across servers
was proposed, enabling coded multicast opportunities that significantly reduce the required bandwidth
to shuffle the results. In [8], the authors showed that maximum distance separable (MDS) codes can be
applied to a linear computation task (e.g., multiplying a vector with a matrix) to alleviate the effects of
straggling servers and reduce the computational delay. In [9], a unified coding framework was presented and
a fundamental tradeoff between computational delay and communication load was identified. The ideas of
[7], [8] can be seen as particular instances of the framework in [9], corresponding to the minimization of the
communication load and the computational delay, respectively. The code proposed in [9] is an MDS code of
code length proportional to the number of rows of the matrix to be multiplied, which may be very large in
practice. For example, Google performs matrix-vector multiplications with matrices of dimension of the order
of 1010 × 1010 when ranking the importance of websites [10]. In [7], [8], [9], the computational delay incurred
by the encoding and decoding is not considered. However, the encoding and decoding may incur a high
computational delay for large matrices.

Coding has previously been applied to several related problems in distributed computing. For example,
the scheme in [8] has been extended to distributed matrix-matrix multiplication where both matrices are
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too large to be stored at one server [11], [12]. Whereas the schemes in [8], [11] are based on MDS codes, the
scheme in [12] is based on a novel coding scheme that exploits the algebraic properties of matrix-matrix
multiplication over a finite field to reduce the computational delay. In [13], it was shown that introducing
sparsity in a structured manner during encoding can speed up computing dot products between long vectors.
Distributed computing over heterogeneous clusters has been considered in [14].

In this paper, we propose two coding schemes for the problem of multiplying a matrix by a set of vectors.
The first is a block-diagonal coding (BDC) scheme equivalent to partitioning the matrix and applying smaller
MDS codes to each submatrix separately (we originally introduced the BDC scheme in [15]). The storage
design for the BDC scheme can be cast as an integer optimization problem, whose computation scales
exponentially with the problem size. We propose a heuristic solver for efficiently solving the optimization
problem, and a branch-and-bound approach for improving on the resulting solution iteratively. Furthermore,
we prove that up to a certain level of partitioning the BDC scheme has identical computational delay (as
defined in [9]) and communication load to those of the scheme in [9]. Interestingly, when the delay incurred
by encoding and decoding is taken into account, the proposed scheme achieves an overall computational
delay significantly lower than that of the scheme in [9]. We further propose a second coding scheme based
on Luby Transform (LT) codes [16] under inactivation decoding [17], which in some scenarios achieves a
lower computational delay than that of the BDC scheme at the expense of a higher communication load. We
show that for the LT code-based scheme it is possible to trade an increase in communication load for a lower
computational delay. We finally consider distributed computing under a deadline, where we are interested in
completing a computation within some computational delay, and show numerically that both the BDC and
the LT code-based schemes significantly increase the probability of meeting a deadline over the scheme in
[9]. In particular, the LT code-based scheme achieves the highest probability of meeting a deadline for the
scenarios considered.

2 SYSTEM MODEL AND PRELIMINARIES

We consider the distributed matrix multiplication problem, i.e., the problem of multiplying a set of vectors
with a matrix. In particular, given an m× n matrix A ∈ Fm×n

2l
and N vectors x1, . . . ,xN ∈ Fn2l , where F2l is

an extension field of characteristic 2, we want to compute the N vectors y1 = Ax1, . . . ,yN = AxN . The
computation is performed in a distributed fashion using K servers, S1, . . . , SK . Each server is responsible for
multiplying ηm matrix rows by the vectors x1, . . . ,xN , for some 1

K ≤ η ≤ 1. We refer to η as the fraction of
rows stored at each server and we assume that η is selected such that ηm is an integer. Prior to computing
y1, . . . ,yN , A is encoded by an r ×m encoding matrix Ψ = [Ψi,j ], resulting in the coded matrix C = ΨA,
of size r × n, i.e., the rows of A are encoded using an (r,m) linear code with r ≥ m. This encoding is carried
out in a distributed manner over the K servers and is used to alleviate the straggler problem. We allow
assigning each row of the coded matrix C to several servers to enable coded multicasting, a strategy used to
address the bandwidth scarcity problem. Let

q = K
m

r
,

where we assume that r divides Km and hence q is an integer. The r coded rows of C, c1, . . . , cr, are
divided into

(K
ηq

)
disjoint batches, each containing r/

(K
ηq

)
coded rows. Each batch is assigned to ηq servers.

Correspondingly, a batch B is labeled by a unique set T ⊂ {S1, . . . , SK}, of size |T | = ηq, denoting the
subset of servers that store that batch. We write BT to denote the batch stored at the unique set of servers T .
Server Sk, k = 1, . . . ,K , stores the coded rows of BT if and only if Sk ∈ T .

2.1 Probabilistic Runtime Model
We assume that running a computation on a single server takes a random amount of time, which is denoted
by the random variable H , according to the shifted-exponential cumulative probability distribution function
(CDF)

FH(h;σ) =

{
1− e−(

h
σ−1), for h ≥ σ

0, otherwise
,

where σ is a parameter used to scale the distribution. Denote by σA and σM the number of time units required
to complete one addition and one multiplication (over F2l ), respectively, over a single server. Let σ be the
weighted sum of the number of additions and multiplications required to complete the computation, where
the weighting coefficients are σA and σM, respectively. As in [18], we assume that σA is in O( l

64 ) and σM in
O(l log2 l). Furthermore, we assume that the hidden coefficients are comparable and will thus not consider
them. With some abuse of language, we refer to the parameter σ associated with some computation as
its computational complexity. For example, the complexity (number of time units) of computing the inner
product of two length-n vectors is σ = (n − 1)σA + nσM as it requires performing n − 1 additions and
n multiplications. The shift of the shifted-exponential distribution should be interpreted as the minimum
amount of time the computation can be completed in. The tail of the distribution accounts for transient
disturbances that are at the root of the straggler problem. These include transmission and queuing delays
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during initialization as well as contention for the local disk and slow-downs due to higher priority tasks
being assigned to the same server [19]. The complexity of a computation σ affects both the shift and the tail
of the distribution since the probability of transient behavior occurring increases with the amount of time the
computation is running. In the results section we also consider a model where σ only affects the shift. The
shifted-exponential distribution was proposed as a model for the latency of file queries from cloud storage
systems in [20] and was subsequently used to model computational delay in [8], [9].

When an algorithm is split into K parallel subtasks that are run across K servers, we denote the runtime
of the subtask running on server Sk by Hk. As in [8], we assume that H1, . . . ,HK are independent and
identically distributed random variables with CDF FH(Kh;σ). For i = 1, . . . ,K , we denote the i-th order
statistic by H(i), i.e., the i-th smallest random variable of H1, . . . ,HK . The runtime of the i-th fastest server to
complete its subtask is thus given by H(i), which is a Gamma distributed random variable with expectation
and variance given by [21]

µ(σ,K, g) ≜ E
(
H(i)

)
= σ


1 +

K∑

j=K−i+1

1

j


 , Var

(
H(i)

)
= σ2

K∑

j=K−i+1

1

j2
.

We parameterize the Gamma distribution by its inverse scale factor a and its shape parameter b. We give
these in terms of the distribution mean and variance as [22]

a =
E[H(i)]− σ

Var[H(i)]
and b =

(
E[H(i)]− σ

)2

Var[H(i)]
.

Denote by FH(i)
(h(i);σ,K) the CDF of H(i). It is given by [22]

FH(i)
(h(i);σ,K) =

{
γ(b,a(h(i)−σ))

Γ(b) , for h(i) ≥ σ

0, otherwise
,

where Γ denotes the Gamma function and γ the lower incomplete Gamma function,

Γ(b) =

∫ ∞

0
xb−1e−x dx and γ(b, ah) =

∫ ah

0
xb−1e−x dx.

We remark that FH(i)
(h(i);σ,K) is the probability of a computation finishing prior to some deadline t = h(i).

2.2 Distributed Computing Model
We consider the coded computing framework introduced in [9], which extends the MapReduce framework [4].
The overall computation proceeds in three phases, the map, shuffle, and reduce phases, which are augmented
to make use of the coded multicasting strategy proposed in [7] to address the bandwidth scarcity problem
and the coded scheme proposed in [8] to alleviate the straggler problem. Furthermore, we consider the delay
incurred by the encoding of A that takes place before the start of the map phase. We refer to this as the
encoding phase. Also, we assume that the matrices A and Ψ as well as the input vectors x1, . . . ,xN are
known to all servers at the start of the computation. The overall computation proceeds in the following
manner.

2.2.1 Encoding Phase
In the encoding phase, the coded matrix C is computed from A and Ψ in a distributed fashion. Specifically,
denote by R(S) the set of indices of rows of C that are assigned to server S and denote by Ψ(S) the matrix
consisting of the rows of Ψ with indices from R(S). Then, server S computes the coded rows it needs by
multiplying Ψ(S) by A. Note that since we assign each coded row to ηq servers, each row of C is computed
separately by ηq servers. We define the computational delay of the encoding phase as its average runtime per
source row and vector y, i.e.,

Dencode =
ηq

mN
µ
(σencode

K
,K,K

)
,

where σencode is the complexity of the encoding. During the encoding process, the rows of Ψ are multiplied
by the columns of A. Therefore, the complexity scales with the product of the number of nonzero elements of
Ψ and the number of columns of A. Specifically,

σencode = |{(i, j) : Ψi,j ̸= 0}|n (σA + σM)− nσA.

Alternatively, we computeC by performing a decoding operation onA. In this case σencode is the decoding
complexity (see Section 4.2). Furthermore, since the decoding algorithms are designed to decode the entire
codeword, each server has to compute all rows of C. Using this strategy the encoding delay is

Dencode =
K

mN
µ
(σencode

K
,K,K

)
.

For each case we choose the strategy that minimizes the delay.
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1:st 2:nd
. . .

q:th . . .
g:th Incomplete . . . Incomplete

(K − g) incomplete subtasksQ G

Subtask completion order

Fig. 1: Servers (yellow boxes) finish their respective subtasks in random order.

2.2.2 Map Phase
In the map phase, we compute in a distributed fashion coded intermediate values, which will be later used to
obtain vectors y1, . . . ,yN . Server S multiplies the input vectors xj , j = 1, . . . , N , by all the coded rows of
matrix C it stores, i.e., it computes

Z(S)
j = {cxj : c ∈ {BT : S ∈ T }}, j = 1, . . . , N.

The map phase terminates when a set of servers G ⊆ {S1, . . . , SK} that collectively store enough values
to decode the output vectors have finished their map computations. We denote the cardinality of G by g. The
(r,m) linear code proposed in [9] is an MDS code for which y1, . . . ,yN can be obtained from any subset of q
servers, i.e., g = q. We illustrate the completion of subtasks in Fig. 1.

We define the computational delay of the map phase as its average runtime per source row and vector y,
i.e.,

Dmap =
1

mN
µ
(σmap

K
,K, g

)
,

where σmap = KηmN ((n− 1)σA + nσM), as all K servers compute ηm inner products, each requiring n− 1
additions and n multiplications, for each of the N input vectors. In [9], Dmap is referred to simply as the
computational delay.

After the map phase, the computation of y1, . . . ,yN proceeds using only the servers in G. We denote by
Q ⊆ G the set of the first q servers to complete the map phase. Each of the q servers in Q is responsible to
compute N/q of the vectors y1, . . . ,yN . LetWS be the set containing the indices of the vectors y1, . . . ,yN
that server S ∈ Q is responsible for. The remaining servers in G assist the servers in Q in the shuffle phase.

2.2.3 Shuffle Phase
In the shuffle phase, intermediate values calculated in the map phase are exchanged between servers in G
until all servers in Q hold enough values to compute the vectors they are responsible for. As in [9], we allow
creating and multicasting coded messages that are simultaneously useful for multiple servers. Furthermore,
as in [8], we denote by ϕ(j) the ratio between the communication load of unicasting the same message to
each of j recipients and multicasting that message to j recipients. For example, if the communication load of
multicasting a message to j recipients and unicasting a message to a single recipient is the same, we have
ϕ(j) = j. On the other hand, if the communication load of multicasting a message to j recipients is equal to
that of unicasting that same message to each recipient, ϕ(j) = 1. The total communication load of a multicast
message is then given by j

ϕ(j) . The shuffle phase proceeds in three steps as follows.
1) Coded messages composed of several intermediate values are multicasted among the servers in Q.
2) Intermediate values are unicasted among the servers in Q.
3) Any intermediate values still missing from servers in Q are unicasted from the remaining servers in G,

i.e., from the servers in G \ Q.
For a subset of servers S ⊂ Q and S ∈ Q \ S , we denote the set of intermediate values needed by server

S and known exclusively by the servers in S by V(S)
S . More formally,

V(S)
S ≜ {cxj : j ∈ WS and c ∈ {BT : T ∩ Q = S}}.

We transmit coded multicasts only between the servers in Q, and each coded message is simultaneously
sent to multiple servers. We denote by

sq ≜ inf


s :

ηq∑

j=s

αj ≤ 1− η


 , αj ≜

(q−1
j

)(K−q
ηq−j

)

q
K

(K
ηq

) , (1)

the smallest number of recipients of a coded message [9]. We remark that mαj is the total number of coded
values delivered to each server via the coded multicast messages with exactly j recipients. More specifically,
for each j ∈ {ηq, ηq − 1, . . . , sq}, and every subset S ⊆ Q of size j + 1, the shuffle phase proceeds as follows.

1) For each S ∈ S , we evenly and arbitrarily split V(S)
S\S into j disjoint segments, V(S)

S\S = {V(S)

S\S,S̃ : S̃ ∈
S \ S}, and associate the segment V(S)

S\S,S̃ to server S̃.

2) Server S̃ ∈ S multicasts the bit-wise modulo-2 sum of all the segments associated to it in S . More
precisely, it multicasts ⊕S∈S\S̃ V

(S)

S\S,S̃ to the other servers in S \ S̃, where ⊕ denotes the modulo-2 sum
operator.
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By construction, exactly one value that each coded message is composed of is unknown to each recipient.
The other values have been computed locally by the recipient. More precisely, for every pair of servers
S, S̃ ∈ S , since server S has computed locally the segments V(S′)

S\S′,S̃
for all S′ ∈ S \ {S̃, S}, it can cancel them

from the message sent by server S̃, and recover the intended segment. We finish the shuffle phase by either
unicasting any remaining needed values until all servers in Q hold enough intermediate values to decode
successfully, or by repeating the above two steps for j = sq − 1. We refer to these alternatives as shuffling
strategy 1 and 2, respectively. We always select the strategy achieving the lowest communication load. If any
server in Q still needs more intermediate values at this point, they are unicasted from other servers in G. This
may happen only if a non-MDS code is used. We remark that it may be possible to opportunistically create
additional coded multicasting opportunities by exploiting the remaining g − q servers in G.
Definition 1. The communication load, denoted by L, is the number of unicasts and multicasts (weighted by their
cost relative to a unicast) per source row and vector y exchanged during the shuffle phase. Specifically, each unicasted
message increases L by 1

mN , and each message multicasted to j recipients increases L by j
mNϕ(j) .

The communication load after completing the shuffle phase is given in [9]. If the shuffle phase finishes by
unicasting the remaining needed values (strategy 1), the communication load after completing the multicast
phase is

ηq∑

j=sq

αj

ϕ(j)
.

If instead steps 1) and 2) are repeated for j = sq − 1 (strategy 2), the communication load is
ηq∑

j=sq−1

αj

ϕ(j)
.

For the scheme in [9], the total communication load is

LMDS = min




ηq∑

j=sq

αj

ϕ(j)
+ 1− η −

ηq∑

j=sq

αj ,

ηq∑

j=sq−1

αj

ϕ(j)


 , (2)

where 1− η −∑ηq
j=sq

αj is the communication load due to unicasting the remaining needed values.

2.2.4 Reduce Phase
Finally, in the reduce phase, the vectors y1, . . . ,yN are computed. More specifically, server S ∈ Q uses the
locally computed sets Z(S)

1 , . . . ,Z(S)
N and the received messages to compute the vectors yj , ∀j ∈ WS . The

computational delay of the reduce phase is its average runtime per source row and output vector y, i.e.,

Dreduce =
1

mN
µ

(
σreduce

q
, q, q

)
,

where σreduce is the computational complexity (see Section 2.1) of the reduce phase.

Definition 2. The overall computational delay, D, is the sum of the encoding, map, and reduce phase delays, i.e.,
D = Dencode +Dmap +Dreduce.

2.3 Previously Proposed Coded Computing Schemes
Here we formally define the uncoded scheme (UC) and the coded computing schemes of [7], [8], [9] (which
we refer to as the straggler coding (SC), coded MapReduce (CMR), and unified scheme, respectively) in
terms of the model above. Specifically, to make a fair comparison with our coded computing scheme with
parameters K, q, m, and η, we define the corresponding uncoded, CMR, SC, and unified schemes. When
referring to the system parameters of a given scheme, we will write the scheme acronym in the subscript. We
only explicitly mention the parameters that differ. The number of servers K is unchanged for all schemes
considered.

The uncoded scheme uses no erasure coding and no coded multicasting and has parameters ηUC = 1
K

and qUC = K, implying ηUCqUC = 1. Furthermore, the encoding matrix ΨUC is the m ×m identity matrix
and the coded matrix is CUC = A.

The CMR scheme [7] uses only coded multicasting, i.e., CCMR = A and qCMR = K. Furthermore, the
fraction of rows stored at each server is ηCMR = ηq

K . We remark that there is no reduce delay for this scheme,
i.e., Dreduce = 0.

The SC scheme [8] uses an erasure code but no coded multicasting. For the corresponding SC scheme,
the code rate is unchanged, i.e., qSC = q, and the fraction of rows stored at each server is ηSC = 1

qSC
. The

encoding matrixΨSC of the SC scheme is obtained by splitting the rows ofA into qSC equally tall submatrices
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C = ΨBDCA = ψ2

ψ1

ψ3

A2

A3

A1

= ψ2A2

ψ1A1

ψ3A3

Fig. 2: BDC scheme with T = 3 partitions.

A1, . . . ,AqSC and applying a (K, qSC) MDS code to the elements of each submatrix, thereby creating K coded
submatrices C1, . . . ,CK . The coded matrix CSC is the concatenation of C1, . . . ,CK , i.e.,

CSC =



C1

...
CK


 .

The unified scheme [9] uses both an erasure code and coded multicasting and has parameters ηunified = η
and qunified = q. Furthermore, the encoding matrix of the unified scheme, Ψunified, is an (r,m) MDS code
encoding matrix.

3 BLOCK-DIAGONAL CODING

In this section, we introduce a BDC scheme for the problem of multiplying a matrix by a set of vectors. For
large matrices, the encoding and decoding complexity of the proposed scheme is significantly lower than that
of the scheme in [9], leading to a lower overall computational delay, as will be shown in Section 7. Specifically,
the scheme is based on a block-diagonal encoding matrix of the form

ΨBDC =



ψ1

. . .
ψT


 ,

where ψ1, . . . ,ψT are r
T × m

T encoding matrices of an ( rT ,
m
T ) MDS code, for some integer T that divides

m and r. Note that the encoding given by ΨBDC amounts to partitioning the rows of A into T disjoint
submatrices A1, . . . ,AT and encoding each submatrix separately. We refer to an encoding ΨBDC with T
disjoint submatrices as a T -partitioned scheme, and to the submatrix of C = ΨBDCA corresponding to ψi

as the i-th partition. We remark that all submatrices can be encoded using the same encoding matrix, i.e.,
ψi = ψ, i = 1, . . . , T , reducing the storage requirements, and encoding/decoding can be performed in
parallel if many servers are available. Notably, by keeping the ratio m

T constant, the decoding complexity
scales linearly with m. We further remark that the case ΨBDC = ψ (i.e., the number of partitions is T = 1)
corresponds to the scheme in [9], which we will sometimes refer to as the unpartitioned scheme. We illustrate
the BDC scheme with T = 3 partitions in Fig. 2.

3.1 Assignment of Coded Rows to Batches

For a block-diagonal encoding matrix ΨBDC, we denote by c
(t)
i , t = 1, . . . , T and i = 1, . . . , r/T , the i-th

coded row of C within partition t. For example, c(2)1 denotes the first coded row of the second partition.
As described in Section 2, the coded rows are divided into

(K
ηq

)
disjoint batches. To formally describe the

assignment of coded rows to batches we use a
(K
ηq

)
× T integer matrix P = [pi,j ], where pi,j is the number of

rows from partition j that are stored in batch i. In the sequel, P will be referred to as the assignment matrix.
Note that, due to the MDS property, any set of m/T rows of a partition is sufficient to decode the partition.
Thus, without loss of generality, we consider a sequential assignment of rows of a partition into batches. More
precisely, when first assigning a row of partition t to a batch, we pick c(t)1 . Next time a row of partition t is
assigned to a batch we pick c

(t)
2 , and so on. In this manner, each coded row is assigned to a unique batch

exactly once. The rows of P are labeled by the subset of servers the corresponding batch is stored at, and the
columns are labeled by their partition indices. For convenience, we refer to the pair (ΨBDC,P ) as the storage
design. The assignment matrix P must satisfy the following conditions.
1) The entries of each row of P must sum up to the batch size, i.e.,

T∑

j=1

pi,j =
r(K
ηq

) , 1 ≤ i ≤
(
K

ηq

)
.
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Fig. 3: Storage design for m = 20, N = 4, K = 6, q = 4, η = 1/2, and T = 5.

2) The entries of each column of P must sum up to the number of rows per partition, i.e.,

(Kηq)∑

i=1

pi,j =
r

T
, 1 ≤ j ≤ T.

We clarify the assignment of coded rows to batches and the coded computing scheme in the following
example.

Example 1 (m = 20, N = 4, K = 6, q = 4, η = 1/2, T = 5). For these parameters, there are r/T = 6 coded rows
per partition, of which m/T = 4 are sufficient for decoding, and

(K
ηq

)
= 15 batches, each containing r/

(K
ηq

)
= 2 coded

rows. We construct the storage design shown in Fig. 3 with
(K
ηq

)
× T = 15× 5 assignment matrix

P =




1 2 3 4 5

(S1, S2) 2 0 0 0 0
(S1, S3) 2 0 0 0 0
(S1, S4) 2 0 0 0 0
(S1, S5) 0 2 0 0 0

...
...

(S4, S6) 0 0 0 0 2
(S5, S6) 0 0 0 0 2




, (3)

where rows are labeled by the subset of servers the batch is stored at, and columns are labeled by the partition index. In
this case rows c(1)1 and c(1)2 are assigned to batch 1, c(1)3 and c(1)4 are assigned to batch 2, and so on. For this storage
design, any g = 4 servers collectively store at least 4 coded rows from each partition. However, some servers store more
rows than needed to decode some partitions, suggesting that this storage design is suboptimal.

Assume that G = {S1, S2, S3, S4} is the set of g = 4 servers that finish their map computations first. Also,
assign vector yi to server Si, i = 1, 2, 3, 4. We illustrate the coded shuffling scheme for S = {S1, S2, S3} in Fig. 4.
Server S1 multicasts c(1)1 x3⊕ c

(1)
3 x2 to S2 and S3. Since S2 and S3 can cancel c(1)1 x3 and c(1)3 x2, respectively,

both servers receive one needed intermediate value. Similarly, S2 multicasts c(1)2 x3⊕ c
(2)
5 x1, while S3 multicasts

c
(1)
4 x2⊕ c

(2)
6 x1. This process is repeated for S = {S2, S3, S4}, S = {S1, S3, S4}, and S = {S1, S2, S4}. After the

shuffle phase, we have sent 12 multicast messages and 30 unicast messages, resulting in a communication load of
(12 + 30)/20/4 = 0.525, a 50% increase from the load of the unpartitioned scheme (0.35, given by (2)). In this case,
S1 received additional intermediate values from partition 2, despite already storing enough, further indicating that the
assignment in (3) is suboptimal.

4 PERFORMANCE OF THE BLOCK-DIAGONAL CODING

In this section, we analyze the impact of partitioning on the performance. We also prove that we can partition
up to the batch size, i.e., T = r/

(K
ηq

)
, without increasing the communication load and the computational

delay of the map phase with respect to the original scheme in [9].

4.1 Communication Load
For the unpartitioned scheme of [9], G = Q, and the number of remaining values that need to be unicasted
after the multicast phase is constant regardless which subset Q of servers finish first their map computations.
However, for the BDC (partitioned) scheme, both g and the number of remaining unicasts may vary.

For a given assignment matrix P and a specificQ, we denote by U
(S)
Q (P ) the number of remaining values

needed after the multicast phase by server S ∈ Q, and by

UQ(P ) ≜
∑

S∈Q
U

(S)
Q (P ) (4)

the total number of remaining values needed by the servers inQ. Note that both U
(S)
Q (P ) and UQ(P ) depend

on the strategy used to finish the shuffle phase (see Section 2.2.3). We remark that all sets Q are equally likely.
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Fig. 4: Multicasting coded values between servers S1, S2, and S3.

Let Qq denote the superset of all sets Q. Furthermore, we denote by LQ(P ) the average communication load
of the messages that are unicasted after the multicasting step (see Section 2.2.3), i.e.,

LQ(P ) ≜ 1

mN

1

|Qq|
∑

Q∈Qq

UQ(P ). (5)

When needed we write L(1)
Q (P ) and L

(2)
Q (P ), where the superscript denotes the strategy used to finish the

shuffle phase. For a given storage design (ΨBDC,P ), the communication load of the BDC scheme is given by

LBDC(ΨBDC,P ) = min




ηq∑

j=sq

αj

ϕ(j)
+ L

(1)
Q (P ),

ηq∑

j=sq−1

αj

ϕ(j)
+ L

(2)
Q (P )


 . (6)

Note that the load due to the multicast phase is independent of the level of partitioning. Furthermore, for
the unpartitioned scheme L(2)

Q = 0 by design.
We first explain how U

(S)
Q is evaluated. Let u(S)

Q be a vector of length T , where the t-th element is
the number of intermediate values from partition t stored by server S at the end of the multicast phase.
Furthermore, each row of P corresponds to a batch, and coded multicasting is made possible by storing each
batch at multiple servers. The intermediate values transmitted during the multicast phase thus correspond to
rows of P . The vector u(S)

Q is then computed by adding some set of rows of P . The indices of the rows to
add depend on Q and S (see Section 2.2.3).

We denote by
(
u
(S)
Q
)
t
the t-th element of the vector u(S)

Q . The number of values U (S)
Q is given by adding

the number of intermediate values still needed for each partition, i.e.,

U
(S)
Q =

T∑

t=1

max
(m
T
−
(
u
(S)
Q
)
t
, 0
)
. (7)

Its sum over all S ∈ Q gives UQ(P ) (see (4)). Averaging UQ(P ) over all Q and normalizing yields LQ(P )
(see (5)).

Example 2 (Computing u
(S)
Q ). We consider the same system as in Example 1. We again assume that G = Q =

{S1, S2, S3, S4} is the set of g = q = 4 servers that finish their map computations first. During the multicast phase
server S1 receives the intermediate values in V(S1)

S\S1 for all sets S of cardinality j + 1 = 3 (see Section 2.2.3). In this
case, we perform coded multicasting within the sets

• S = {S1, S2, S3}, V(S1)
S\S1 = {c(2)5 x1, c

(2)
6 x1},

• S = {S1, S2, S4}, V(S1)
S\S1 = {c(3)1 x1, c

(3)
2 x1},

• S = {S1, S3, S4}, V(S1)
S\S1 = {c(4)1 x1, c

(4)
2 x1}.

Note that V(S1)
{S2,S3} contains the intermediate values computed from the coded rows stored in the batch that labels the

6-th row of the assignment matrix P . In the same manner, V(S1)
{S2,S4} and V(S1)

{S3,S4} correspond to rows 7 and 10 of P ,
respectively. Furthermore, prior to the shuffle phase server S1 stores the batches corresponding to rows 1 to 5 of P . Thus,
u
(S1)
{S1,S2,S3,S4} is equal to the sum of rows 1, 2, 3, 4, 5, 6, 7, and 10 of P . In this case, u(S1)

{S1,S2,S3,S4} = (6, 6, 2, 2, 0),

and S1 needs 8 more intermediate values, i.e., U (S1)
{S1,S2,S3,S4} = 8. Computing u

(S)
Q for arbitrary Q and S then

corresponds to summing the rows of P corresponding to batches either stored by server S prior to the shuffle phase or
received by S in the multicast phase. The row indices are computed as explained in Section 2.2.3.
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For a given ΨBDC, the assignment of rows into batches can be formulated as an optimization problem,
where one would like to minimize LBDC(ΨBDC,P ) over all assignments P . More precisely, the optimization
problem is

min
P∈P

LBDC(ΨBDC,P ),

where P is the set of all assignments P . This is a computationally complex problem, since both the complexity
of evaluating the performance of a given assignment and the number of assignments scale exponentially in
the problem size (there are q

(K
q

)
vectors u(S)

Q ). We address the optimization of the assignment matrix P in
Section 5.

4.2 Computational Delay
We consider the delay incurred by the encoding, map, and reduce phases (see Definition 2). As in [9], we do
not consider the delay incurred by the shuffle phase as the computations it requires are simple in comparison.
Note that in [9] only Dmap is considered, i.e., D = Dmap. However, one should not neglect the computational
delay incurred by the encoding and reduce phases. Thus, we consider the overall computational delay

D = Dencode +Dmap +Dreduce.

The encoding delay Dencode is a function of the number of nonzero elements of ΨBDC. As there are at most m
T

nonzero elements in each row of a block-diagonal encoding matrix, for an encoding scheme with T partitions
we have

σencode,BDC ≤
m

T
rnσM +

(m
T
− 1
)
rnσA. (8)

The reduce phase consists of decoding the N output vectors and hence the delay it incurs depends on the
underlying code and decoding algorithm. We assume that each partition is encoded using a Reed-Solomon
(RS) code and is decoded using either the Berlekamp-Massey (BM) algorithm or the FFT-based algorithm
proposed in [23], whichever yields the lowest complexity. To the best of our knowledge the algorithm
proposed in [23] is the lowest complexity algorithm for decoding long RS codes. We measure the decoding
complexity by its associated shifted-exponential parameter σ (see Section 2.1).

The number of field additions and multiplications required to decode an (r/T,m/T ) RS code using the
BM algorithm is (r/T ) (ξ(r/T )− 1) and (r/T )2ξ, respectively, where ξ is the fraction of erased symbols [24].
With ξ upper bounded by 1− q

K (the map phase terminates when a fraction of at least q
K symbols from each

partition is available), the complexity of decoding the T partitions for all N output vectors is upper bounded
as

σBM
reduce,BDC ≤ N

(
σA

(
r2(1− q

K )

T
− r

)
+ σM

r2(1− q
K )

T

)
. (9)

On the other hand, the FFT-based algorithm has complexity O(r log r) [23]. We estimate the number of
additions and multiplications required for a given code length r by fitting a curve of the form a+ br log2(cr),
where (a, b, c) are coefficients, to empiric results derived from the authors’ implementation of the algorithm.
For additions the resulting parameters are (2, 8.5, 0.867) and for multiplications they are (2, 1, 4). The
resulting curves diverge negligibly at the measured points. The total decoding complexity for the FFT-based
algorithm is

σFFT
reduce,BDC = NTσA

(
2 +

8.5r

T
log2 (0.867r/T )

)
+NTσM

(
2 +

r

T
log2 (4r/T )

)
. (10)

The encoding and decoding complexity of the unified scheme in [9] is given by evaluating (8) and either (9)
or (10) (whichever gives the lowest complexity), respectively, for T = 1. For the BDC scheme, by choosing T
close to r we can thus significantly lower the delay of the encoding and reduce phases. On the other hand,
the scheme in [8] uses codes of length proportional to the number of servers K . The encoding and decoding
complexity of the SC scheme in [8] is thus given by evaluating (8) and either (9) or (10) for T = m

q .

4.3 Lossless Partitioning
Theorem 1. For T ≤ r/

(K
ηq

)
, there exists an assignment matrix P such that the communication load and the

computational delay of the map phase are equal to those of the unpartitioned scheme.

Proof: The computational delay of the map phase is equal to that of the unpartitioned scheme if any q
servers hold enough coded rows to decode all partitions. For T = r/

(K
ηq

)
we let P be a

(K
ηq

)
× T all-ones

matrix and show that it has this property by repeating the argument from [9, Sec. IV.B] for each partition. In
this case, any set of q servers collectively store ηqm

T rows from each partition, and since each coded row is
stored by at most ηq servers, any q servers collectively store at least ηqm

ηqT = m
T unique coded rows from each

partition. The computational delay of the map phase is thus unchanged from the unpartitioned scheme. The
communication load is unchanged if U (S)

Q is equal to that of the unpartitioned scheme for all Q and S. The
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number of values needed U
(S)
Q is computed from u

(S)
Q (see (7)), which is the sum of l rows of P , for some

integer l. For the all-ones assignment matrix, because all rows of P are identical, we have

U
(S)
Q = T max

(m
T
− l, 0

)
= max (m− T l, 0) ,

which is the number of remaining values for the unpartitioned scheme.
Next, we consider the case where T < r/

(K
ηq

)
. First, consider the case T = r/

(K
ηq

)
− j, for some integer j,

0 ≤ j < r

2(Kηq)
. We first set all entries of P equal to 1. At this point, the total number of unique rows of C per

partition stored by any set of q servers is at least

m

r/
(K
ηq

) =
m

r/
(K
ηq

)
− j

r/
(K
ηq

)
− j

r/
(K
ηq

) =
m

T

r/
(K
ηq

)
− j

r/
(K
ηq

) . (11)

The number of coded rows per partition that are not yet assigned is given by r/T multiplied by the fraction
of partitions removed j

r/(Kηq)
, i.e.,

1

T

rj

r/
(K
ηq

) =
1

T

mK
q j

r/
(K
ηq

) . (12)

We assign these rows to batches such that an equal number of coded rows is assigned to each of the K
servers, which is always possible due to the limitations imposed by the system model. Any set of q servers
will thus store a fraction q/K of these rows. The total number of unique coded rows per partition stored
among any set of q servers is then lower bounded by the sum of (12) weighted by q/K and (11), i.e.,

m

T

(
r/
(K
ηq

)
− j

r/
(K
ηq

) +

K
q j

r/
(K
ηq

) q

K

)
=

m

T
,

showing that it is possible to decode all partitions using the coded rows stored over any set of q servers.
The communication load is unchanged with respect to the case where the number of partitions is r/

(K
ηq

)
if

and only if no server receives rows it does not need in the multicast phase. Due to decreasing the number
of partitions from r/

(K
ηq

)
to T = r/

(K
ηq

)
− j, we increase the number of coded rows needed to decode each

partition by
m

T
− m

r/
(K
ηq

) =
1

T

mj

r/
(K
ηq

) . (13)

Furthermore, reducing the number of partitions increases the number of coded rows per partition stored
among any set of q servers (see (12) and the following text) by

1

T

mj

r/
(K
ηq

) . (14)

Note that the number of additional rows needed to decode each partition (see (13)) is greater than or equal
to the number of additional rows stored among the q servers (see (14)). It is thus impossible that too many
coded rows are delivered for any partition.

Second, we consider the case T =
r/(Kηq)−j

i , where j is chosen as for the first case above and where i is a
positive integer. Now, we first set all elements of P to i. At this point the number of unique rows of C per
partition stored by any set of q servers is given by (11) multiplied by a factor i (since we set each element of
P to i instead of one). Furthermore, the number of coded rows per partition that are not yet assigned is given
by (12). Therefore, by using the same strategy as for i = 1 and assigning the remaining rows to batches such
that an equal number of rows is assigned to each of the K servers, we are guaranteed that the communication
load and the computational delay are unchanged also in this case.

5 ASSIGNMENT SOLVERS

For T ≤ r/
(K
ηq

)
partitions, we can choose the assignment matrix P as described in the proof of Theorem 1.

For the case where T > r/
(K
ηq

)
, we propose two solvers for the problem of assigning rows into batches: a

heuristic solver that is fast even for large problem instances, and a hybrid solver combining the heuristic
solver with a branch-and-bound solver. The branch-and-bound solver produces an optimal assignment but is
significantly slower, hence it can be used as stand-alone only for small problem instances. We use a dynamic
programming approach to speed up the branch-and-bound solver by caching u(S)

Q for all S and Q ∈ Qq . We
index each cached u

(S)
Q by the batches it is computed from. Whenever U (S)

Q drops to 0 due to assigning a row
to a batch, we remove the corresponding u(S)

Q from the index. We also store a vector of length T with the i-th
entry giving the number of vectors u(S)

Q that miss intermediate values from the i-th partition. Specifically, the
i-th element of this vector is the number of vectors u(S)

Q for which the i-th element is less than m
T . This allows

us to efficiently assess the impact on LQ(P ) due to assigning a row to some batch. Since u(S)
Q is of length T
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Algorithm 1: Heuristic Assignment
Input :P , d, K , T , and ηq
for 0 ≤ a < d

(K
ηq

)
do

i← ⌊a/d⌋+ 1
j ← (a mod T ) + 1
pi,j ← pi,j + 1

end
return P

and because the cardinality of Q and Qq is q and
(K
q

)
, respectively, the memory required to keep this index

scales as O
(
Tq
(K
q

))
and is thus only an option for small problem instances.

For all solvers, we first label the batches lexiographically and then optimize LBDC in (6). For example, for
ηq = 2, we label the first batch by S1, S2, the second by S1, S3, and so on. The solvers are available under the
Apache 2.0 license [25]. We remark that choosing P is similar to the problem of designing the coded matrices
stored by each server in [12].

5.1 Heuristic Solver
The heuristic solver is inspired by the assignment matrices created by the branch-and-bound solver for small
instances. It creates an assignment matrix P in two steps. We first set each entry of P to

Y ≜
⌊

r(K
ηq

)
· T

⌋
,

thus assigning the first
(K
ηq

)
Y rows of each partition to batches such that each batch is assigned Y T rows. Let

d = r/
(K
ηq

)
− Y T be the number of rows that still need to be assigned to each batch. The r/T −

(K
ηq

)
Y rows

per partition not assigned yet are assigned in the second step as shown in Algorithm 1.
Interestingly, for T ≤ r/

(K
ηq

)
the heuristic solver creates an assignment matrix satisfying the requirements

outlined in the proof of Theorem 1. In the special case of T = r/
(K
ηq

)
, the all-ones matrix is produced.

5.2 Branch-and-Bound Solver
The branch-and-bound solver finds an optimal solution by recursively branching at each batch for which
there is more than one possible assignment and considering all options. The solver is initially given an
empty assignment matrix, i.e., an all-zeros

(K
ηq

)
× T matrix. For each branch, we lower bound the value of

the objective function of any assignment in that branch and only investigate branches with possibly better
assignments. The branch-and-bound operations given below are repeated until there are no more potentially
better solutions to consider.

5.2.1 Branch
For the first row of P with remaining assignments, branch on every available assignment for that row. More
precisely, find the smallest index i of a row of the assignment matrix P whose entries do not sum up to the
batch size, i.e.,

T∑

j=1

pi,j <
r(K
ηq

) .

For row i, branch on incrementing the element pi,j by 1 for all columns (with index j) such that their entries
do not sum up to the number of coded rows per partition, i.e.,

(Kηq)∑

i=1

pi,j <
r

T
.

5.2.2 Bound
We use a dynamic programming approach to lower bound LBDC for a subtree. Specifically, for each row i and
column j of P , we store the number of vectors u(S)

Q that are indexed by row i and where the j-th element
satisfies (

m

T
−
(
u
(S)
Q
)
j

)
> 0.

Assigning a coded row to a batch can at most reduce LBDC by 1/ (mN |Qq|) for each u(S)
Q indexed by that

batch. We compute the bound by assuming that no u(S)
Q will be removed from the index for any subsequent

assignment.
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5.3 Hybrid Solver
The branch-and-bound solver can only be used by itself for small instances. However, it can be used to
complete a partial assignment matrix, i.e., a matrix P for which not all rows have entries that sum up to the
batch size. The branch-and-bound solver then completes the assignment optimally. We first find a candidate
solution using the heuristic solver and then iteratively improve it using the branch-and-bound solver. In
particular, we decrement by 1 a random set of entries of P and then use the branch-and-bound solver to
reassign the corresponding rows optimally. We repeat this process until the average improvement between
iterations drops below some threshold.

6 LUBY TRANSFORM CODES

In this section, we consider LT codes [16] for use in distributed computing. Specifically, we consider a
distributed computing system where Ψ is an LT code encoding matrix, denoted by ΨLT, of fixed rate m

r . As
explained in Section 2, we divide the r coded rows of C = ΨLTA into

(K
ηq

)
disjoint batches, each of which is

stored at a unique subset of size ηq of the K servers. For this scheme, due to the random nature of LT codes,
we can assign coded rows to batches randomly. The distributed computation is carried out as explained in
Section 2.2, i.e., we wait for the fastest g ≥ q servers to complete their respective computations in the map
phase, perform coded multicasting during the shuffle phase, and carry out the decoding of the N output
vectors in the reduce phase.

Let Ω denote the degree distribution and Ω(d) the probability of degree d. Also, let Ω̄ be the average
degree. Then, each row of the encoding matrix ΨLT is constructed in the following manner. Uniformly at
random select d unique entries of the row, where d is drawn from the distribution Ω. For each of these d
entries, assign to it a nonzero element selected uniformly at random from F2l . Specifically, we consider the
case where Ω is the robust Soliton distribution parameterized by M and δ, where M is the location of the
spike of the robust component and δ is a parameter for tuning the decoding failure probability for a given M
[16].

6.1 Inactivation Decoding
We assume that decoding is performed using inactivation decoding [17]. Inactivation decoding is an efficient
maximum likelihood decoding algorithm that combines iterative decoding with optimal decoding in a
two-step fashion and is widely used in practice. As suggested in [17], we assume that the optimal decoding
phase is performed by Gaussian elimination. In particular, iterative decoding is used until the ripple is empty,
i.e., until there are no coded symbols of degree 1, at which point an input symbol is inactivated. The iterative
decoder is then restarted to produce a solution in terms of the inactivated symbol. This procedure is repeated
until all input symbols are either decoded or inactivated. Note that the value of some input symbols may be
expressed in terms of the values of the inactivated symbols at this point. Finally, optimal decoding of the
inactivated symbols is performed via Gaussian elimination, and the decoded values are back-substituted into
the decoded input symbols that depend on them. The decoding schedule has a large performance impact.
Our implementation follows the recommendations in [17]. It is important to tune the parameters M and δ to
minimize the number of inactivations.

Due to the nature of LT codes, we need to collect m(1 + ϵ) intermediate values for each vector y before
decoding. We refer to ϵ as the overhead. Under inactivation decoding, and for a given overhead ϵ, the
probability of decoding failure with an overhead of at most ϵ, denoted by Pf(ϵ), is lower bounded by [26]

Pf(ϵ) ≥
m∑

i=1

(−1)i+1

(
m

i

)(
m∑

d=1

Ω(d)

(m−i
d

)
(m
d

)
)m(1+ϵ)

. (15)

Note that Pf(ϵ) is the CDF for the random variable “decoding is not possible at a given overhead ϵ.”
Furthermore, the lower bound (15) well approximates the failure probability for an overhead slightly larger
than ϵ = 0. Denote by FDS(ϵ) the probability of decoding being possible at an overhead of at most ϵ. It
follows that

FDS(ϵ) = 1− Pf(ϵ).

We find the decoding success probability density function (PDF) by numerically differentiating FDS(ϵ).

6.2 Code Design
We design LT codes for a minimum overhead ϵmin, i.e., we collect at least m(1 + ϵmin) coded symbols from
the servers before attempting to decode, and a target failure probability Pf,target = Pf(ϵmin). We remark
that increasing ϵmin and Pf,target leads to a lower average degree Ω̄, and thus to less complex encoding and
decoding and subsequently to a lower computational delay for encoding and decoding. The tradeoff is that
the communication load increases as more intermediate values need to be transferred over the network on
average. Furthermore, increasing ϵmin and Pf,target may increase the average number of servers g required to
decode. We thus need to balance the computational delay of the encoding and reduce phases against that
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of the map phase to achieve a low overall computational delay. Furthermore, waiting for more than g = q
servers typically increases the overall computational delay by more than what is saved by the less complex
encoding and decoding given by the larger ϵmin and Pf,target. We thus choose ϵmin and Pf,target such that
decoding is possible with high probability using the number of coded rows stored at any set of q servers. Note
that the overhead ϵ required for decoding may be larger than ϵmin. We take this into account by numerically
integrating the decoding success PDF multiplied by the performance of the scheme as a function of the
overhead ϵ.

For a given ϵmin and Pf,target, we find a pair (M, δ) that minimizes the decoding complexity (see Section 6.3)
under the constraint that Pf(ϵmin) ≈ Pf,target. Essentially, we minimize the computational delay of the reduce
phase for a fixed delay of the map phase. We remark that LT codes with low decoding complexity have a
low average degree Ω̄, and thus also low encoding complexity. Note that for a given M , decreasing δ lowers
the failure probability, but also increases the decoding complexity. We find good pairs (M, δ) by selecting
through binary search the largest M such that there exists a δ for which the lower bound on Pf(ϵmin) in (15)
is approximately equal to Pf,target. This heuristic produces codes with complexity very close to those found
using basin-hopping [27] combined with the Powell optimization method [28].

6.3 Computational Delay
There are on average Ω̄ nonzero entries in each row of the LT code encoding matrix. The LT code encoding
complexity is thus given by

σencode,LT = Ω̄rnσM + (Ω̄− 1)rnσA.

We simulate the complexity of the decoding σreduce,LT. Furthermore, we assume that the decoding complexity
depends only on ϵmin, i.e., we evaluate the decoding complexity only at ϵ = ϵmin, and simulate the number of
servers g required for a given overhead ϵ.

6.4 Communication Load
The coded multicasting scheme (see Section 2.2.3) is designed for the case where we need m intermediate
values per vector y. Here, we tune it for the case where we instead need at least m(1 + ϵmin) intermediate
values by increasing the number of coded multicast messages sent. Note that the coded multicasting scheme
is greedy in the sense that it starts by multicasting coded messages to the largest possible number of recipients
and then gradually lowers the number of recipients. Specifically, we perform the shuffle phase with (see (1))

sq,LT ≜ inf


s :

ηq∑

j=s

αj ≤ (1 + ϵmin)− η


 .

The communication load of the LT code-based scheme for a given ϵ ≥ ϵmin is then given by

LLT = min




ηq∑

j=sq,LT

αj

ϕ(j)
+ (1 + ϵ)− η −

ηq∑

j=sq,LT

αj ,

ηq∑

j=sq,LT−1

αj

ϕ(j)
+ max


(1 + ϵ)− η −

ηq∑

j=sq,LT−1

αj , 0




 .

6.5 Partitioning of the LT Code-Based Scheme
We can apply partitioning to the LT code-based scheme in the same manner as for the BDC scheme. Specifically,
we consider a block-diagonal encoding matrix ΨBDC−LT, where the blocks ψ1, . . . ,ψT are LT code encoding
matrices. In particular, we consider the case where the number of partitions T is equal to the partitioning
limit of Theorem 1, i.e., T = r/

(K
ηq

)
. In this case the all-ones assignment matrix P introduced in the proof of

Theorem 1 is a valid matrix. By using this assignment matrix and identical encoding matrices for each of
the partitions, i.e., ψi = ψ, i = 1, . . . , T , the encoding and decoding complexity of each partition is identical
regardless of which set of servers G first completes the map phase. Furthermore, by the same argument as in
the proof of Theorem 1, we are guaranteed that if any partition can be decoded using the coded rows stored
at the set of servers G, all other partitions can also be decoded.

7 NUMERICAL RESULTS

We present numerical results for the proposed BDC and LT code-based schemes and compare them with the
schemes in [7], [8], [9]. Furthermore, we compare the performance of the BDC scheme with assignment P
produced by the heuristic and hybrid solvers. We also evaluate the performance of the LT code-based scheme
for different Pf,target and ϵmin. For each plot, the field size is equal to one more than the largest number of
coded rows considered for that plot, r + 1, rounded up to the closest power of 2. The results, except those
in Fig. 8 (right), are normalized by the performance of the uncoded scheme. Unless stated otherwise, the
assignment P is given by the heuristic solver. As in [9], we assume that ϕ(j) = j.
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Fig. 5: Left: The tradeoff between partitioning and performance for m = 6000, n = 6000, K = 9, q = 6, N = 6000,
and η = 1/3. Right: Performance dependence on system size for ηq = 2, n = m/100, ηm = 2000, code rate
m/r = 2/3, and N = 500q vectors.

7.1 Coded Computing Comparison
In Fig. 5 (left), we depict the communication load L (see Definition 1) and the computational delay D (see
Definition 2) as a function of the number of partitions, T . The system parameters are m = 6000, n = 6000,
K = 9, q = 6, N = 6000, and η = 1/3. The parameters of the CMR and SC schemes are qCMR = 9, ηCMR = 2

9 ,
and ηSC = 1

6 . The minimum overhead for the LT code-based scheme is ϵmin = 0.3 and its target failure
probability is Pf,target = 0.1. For up to r/

(K
ηq

)
= 250 partitions (marked by the vertical dotted line), the BDC

scheme does not incur any loss in Dmap and communication load with respect to the unified scheme (see
Theorem 1). Furthermore, the BDC scheme yields about a 2% lower delay compared to the unified scheme
for T = 1000. The delay of the LT code-based scheme is slightly worse than that of the BDC scheme, and the
load is about 65% higher (for T = 250). Partitioning the LT code-based scheme increases the communication
load and reduces the computational delay by about 0.5%. We remark that the number of partitions for the
LT code-based scheme is fixed at r/

(K
ηq

)
. For heavy partitioning of the BDC scheme, a tradeoff between

partitioning level, communication load, and map phase delay is observed. For example, with 3000 partitions
(the maximum possible), there is about a 10% increase in communication load over the unified scheme. Note
that the gain in computational delay saturates, thus there is no reason to partition beyond a given level.
The load of the SC scheme is about twice that of our proposed schemes and the delay is about half. Finally,
the delay of the BDC and the LT code-based scheme is about 25% lower compared to the CMR scheme for
T > 100.

In Fig. 5 (right), we plot the performance for a constant ηq = 2, n = m/100, ηm = 2000, code rate
m/r = 2/3, and N = 500q vectors as a function of the number of servers, K. The ratio m/n is motivated
by machine learning applications, where the number of rows and columns often represent the number of
samples and features, respectively. Note that the number of arithmetic operations performed by each server
in the map phase increases with K . We choose the number of partitions T that minimizes the delay under the
constraint that the communication load is at most 1% higher compared to the unified scheme. The parameters
of the LT code-based scheme are ϵmin = 0.335 and Pf,target = 0.1. The results shown are averages over 1000
randomly generated realizations of G. Our proposed BDC scheme outperforms the unified scheme in terms
of computational delay by between about 25% (for K = 6) and 10% (for K = 201). Furthermore, the delay of
both the BDC and LT code-based schemes are about 50% lower than that of the CMR scheme for K = 201.
For K = 6 the computational delay of the unpartitioned and partitioned LT code-based schemes is about 5%
higher and 8% lower compared to the BDC scheme, respectively. For K = 201 the delay of the LT code-based
scheme is about 1% lower than that of the BDC scheme. However, the communication load is about 45%
higher. Finally, the communication load of the BDC scheme is between about 42% (for K = 6) and 66% (for
K = 201) of that of the SC scheme.

In Fig. 6 (left), we show the performance for code rate m/r = 2/3, ηq = 2, and a fixed workload per
server as a function of K. Specifically, we fix the number of additions and multiplications computed by
each server in the map phase to 108 (±5% to find valid parameters) and scale m,n,N with K . The number
of rows m of A takes values between 12600 and 59800, and we let n = m/100 and N = n. The number
of partitions T is selected in the same way as for Fig. 5 (left). The results shown are averages over 1000
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Fig. 6: Left: Performance dependence on system size with constant complexity of the map phase per server,
m/r = 2/3, ηq = 2, n = m/100, and N = n. Right: Performance dependence on the number of columns n of A for
m = 2400, K = 9, q = 6, N = 60, T = 240, and η = 1/3. The parameters of the LT code-based scheme are given in
the legend as (ϵmin, Pf,target).

randomly generated realizations of G. The computational delay of the unified scheme is about a factor 20
higher than that of the BDC scheme for K = 300. The computational delay of the partitioned LT code-based
scheme is similar to that of the BDC scheme, while the delay of the unpartitioned LT code-based scheme is
about 60% higher. Furthermore, the communication load of the LT code-based scheme is about 45% higher
compared to those of the unified and BDC schemes.

In Fig. 6 (right), we plot the performance of the BDC and LT code-based schemes as a function of the
number of columns n. The system parameters are m = 2400, K = 9, q = 6, N = 60, T = 240, and η = 1/3.
The communication load of the LT code-based scheme depends primarily on the minimum overhead ϵmin

and the computational delay primarily on the target failure probability Pf,target. We remark that a higher
Pf,target allows for using codes with lower average degree and thus less complex encoding and decoding. For
n = 20000, the computational delay of the LT code-based scheme with Pf,target = 0.1 is about 1.5% lower
than that of the BDC scheme. For Pf,target = 0.001, the computational delay is about 3% and 1.5% higher than
that of the BDC scheme when ϵmin = 0.3 and ϵmin = 0.37, respectively. On the other hand, the communication
load of the LT code-based scheme with ϵmin = 0.3 and ϵmin = 0.37 is about 41% and 44% higher than that of
the BDC scheme, respectively.

7.2 Assignment Solver Comparison
In Figs. 7, we plot the performance of the BDC scheme with assignment P given by the heuristic and the
hybrid solver. We also give the average performance over 100 random assignments. The vertical dotted line
marks the partitioning limit of Theorem 1. The parameters in Fig. 7 are identical to those in Fig. 5.

In Fig. 7 (left), we plot the performance as a function of the number of partitions, T . For T less than about
200, the performance for all solvers is identical. On the other hand, for T > 200 both the computational delay
and the communication load are reduced with P from the heuristic solver over the random assignments
(about 5% for load and 47% for delay at T = 3000). A further improvement in communication load can be
achieved using the hybrid solver, but at the expense of a possibly larger computational delay.

In Fig. 7 (right), we plot the performance as a function of the number of servers, K. The results shown
are averages over 1000 randomly generated realizations of G. For K = 6, the communication load of the
heuristic solver is about 5% lower than that of the random assignments, but for K = 201 the difference is
negligible. In terms of computational delay, the heuristic solver outperforms the random assignments by
about 18% and 3% for K = 9 and K = 201, respectively. The hybrid solver is too computationally complex
for use with the largest systems considered.

7.3 Tradeoff Between Communication Load and Computational Delay
In Fig. 8 (left), we show the tradeoff between communication load and computational delay. The parameters
are K = 14, m = 50000 (±3% to find valid parameters), n = 500, N = 840, and η = 1/2. Note that the code
rate is decreasing toward the bottom of the plot. We select the number of partitions T that minimizes the
delay while the load is at most 1% or 10% higher compared to the unified scheme. Allowing a 10% increased
load gives up to about 7% lower delay compared to allowing a 1% increase. For the topmost data point
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of the BDC and unified schemes the encoding complexity dominates, and there is no reason to operate at
this point since both the delay and load can be reduced. The parameters of the partitioned LT code-based
scheme are ϵmin = 0.3 and Pf,target = 10−1. For the data point with minimum computational delay, the LT
code-based scheme yields about 15% lower delay at the expense of about a 30% higher load compared to
the BDC scheme. Finally, the computational delay of the BDC scheme is between about 47% and 4% lower
compared to the unified scheme for the topmost and bottommost data points, respectively.

7.4 Computational Delay Deadlines
In Fig. 8 (right), we plot the probability of a computation not finishing before a deadline t, i.e., the probability
of the computational delay being larger than t. As in [29], we plot the complement of the CDF of the
delay in logarithmic scale. On the horizontal axis, we show the deadline t. The system parameters are
K = 201, q = 134, m = 134000, n = 1340, N = 67000 vectors, T = 6700 partitions, and code rate
m/r = 2/3. The parameters for the LT code-based scheme are ϵmin = 0.335 and Pf,target = 10−9. The results



17

101 102
20

21

22

23

24

25

K

D

BDC, Heuristic, ω = 0
Unified, ω = 0
BDC, Heuristic, ω = 1
Unified, ω = 1
BDC, Heuristic, ω = 10
Unified, ω = 10
BDC, Heuristic, ω = 100
Unified, ω = 100

Fig. 9: Computational delay as a function of system size for varying scale of the tail of the runtime distribution. The
system parameters and communication load are identical to those in Fig. 6 (left).

are due to simulations. In particular, we simulate the decoding failure probability of LT codes for various
t and extrapolate from these points under the assumption that the decoding failure probability is Gamma
distributed. The fitted values deviate negligibly from the simulated values.

When the deadline is t = 3500, the probability of exceeding the deadline is about 0.4 for the unified and
uncoded schemes. For the BDC scheme the probability is only about 7 · 10−3. The probability is slightly lower
for the LT code-based scheme, about 4 · 10−3. If we instead consider a deadline t = 4000, the probability
of exceeding the deadline is about 10−3 and 0.15 for the unified and uncoded schemes, respectively. For
the BDC scheme the probability of exceeding the deadline is about 9 · 10−8, i.e., 4 orders of magnitude
lower compared to the unified scheme. The LT code-based scheme further improves the performance with a
probability of exceeding the deadline of about 3 · 10−8. We remark that for the data point with minimum
delay in Fig. 8 (left), the LT code-based scheme has a significant advantage over the BDC scheme in terms of
meeting a short deadline.

7.5 Alternative Runtime Distribution
Here, we consider a runtime distribution with CDF

FH(h;σ) =

{
1− e−(h−σ)/β , for h ≥ σ

0, otherwise
,

where σ is the shift and β is a parameter that scales the tail of the distribution, i.e., it differs from the one
considered previously by that the scale of the tail may be different from the shift. It is equal to the previously
considered distribution if β = σ. This model has been used to model distributed computing in, e.g., [30].
Under this model we assume that the reduce delay of the uncoded scheme follows the distribution above
with parameters β and σUC,reduce = 0 since each server has to assemble the final output from the intermediate
results regardless coding is used or not. We assume that the encoding delay of the uncoded scheme is zero.
Denote by σc the computational complexity of matrix-vector multiplication for the BDC and unified schemes.
We let β = ωσc for ω = 0, 1, 10, 100. In Fig. 9, we plot the computational delay normalized by that of the
uncoded scheme. The system parameters (and thus also the communication load) are identical to those in
Fig. 6.

We observe the greatest gain of the BDC scheme over the unified scheme for small ω since the benefits of
straggler coding are small compared to the added delay due to encoding and decoding, which is significant
for the unified scheme. For larger ω the benefits of straggler coding are larger while the delay due to encoding
and decoding remains constant. Hence, the performance of both schemes converge. However, even for
ω = 100 the delay of the unified scheme is about 33% higher than that of the BDC scheme for the largest
system considered (K = 300). We remark that for the example considered in [30] the parameters β = σ = 1,
i.e., ω = 1, are used.

8 CONCLUSION

We introduced two coding schemes for distributed matrix multiplication. One is based on partitioning the
matrix into submatrices and encoding each submatrix separately using MDS codes. The other is based on LT
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codes. Compared to the earlier scheme in [9] and to the CMR scheme in [7], both proposed schemes yield a
significantly lower overall computational delay. For instance, for a matrix of size 59800×598, the BDC scheme
reduces the computational delay by about a factor 20 over the scheme in [9] with about a 1% increase in
communication load. The LT code-based scheme may reduce the computational delay further at the expense
of a higher communication load. For example, for a matrix with about 50000 rows, the computational delay
of the LT code-based scheme is about 15% lower than that of the BDC scheme with a communication load
that is about 30% higher. Finally, we have shown that the proposed coding schemes significantly increase the
probability of a computation finishing within a deadline. The LT code-based scheme may be the best choice
in situations where high reliability is needed due to its ability to decrease the computational delay at the
expense of the communication load.
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Abstract

We propose a coded distributed computing scheme based on Raptor codes to address the straggler
problem. In particular, we consider a scheme where each server computes intermediate values, referred
to as droplets, that are either stored locally or sent over the network. Once enough droplets are collected,
the computation can be completed. Compared to previous schemes in the literature, our proposed scheme
achieves lower computational delay when the decoding time is taken into account.

✦

1 INTRODUCTION

MODERN computing systems often consist of several thousands of servers working in a highly
coordinated manner [1]. These systems, referred to as warehouse-scale computers (WSCs) [2], differ

from traditional datacenters in that servers rarely have fixed roles. Instead, a cluster manager dynamically
assigns storage and computing tasks to servers [1]. This approach offers a high level of flexibility but also
poses significant challenges. For example, so-called straggling servers, i.e., servers that experience transient
delays, are a major issue in WSCs and may significantly slow down the overall computation [3].

Recently, an approach based on maximum distance separable (MDS) codes was proposed to alleviate the
straggler problem for linear computations (e.g., multiplying a matrix with a vector) [4], [5]. In particular,
redundancy is added to the computation in such a way that straggling servers can be treated as erasures
when decoding the final output. Any partially computed results by the straggling servers are discarded. In [4],
a single master node is responsible for decoding the final output. A more general framework was proposed in
[5], where the work of decoding is distributed over the servers. Somewhat surprisingly, most previous works
neglect the decoding complexity of the underlying code, which may have a significant impact on the overall
computational delay [6], [7]. For the matrix multiplication problem, a coded scheme consisting of partitioning
the source matrix and encoding each partition separately using shorter MDS codes was proposed in [6], [7]
and shown to significantly reduce the overall computational delay compared to using a single MDS code
when the decoding complexity is taken into account. Furthermore, it was shown in [7] that Luby Transform
(LT) codes [8] may reduce the delay further in some cases.

Using LT codes for distributed computing has also been studied in [9], [10], where, assuming that a
single master node is responsible for decoding the output, it was shown that these codes may bring some
advantages. In [9], the problem of multiplying a matrix by a vector in an internet-of-things setting was
considered. Specifically, a scheme based on LT codes where a device may dynamically assign computing
tasks to its neighboring devices was proposed. It was shown that this scheme achieves low delay and high
resource utilization even when the available computing resources vary over time. The scheme proposed in
[10] extends the scheme in [4] by introducing LT codes and utilizing partial computations. The authors give
bounds on the overall delay in this setting.

In this paper, we propose a coded computing scheme based on Raptor codes [11] for the problem of
multiplying a matrix by a set of vectors. In particular, we consider standardized Raptor10 (R10) codes [12] as
the underlying code. Similar to [10], the proposed scheme exploits partial computations, i.e., servers compute
intermediate values, referred here to as droplets, that are either stored locally or transferred over the network.
The computation can be completed once enough droplets have been collected. Unlike in [4], [5], [9], [10],
we take the decoding time into account since it may contribute significantly to the overall computational
delay [7]. Furthermore, the work of decoding the output is distributed over the servers in a similar fashion to
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the scheme in [5]. We show that this significantly reduces the overall computational delay compared to the
scheme in [10] when the number of servers is large, and also outperforms other schemes in the literature.
Interestingly, the proposed scheme based on R10 codes achieves an overall computational delay close to that
of a scheme using an ideal rateless code with zero overhead and incurring no decoding delay. Furthermore,
we provide an analytical approximation of the expected overall computational delay of the proposed scheme
when the droplets are computed in an optimal order. We then give a heuristic for choosing the order in which
each server computes values and show numerically that it achieves almost identical performance to optimal
ordering. We also present an optimization problem for finding the optimal number of servers over which the
decoding of the final output should be distributed.

2 SYSTEM MODEL AND PRELIMINARIES

We consider the distributed matrix multiplication problem. Specifically, given an m× n matrix A ∈ Fm×n
2u

and N vectors x1, . . . ,xN ∈ Fn2u , where F2u is an extension field of characteristic 2, we want to compute
the N vectors y1 = Ax1, . . . ,yN = AxN . The computation is performed in a distributed fashion using K
servers, S1, . . . , SK . More precisely, A is split into m/l disjoint submatrices, each consisting of l rows. The
submatrices are then encoded using an (r/l,m/l) linear code, resulting in r/l encoded submatrices, denoted
by C1, . . . ,Cr/l. We refer to l as the droplet size. Each of the r/l coded submatrices is stored at exactly one
server such that each server stores ηm coded matrix rows, for some 1

K ≤ η ≤ 1. Note that, overall, the K
servers store a total of r = ηmK coded rows. We assume that η is selected such that ηm is a multiple of l.
Finally, we denote by Ck the set of indices of the submatrices stored by server Sk.

2.1 Probabilistic Runtime Model
We assume that each server S1, . . . , SK becomes available and starts working on its assigned tasks after a
random amount of time, which is captured by the random variablesH1, . . . ,HK , respectively. We assume that
H1, . . . ,HK are independent and identically distributed (i.i.d) random variables with exponential probability
density function

fH(h) =

{
1
β e

−h
β h ≥ 0

0 h < 0
,

where β is used to scale the tail of the distribution. The tail accounts for transient disturbances that are at the
root of the straggler problem. We refer to β as the straggling parameter. As in [10], we assume that once a
server becomes available it carries out each of its assigned tasks in a deterministic amount of time, denoted
by σ. Let σA and σM be the time required to compute one addition and one multiplication, respectively, over
F2u . The parameter σ is then given by σ = nAσA + nMσM, where nA and nM are the required number of
additions and multiplications, respectively, to complete each task. As in [12], we assume that σA is O( u

64 ) and
σM is O(u log2 u). Furthermore, we assume that the hidden coefficients are comparable and will thus not
consider them.

We denote by H(i), i = 1, . . . ,K , the i-th order statistic, i.e., the i-th smallest variable of H1, . . . ,HK . H(i)

is a gamma-distributed random variable with cumulative probability distribution function

FH(i)
(h(i)) ≜ Pr(H(i) ≤ h(i)) =

{
γ(b,ah(i))

Γ(b) h(i)≥ 0

0 h(i)< 0
,

where Γ denotes the gamma function and γ the lower incomplete gamma function. The inverse scale factor a
and shape parameter b of the gamma distribution are computed from its mean and variance as in [7]. The
expectation of H(i), i.e., the expected delay until a total of i servers become available, is [13]

µ(K, i) ≜ E
[
H(i)

]
=

K∑

j=K−i+1

β

j
.

Finally, we denote by hi and h(i) the realizations of Hi and H(i), i = 1, . . . ,K , respectively.

2.2 Distributed Computing Model
We consider the coded computing framework introduced in [5], which extends the MapReduce framework
[3]. The overall computation proceeds in two phases, the map-shuffle phase and the reduce phase, which are
augmented to make use of the coded scheme proposed in [10] to alleviate the straggler problem. We assume
that the input vectors x1, . . . ,xN are known to all servers at the start of the computation.
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...
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Fig. 1: Map-shuffle phase computation. Each server S(k), k = 1, . . . ,K, computes droplets, illustrated by white
squares, after an initial time H(k). The map-shuffle phase ends once enough droplets are collected and server S(q)

has become available. It incurs a delay Dmap. We depict the final droplet that is computed with a hash pattern.

2.2.1 Map-Shuffle Phase
The servers compute coded intermediate values (droplets) which are later used to obtain the vectors
y1, . . . ,yN . Each droplet is the product between a submatrix stored by the server and an input vector
x1, . . . ,xN . The responsibility for decoding each of the vectors y1, . . . ,yN is assigned to one of the K servers.
The computed droplets are then transferred over the network to the server responsible for decoding the
corresponding output vector. We assume that the channel is error-free and that all transfers are unicast.
The map-shuffle phase ends when all output vectors y1, . . . ,yN can be decoded with high probability (see
Section 3.2). At this point the computation enters the reduce phase. We denote the delay of the map-shuffle
phase by Dmap and its expectation by D̄map.

2.2.2 Reduce Phase
The vectors y1, . . . ,yN are computed from the intermediate values. More specifically, each server uses the
droplets computed locally or received over the network to decode the output vectors it has been assigned.
Denote by σreduce the time required for one server to decode one output vector. The computational delay of
the reduce phase, denoted by Dreduce, is deterministic and is given by Dreduce =

N
q σreduce, where q denotes the

number of servers used in the reduce phase.

Definition 1. The overall computational delay, D, is the sum of the map-shuffle and reduce phase delays, i.e.,

D = Dmap + Dreduce and D̄ ≜ E[D] = D̄map + Dreduce.

2.3 Raptor Codes
Raptor codes [11] are built from the serial concatenation of an outer linear block code with an inner LT code.
Raptor codes not only outperform LT codes in terms of probability of decoding failure but also exhibit a lower
encoding and decoding complexity. Here we consider R10 codes, which are binary codes whose outer code
is obtained as the serial concatenation of a low-density parity-check code with a high-density parity-check
(HDPC) code [14]. R10 codes are tailored to an efficient maximum likelihood decoding algorithm known as
inactivation decoding [11]. In particular, we consider R10 codes in their nonsystematic form.

3 PROPOSED CODED COMPUTING SCHEME

In this section, we introduce the proposed coded computing scheme. The main idea is that each server
computes multiple intermediate values. More specifically, each server Sk, k = 1, . . . ,K, computes droplets
 
(i)
j = Cixj by multiplying the coded submatrices Ci, i ∈ Ck, it stores locally with the N input vectors
x1, . . . ,xN . The indices i ∈ Ck and j ∈ {1, . . . , N} should be carefully chosen to minimize the computational
delay. We consider this in Section 3.1. The time required for a server to compute a droplet, denoted by σd, is
σd = l ((n− 1)σA + nσM) since it requires computing l inner products, each requiring n− 1 additions and n
multiplications.

Denote by S(1) the first server to become available, and similarly denote by S(k), k = 1, . . . ,K, the k-th
server to become available. We assume that server S(k) computes droplets at a constant rate after a delay
H(k). For example, server S(k) computes p droplets after a total delay of H(k) + pσd. This process is depicted
in Fig. 1. We evenly and randomly split the indices of the N output vectors y1, . . . ,yN into q ≤ K disjoint
setsW1, . . . ,Wq . Each of the q fastest servers S(k), k = 1, . . . , q, is responsible for decoding the N/q output
vectors with indices inWk. Furthermore, we denote by W̃k the set containing the indices of the vectors that
server S(k) is not yet able to decode due to an insufficient number of droplets. At the start of the map-shuffle
phase, W̃k =Wk. The map-shuffle phase ends when servers S(1), . . . , S(q) have collected enough droplets to

decode the output vectors they are responsible for, i.e., when
∣∣∣W̃k

∣∣∣ = 0, k = 1, . . . , q. At this point servers
S(1), . . . , S(q) simultaneously enter the reduce phase. The remaining K − q servers are unused for the rest of
the computation. A strategy for choosing q to minimize the expected computational delay, D̄, is discussed in
Section 4.1.
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3.1 Droplet Order

For each droplet  (i)
j computed by server Sk in the map-shuffle phase, the server has to choose the indices

i ∈ Ck and j ∈ {1, . . . , N} the droplet is computed from. Furthermore, the choice of i and j may have a
large impact on the computational delay. In particular, if j is chosen such that it is not needed to decode
any of the output vectors, i.e., j is not in any of the sets W̃k, k = 1, . . . , q, the resulting droplet is effectively
wasted. Hence, i and j should be carefully chosen. We consider two scenarios. In the first scenario, i and j
are chosen optimally, i.e., all servers have perfect knowledge of W̃1, . . . , W̃q . This gives a lower bound on the
achievable computational delay. In a second, more practical scenario, i and j are chosen in a round-robin
fashion. Specifically, for each server Sk we generate a number j from {1, . . . , N} uniformly at random. Next,
for each droplet  (i)

j computed by server Sk we let j = j + 1 mod N . We remark that the optimal order
requires each server to have global knowledge of all previously computed droplets over all servers, whereas
the round-robin strategy only requires each server to have knowledge of the droplets it has computed locally.
In Section 5, we show numerically that the round-robin strategy achieves almost identical performance to the
optimal strategy, the latter being infeasible in practice. In both cases we assume that the same pair of indices
i, j is never chosen twice. Since each submatrix Ci is stored at exactly one server, this does not require any
additional synchronization between servers. A server that has exhausted all possible combinations of i and j
halts and performs no further computations in the map-shuffle phase.

3.2 Code Design
The decoding complexity and failure probability of Raptor codes depend on the number of droplets available
to the decoder, m

l (1 + ϵ), for some ϵ ≥ 0. We refer to ϵ as the overhead. Furthermore, we denote by Pf(ϵ)
the decoding failure probability when the overhead is ϵ. In general, increasing ϵ reduces the probability of
decoding failure Pf(ϵ) and the decoding complexity, leading to a lower decoding time σreduce. For example,
the decoding failure probability for R10 codes roughly halves with every additional droplet available
when the number of source symbols is close to 1000 [11]. However, a larger overhead ϵ also increases the
computational delay due to computing the required droplets in the map-shuffle phase. We thus need to
balance the computational delay of the reduce phase against that of the map-shuffle phase to achieve a low
overall computational delay.

We denote by ϵmin the minimum overhead before decoding is attempted. R10 codes are fully specified,
hence the only free parameter is ϵmin. In [11], it is observed that the decoding complexity of Raptor codes
drops sharply when the number of droplets available to the decoder is increased to be slightly larger than the
number of HDPC symbols. Hence, we choose the minimum overhead ϵmin such that the number of droplets
available to the decoder is close to the number of source droplets m/l plus twice the number of HDPC
symbols. For comparison purposes, in Section 5 we also consider LT codes with a robust Soliton distribution
[8], whose parameters are optimized as described in [7]. In particular, we choose a minimum overhead ϵmin

and a target failure probability Pf,target and optimize the parameters of the distribution to minimize the
decoding complexity under the constraint Pf,target ≈ Pf(ϵmin). Note that the overhead ϵ required for decoding
may be larger than ϵmin. We take this into account by simulating the overhead needed given that decoding
failed at an overhead of ϵmin.

4 COMPUTATIONAL DELAY ANALYSIS

In this section, we analyze the computational delay of the proposed coded computing scheme and provide an
approximation of D̄map. Let Vp be the random variable associated with the time until p droplets are computed
over K servers, where we assume that p is chosen such that decoding succeeds with high probability, and
V̄p its expectation, V̄p ≜ E[Vp]. Then, Dmap = max(Vp, H(q)). For the analysis, we assume that each server
is always able to compute droplets needed by some server until the end of the map-shuffle phase. This
assumption is valid if the code rate m/r is low enough. Furthermore, we assume that the droplet order is
optimal (see Section 3.1). Finally, we explain how to choose the number of servers q to split the output vectors
over to minimize the expected computational delay.

Denote by Pt the number of droplets computed over K servers at time t.

Proposition 1. The expectation of Pt is

P̄t ≜ E [Pt] = K

∫ t

0

⌊
t− h

σd

⌋
1

β
e−

h
β dh. (1)

Using the fact that x − 1 ≤ ⌊x⌋ ≤ x in (1) and computing the resulting integrals, P̄t can be lower and
upperbounded as

K

(
(β + σd)e

− t
β

σd
+

t

σd
− β

σd
− 1

)
≤ P̄t ≤ K

(
βe−

t
β

σd
+

t

σd
− β

σd

)
. (2)
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Let σP̄ denote the time at which an average number of P̄ droplets have been computed over K servers.
By inverting the upper and lower bounds on P̄t in (2), σP̄ can be bounded as

σL
P̄ ≜ β +

P̄ σd

K
+ βW0

(
−e−

P̄σd
Kβ −1

)
≤ σP̄ ≤ β + σd +

P̄ σd

K
+ βW0


−e−

K(β+σd)+P̄σd
Kβ (β + σd)

β


 ≜ σU

P̄ ,

where W0(·) is the principal branch of the Lambert W function, i.e., W0(x) is the solution of x = zez .
Now, let Gt be the random variable associated with the number of servers that are available at time t. We

provide the following heuristic approximation of D̄map,

D̄map ≈ V̄p +

q−1∑

j=1

Pr(Gt = j)µ(K − j, q − j), (3)

where the summation accounts for the delay due to waiting for server S(q). We have numerically verified
that the approximation holds. Furthermore, we have observed that V̄p ≈ σp and σp ≈ 1

2

(
σL
p + σU

p

)
. Finally,

assuming that decoding is possible with p droplets, the expected overall computational delay is

D̄ ≈ N

q
σreduce + V̄p +

q−1∑

j=1

Pr(Gt = j)µ(K − j, q − j). (4)

4.1 Straggler Mitigation
The map-shuffle phase ends when all output vectors can be decoded and when the servers S(1), . . . , S(q) are
available, i.e., Dmap = max(Vp, H(q)). Since Pr(H(q) > Vp) is always nonzero, choosing a small q lowers the
expected delay of the map phase. On the other hand, choosing a large q reduces the delay of the reduce
phase Dreduce = N

q σreduce, as the decoding is distributed over more servers. Thus, we need to balance the
delay of the map-shuffle and reduce phases by choosing q carefully. In particular, we optimize the value of q
to minimize the overall computational delay in (4), where we use the approximation V̄p ≈ σp ≈ 1

2

(
σL
p + σU

p

)
.

We remark that (4) as a function of q is convex as it is the sum of the approximation of D̄map in (3) and Dreduce,
which are strictly increasing and decreasing, respectively, in q for σreduce > 0. For σreduce = 0, (4) is minimized
for q = 1.

5 NUMERICAL RESULTS

In Fig. 2 (left), we give the expected computational delay of the proposed scheme, normalized by that of the
uncoded scheme, as a function of the system size. In particular, we fix the code rate to m/r = 1/3 and the
problem size divided by the number of servers to mnN/K = 107 (±10% to find valid parameters) and scale
the system size with K . Motivated by machine learning applications, where the number of rows and columns
often represent the number of samples and features, respectively, we set m = 1000n. We also set N = 10K.
Since R10 codes are optimized for code lengths close to 1024 [14], we choose the droplet size l such that
900 < m/l < 1100 (the interval is required to find valid parameters). The overhead is 2% and 30% for R10 and
LT codes, respectively. Finally, the straggling parameter β is equal to the total time required to compute the
multiplicationsAx1, . . . ,AxN divided by the number of servers, i.e., β = σK = (m(n− 1)σA+mnσM)N/K .

In the figure, we plot the overall computational delay given by (4) using the approximation V̄p ≈ σp ≈
1
2

(
σL
p + σU

p

)
for the proposed scheme with an underlying R10 code (blue line with circle markers) and LT

code (magenta line with diamond markers), and for the scheme assuming an ideal rateless code (black solid
line). We also show simulated performance for the R10-based scheme with optimal droplet ordering and with
a round-robin (rr) ordering. We observe that the round-robin strategy achieves a computational delay within
1% of that of the optimal strategy. Furthermore, (4) accurately predicts the overall computational delay with
an error of at most about 1% compared to both the optimal and the round-robin ordering. The proposed
scheme with R10 codes achieves a significantly lower delay than the scheme with LT codes. Interestingly, the
delay for the scheme based on R10 codes is very close (at most 3.7% higher) to that of an ideal rateless code.

For comparison purposes, we also plot in the figure the delay of the block-diagonal coding (BDC) scheme
in [6], [7], the MDS coding scheme proposed in [4] that does not utilize partial computations, and the scheme
proposed in [10] (augmented with R10 codes). We refer to it as the centralized R10 (cent. R10) scheme, since
a central master node is responsible for decoding all output vectors. For small K, the delay is limited by
the time needed to compute droplets. However, for K ≳ 90 the master node of the centralized scheme can
no longer decode the output vectors quickly enough, causing a high overall computational delay. Thus, for
K ≳ 90 the scheme in [10] (now with R10 codes), incurs a delay significantly higher than that of the proposed
scheme. The proposed scheme also yields a significantly lower computational delay than that of the scheme
in [4]. Finally, the delay of the BDC scheme in [6], [7] is about 10% higher compared to the proposed scheme
based on R10 codes.

In Fig. 2 (right), we give the expected computational delay as a function of the straggling parameter β
for K = 625, m = 33333, n = 33, N = 6250, l = 32, and m/r = 1/3. Since l is not a divisor of m, A is
zero-padded with 11 all-zero rows. The performance of the centralized scheme approaches that of our scheme
as β grows since the average rate at which droplets are computed decreases with β. The scheme based on
R10 codes operates close to an ideal rateless code for all values of β considered.
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Fig. 2: Left: Performance dependence on system size for mnN/K ≈ 107, n = m/1000, N = 10K, m/r = 1/3,
m/l ≈ 1024, and β = σK. Right: Performance dependence on the straggling parameter β for K = 625, m = 33333,
n = 33, N = 6250, l = 32, and m/r = 1/3.

6 CONCLUSION

We introduced a coded computing scheme based on Raptor codes for distributed matrix multiplication
where each server computes several intermediate values and where the work of decoding the output is
distributed among servers. Compared to previous schemes, the proposed scheme yields significantly lower
computational delay when the number of servers is large. For instance, the delay is less than half when the
number of servers is 200. Furthermore, the performance of the scheme based on R10 codes is close to that of
an ideal rateless code.
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Abstract

We consider straggler-resilient learning. In many previous works, e.g., in the coded computing literature,
straggling is modeled as random delays that are independent and identically distributed between workers.
However, in many practical scenarios, a given worker may straggle over an extended period of time. We
propose a latency model that captures this behavior and is substantiated by traces collected on Microsoft
Azure, Amazon Web Services (AWS), and a small local cluster. Building on this model, we propose DSAG, a
mixed synchronous-asynchronous iterative optimization method, based on the stochastic average gradient
(SAG) method, that combines timely and stale results. We also propose a dynamic load-balancing strategy to
further reduce the impact of straggling workers. We evaluate DSAG for principal component analysis, cast
as a finite-sum optimization problem, of a large genomics dataset, and for logistic regression on a cluster
composed of 100 workers on AWS, and find that DSAG is up to about 50% faster than SAG, and more than
twice as fast as coded computing methods, for the particular scenario that we consider.

✦

1 INTRODUCTION

W E are interested in reducing the latency of distributed iterative optimization methods for empirical
risk minimization. In particular, we want to reduce the impact of straggling workers, i.e., workers

experiencing delays, which can significantly slow down distributed algorithms. The straggler problem is a
consequence of the design of modern large-scale compute clusters (sometimes referred to as warehouse-scale
computers), which are built from a large number of commodity servers connected in a heterogeneous manner,
and where many virtual machines may share the same physical host server, to maximize cost-efficiency [1],
[2]. Examples include Microsoft Azure, Google Cloud, and Amazon Web Services (AWS).

Straggling is often assumed, e.g., in the coded computing literature [3], [4], [5], [6], to be caused by random
delays that are independent and identically distributed (i.i.d.) between workers and iterations. However,
from traces collected on Microsoft Azure and AWS, we find that stragglers tend to remain stragglers. As a
result, data processed by stragglers may never factor in for stochastic methods that only rely on the results
from the fastest subset of workers.

This work consists of three parts. First, we propose a latency model that, unlike previous models, accounts
for differences in the mean and variance of the latency between different workers and over time. Further, for
the proposed model we show how to efficiently estimate the latency of the w-th fastest worker out of a set
of N workers, including for iterative computations, where a worker may remain unavailable over several
subsequent iterations.

Second, based on this model, we propose DSAG, an iterative method for finite-sum optimization (machine
learning problems are typically cast as finite-sum optimization problems) which adapts the stochastic average
gradient (SAG) method [7] to distributed environments. The key idea of DSAG is to wait for the w fastest
workers in each iteration—i.e., DSAG is a stochastic method—while simultaneously integrating stale results
received from the N − w stragglers as they are received over subsequent iterations. DSAG relies on the
variance reduction technique of SAG to suppress the potentially high variance caused by this strategy and
improve convergence. Finally, we propose a dynamic load-balancing strategy for reducing the variation in
latency between workers, that is based on the model proposed in part one.

We validate the proposed model on Azure, AWS, and a small local cluster, and find that the model
accurately predicts latency across the three platforms. We evaluate the performance of DSAG by using it
for principal component analysis (PCA), cast as an optimization problem, of a large genomics dataset, and
for logistic regression. For both PCA and logistic regression, DSAG with load balancing reduces latency
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significantly compared to SAG—for a scenario with 100 workers on AWS, DSAG is about 10% faster than
SAG for PCA and up to 50% faster for logistic regression. Furthermore, it is more than twice as fast as coded
computing methods.

We provide the source code of our implementation and the latency traces we have collected under a
permissive license at [8].

Related work
Recently, coded computing has been proposed to deal with stragglers [3]. The key idea is to add redundant
computations (thus increasing the per-worker computational load), such that the result of the computation
can be recovered from a subset of the workers, typically via a decoding operation. Coded computing methods
have been proposed for, e.g., matrix-vector multiplication [3], [9], [10], matrix-matrix multiplication [11], [12],
[13], [14], [15], [16], [17], [18], polynomial evaluation [19], and gradient computations [4], [20]. For example,
the method in [4] increases the computational load per worker by a factor (N − w) + 1 compared to gradient
descent (GD) to tolerate any N − w stragglers.

Another method to deal with stragglers is stochastic optimization, the simplest form of which is to ignore
stragglers for GD. This is a stochastic gradient descent (SGD) method, sometimes referred to as ignoring
stragglers SGD. SGD does not converge to the optimum unless the stepsize is reduced as the algorithm
progresses. However, a smaller stepsize reduces the rate of convergence, and it is difficult to determine
the correct rate at which to reduce the stepsize. Approximate coded computing methods combine ignoring
stragglers SGD with redundancy, e.g., [5], [21], [22]. These methods improve the rate of convergence per
iteration compared to ignoring stragglers SGD but typically do not converge to the optimum, and typically
increase the computational load compared to GD by a factor 2 or 3.

The above methods treat iterations independently, ignoring the correlation between the results computed
in subsequent iterations, which is often significant. The coded version of the power method proposed in [6] is
an exception in that the previous iterate is used as side information during decoding. The process is related
to sketch-and-project methods (see, e.g., [23], [24], [25]), i.e., iterative methods to approximate some quantity
from low-rank sketches. In particular, the method in [6] can be seen as a special case of the one in [24]. A
significant shortcoming of the method in [6] is that it requires a complex decoding process to be performed
by the coordinator for each iteration.

The method in [24] is a variance-reduced stochastic method for first-order optimization. For each iteration,
these methods use an estimate of the gradient to, e.g., perform a gradient step, i.e., they are stochastic.
Variance-reduced methods converge to the optimum despite being stochastic by using information contained
in previous iterates and/or gradients to ensure that the variance of this estimate tends to zero as the method
progresses. Examples of variance-reduced methods include SAG [7], SAGA [26] (including a peer-to-peer
version [27]), SARAH [28], SVRG [29], SEGA [24], and MARINA [30]. These works do not consider the
straggler problem.

Exploiting stale gradients in combination with asynchronicity to alleviate the straggler problem has been
explored in several previous works, see, e.g., [31], [32], and references therein, in the neighboring area of
federated learning, and [13]. These methods are similar to the proposed DSAG, but do not employ variance
reduction. For example, a mixed synchronous-asynchronous distributed version of SGD that is similar to ours
has been proposed and analyzed in [13]. Like the method we propose, the method in [13] uses asynchronicity
to reduce iteration latency. However, unlike our method, the method in [13] gradually increases the level
of synchronicity, thus increasing iteration latency, to improve convergence, whereas our method relies on
variance reduction. There has also been a significant amount of work on asynchronous optimization for
shared-memory systems, e.g., [33], [34], and references therein. However, these works do not consider the
straggler problem.

The load-balancing approach we suggest is designed specifically for DSAG, but is inspired by the large
number of previous works on the topic; see, e.g., [35], [36], [37], [38], and references therein. These suggest
approaches to balance either i) the complexity of the subtasks that make up a particular large computation
(e.g., [35], [36]), or ii) incoming requests between instances of a distributed application, such as a web server
(e.g., [37], [38]). The approach we suggest, like those of [37], [38], but unlike [35], [36], accounts for latency
differences between servers and over time—as is the case in the cloud—but balances the complexity of
subtasks, as in [35], [36]. Furthermore, DSAG is designed with load-balancing in mind, and, as a result, unlike
the approach of [35], [36], does not require moving data between servers to perform load-balancing.

2 PRELIMINARIES

Denote byX ∈ Rn×d a data matrix, where n is the number of samples and d the dimension. Many learning
problems (e.g., linear and logistic regression, PCA, matrix factorization, and training neural networks) can be
cast as a finite-sum optimization problem of the form

V ∗ = argmin
V ∈L

[
F (V ,X) ≜ R(V ) +

n∑

i=1

fi(V ,xi)

]
, (1)
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where L is the solution space, fi is the loss function with respect to the i-th sample (row ofX), which we
denote by xi, and R is a regularizer, which serves to, e.g., bias V ∗ toward sparse solutions. For the remainder
of this paper, we write F (V ) and fi(V ), leaving the dependence of F and fi on X and xi, respectively,
implicit.

These problems are often solved (e.g., for the examples mentioned above) using so-called first-order
iterative optimization methods, i.e., methods that iteratively update a solution based on the gradient of the
loss function F , which we denote by ∇F . One example of such a method is GD, the update rule of which is

V (t+1) = G
(
V (t) − η∇F

(
V (t)
))

, (2)

where t is the iteration index, η the stepsize, and G a projection operator (possibly the identity operator).
In this work, we consider a distributed scenario in which the rows of X are stored over N worker

nodes, such that each node stores an equal fraction of the rows. The workers are responsible for computing
the subgradients ∇f1, . . . ,∇fn and the coordinator is responsible for aggregating those subgradients and
performing a gradient step.

Experimental setup
The results presented in this work are from experiments conducted on compute clusters hosted on Microsoft
Azure (region West Europe), AWS (region eu-north-1), and the eX3 cluster.1 For Azure, the nodes are of
type F2s_v2 and for AWS the nodes are of type c5.xlarge.2 For AWS, we also provide traces for nodes
of type c5.xlarge in region us-east-1 and of type t3.xlarge in region eu-north-1 [8]. The nodes
used on eX3 are equipped with AMD EPYC 7302P processors and high-speed InfiniBand interconnects.
We use the same type of node for the coordinator and the workers. Our implementation is written in the
Julia programming language, and we use OpenMPI for communication—specifically, the Isend and Irecv
nonblocking, point-to-point communication subroutines. For Azure and AWS, we use the CycleCloud and
ParallelCluster systems, respectively, to create workers on-demand.

Throughout this paper, we consider a data matrix derived from the 1000 Genomes phase-3 dataset [39].
More precisely, we consider a binary representation of the data for each chromosome, where a nonzero entry
in the (i, j)-th position indicates that the genome of the i-th subject differs from that of the reference genome
in the j-th position. The matrix we use is the concatenation of such matrices computed for each chromosome.
It is a sparse matrix of size 81 271 767 × 2504 with density about 5.360%. In Section 7, we also consider the
HIGGS dataset, which consists of 11 000 000 samples with 28 features [40]. For all computations, each worker
stores the subset of the dataset assigned to it in memory throughout the computation.

3 MODELING THE LATENCY OF GRADIENT COMPUTATIONS

In this section, we propose a model of the communication and computation latency of workers performing
gradient computations in a distributed setting. Later, we use this model to predict the latency of the w-th
fastest worker out of a set of workers. We first consider the latency of workers operating in steady state
(Section 3.1), after which we consider how the latency of a particular worker changes over time (Section 3.2).

The model we propose is based on latency traces collected in clusters composed of up to 108 workers
on AWS, Azure, and eX3, with varying per-worker computational load, which we denote by c, and b bytes
communicated per iteration. Here, the computational load can be any quantity that captures the amount of
work performed by each worker and iteration, such that a change in c results in a proportional change in the
expected computation latency of a single worker. The number of bytes communicated and the computational
load are equal for all workers, and we repeat the experiment at different days and times of the day.

In particular, for each worker, we record the latency associated with sending to the worker an iterate V
and for the worker to respond with the result of the computation,

XT
i:jXi:jV , (3)

for some integers 1 ≤ i ≤ j ≤ n, where Xi:j denotes the submatrix of X consisting of rows i through
j. Hence, our results generalize to computations that rely on matrix multiplication, although the model
is also easily adapted to other types of computations. In addition, we make available traces recorded for
other computations and datasets, and we find consistent behavior across the computations and datasets
considered [8].

We let c be the number of operations required to perform this computation, i.e., c = 2ζdk(j − i + 1),
where d is the dimension, k is the number of columns of V , and ζ is the density of the data matrix. For
all recordings, we randomly permute the rows of the matrix to break up dense blocks, and we adjust the
computational load by tuning the number of samples processed.

In Fig. 1, we plot the range of computational loads considered, together with the mean and variance of
the computation latency recorded for 100 different workers for each computational load, when the number of

1. See ex3.simula.no.
2. Both F2s_v2 and c5.xlarge nodes are based on Intel Xeon Platinum 8000 series processors. F2s_v2 nodes have an

expected network speed of 875 Mbps, whereas c5.xlarge nodes have a network speed of up to 10 Gpbs.
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bytes communicated per iteration is b = 30 048. For reference, we also plot a line passing through the origin
fitted to the data.
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Fig. 1: Mean and variance of the computation latency recorded for 100 different workers as a function of the
computational load. Circles correspond to workers, and the mean over all recordings for each computational load
is marked by a square. For reference, we also show a line passing through the origin fitted to the data.

3.1 Steady-state latency
We find that the latency distribution of workers may change significantly over time, but that these changes
typically occur quickly and that the distribution remains approximately constant between changes. Here, we
characterize the latency of individual workers while in steady state. Our results are based on traces collected
from running many iterations of (3) in sequence over a set of workers. For each iteration, we wait for all
workers to return their result before proceeding to the next iteration. For this section, we have deliberately
chosen traces for which the latency distribution does not change significantly throughout the computation.
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Fig. 2: Per-iteration latency (left) and empirical CDF of the per-iteration latency (right) of two workers on Azure,
with b = 30 048 bytes communicated per iteration (circles) and computational load c = 2.841 · 106 (triangles).
Worker 2 is, on average, 14% slower than worker 1. Black dashed lines indicate fitted gamma distributions.

In Fig. 2, we plot the communication latency (circles) and computation latency (triangles) recorded for two
workers over 100 iterations (out of a total of 1600) on Azure. Note that the average latency differs between
the two workers; worker 2 is about 14% slower. We show the associated cumulative distribution functions
(CDFs) in Fig. 2. Now, for a set of workers, we model the latency of the i-th worker by the random variable

X
(b,c)
i = Y

(b)
i + Z

(c)
i , (4)
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where Y
(b)
i and Z

(c)
i are random variables associated with the communication and computation latency,

respectively, of the worker, when the number of bytes communicated is b and the computational load is c.3

We often omit the superscripts b and c.
We find that the communication and computation latency of workers on Azure and AWS is well-

approximated by independent gamma-distributed random variables,4 but that the parameters of these
distributions typically differ between workers, i.e., probability distributions have to be fitted to the
particular set of workers used for each computation, especially for systems like Azure CycleCloud and
AWS ParallelCluster, which create new worker instances on-demand at the start of a computation. Failing
to account for these differences can significantly reduce the accuracy of predictions made using the model;
see Section 4.1 and Fig. 4.

3.2 Variability over time
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Fig. 3: Per-iteration computation latency of 3 workers
(out of N = 36) on AWS, with computational load
c = 7.566 · 107. Workers typically experience bursts of
high latency.

The latency distribution of any particular worker
typically changes over time. In particular, as a conse-
quence of the design of cloud computing systems,
where multiple virtual machines share the same
physical host machine, workers experience bursts of
higher latency. For example, performing memory-
intensive operations, such as matrix multiplication,
can more than halve the bandwidth available to
other threads on the same machine [41].5 Further,
computations managed by cluster schedulers, such
as Borg or Kubernetes, are often only guaranteed a
very low fraction of the CPU cycles of the server it is
assigned to, but may opportunistically use any cycles
not used by other computations [42], [43, Ch. 14.3],
potentially resulting in large performance fluctuations.

In Fig. 3, we show an example of such high-
latency bursts, with the average latency of each of
3 workers out of the N = 36 workers used for a
particular computation on AWS increasing by about
12% for about one minute.6 The entire computation
lasts for about 30minutes, and most of the 36 workers
experience at least one such burst over this time.
Further, at least one worker is currently experiencing
a burst of high latency for about 40% of the iterations.
This problem becomes more severe for a larger number of workers—for computations consisting of hundreds
of workers, the probability that no worker is currently experiencing a latency burst is close to zero.

4 PREDICTING THE LATENCY OF DISTRIBUTED GRADIENT COMPUTATIONS

Here, we show how to efficiently estimate the latency of the w-th fastest worker (w ≤ N ) of a set of
workers, i.e., the w-th order statistic of the per-worker latency. Later, we use these predictions for dynamic
load-balancing to minimize latency variations between workers (see Section 6). Throughout this section, we
have deliberately chosen traces where workers are operating in steady state. When used for load-balancing,
we account for bursts by dynamically updating the estimate of the latency distribution associated with each
worker. We first consider the case where all workers are available at the start of each iteration (Section 4.1),
before considering the more realistic case where workers may remain unavailable over several iterations
(Section 4.2).

4.1 Order statistics latency
From the distributions of Yi and Zi for each worker, we can compute the distribution of the latency of the
w-th fastest worker. However, the computational complexity of doing so analytically may be prohibitively
high when the number of workers is large. Instead, we use Monte Carlo integration. The complexity of
sampling from the latency of the w-th fastest worker is linear in the number of workers, since we can first

3. The model proposed in [19], where the latency of each worker is assumed to take on one of two discrete values, is similar
to ours in the sense that latency may differ between workers. However, for our model, latency takes on values according to a
continuous probability distribution.
4. In several previous works, latency is modeled by shifted exponential-distributed random variables. These models are related,

since the sum of several exponential random variables is gamma-distributed. Hence, a possible interpretation is that the latency
we record is the sum of the latency of several smaller computations, each of which has exponentially distributed latency.

5. This is known as the noisy neighbor problem.
6. Similar behavior was observed on AWS in [37], [38].
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sample from Yi and Zi for each worker and then find the w-th smallest value of the resulting list in linear
time, e.g., using the Quickselect algorithm. Through this process we can estimate, e.g., the expected latency of
the w-th fastest worker.
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Fig. 4: Average latency of the w-th fastest worker out of
N = 72 workers for a computation on Azure, and
predicted latency, where the per-worker latency is
modeled as either independent, but not necessarily
identically distributed, or i.i.d., between workers. The
i.i.d. assumption can significantly reduce accuracy.

In Fig. 4, we plot the average latency of the w-th
fastest worker out of N = 72 workers for a particular
computation with b = 30048 and c = 4.545 · 108 on
Azure. We also plot predictions made using Monte
Carlo integration as explained above, and, for refer-
ence, predictions made by the commonly adopted i.i.d.
model, where the latency of each worker is modeled
by a random variable with mean and variance equal
to the global mean and variance computed across all
workers.7 The proposed model yields an accurate pre-
diction of the empirical performance, while assuming
that latency is i.i.d. between workers can significantly
reduce accuracy.

4.2 Order statistics latency of iterative computa-
tions
In Section 4.1, we considered order statistics in cases
where all workers are available at the start of each
iteration. However, for straggler-resilient methods, we
wish to proceed to the next iteration immediately after
receiving results from the w fastest workers, without
waiting for the remaining N − w workers, which may
remain unavailable over several subsequent iterations.

Here, we show how to estimate latency in this
scenario. Denote by T

(t)
w the time at which the t-th

iteration of an iterative computation, for which the
coordinator waits for the w-th fastest worker in each
iteration, is completed (i.e., the latency of the t-th iteration is T (t)

w − T
(t−1)
w ). We wish to simulate the time

series process T (1)
w , . . . , T

(ℓ)
w , where ℓ is the number of iterations. We do so by using a two-state model, where

workers are either idle or busy. First, each worker has a local first-in-last-out task queue of length 1. If the i-th
worker is idle and there is a task in its queue, it immediately removes the task from the queue and becomes
busy for a random amount of time, which is captured by the random variable Xi (recall that we can sample
from Xi, see Section 3.1), before becoming idle again. At the start of each iteration, the coordinator assigns a
task to each worker, and once w of those tasks have been completed, the coordinator proceeds to the next
iteration.

Using this model, we can efficiently simulate realizations of T (1)
w , . . . , T

(ℓ)
w by using a priority queue data

structure (see, e.g., [44]) to map the index of each worker to the next time at which it will transition from
busy to idle. This strategy is typically referred to as event-driven simulation. By performing such simulations
we can estimate, e.g., the expected time required to perform ℓ iterations, in a manner that accounts for the
fact that workers may remain unavailable over several iterations. We provide an implementation of such a
simulator in [8].

In Fig. 5, we plot the cumulative latency over 100 iterations for two jobs, with b = 30 048, c = 7.575 · 106,
and N = 72 on AWS, where, in one job, we wait for w = 9 workers (blue curves) and, in the other, for all
w = N = 72 workers (red curves). We also plot the predictions made by the proposed model based on
event-driven simulations, which accounts for the interaction between iterations, and the model described
in Section 4.1, which does not. For w = N = 72, both models give accurate predictions. However, for
w = 9 < N , the model of Section 4.1 underestimates the overall latency, since it does not account for the case
where workers remain unavailable over multiple iterations. The model based on event-driven simulations
remains accurate.

5 DSAG
In this section, we consider learning in cloud computing systems. In particular, we want an optimization
method that i) is able to make progress even when some workers fail to respond, ii) has fast initial convergence,
similar to SGD, which is achieved by performing many fast, but inexact, iterations, iii) eventually converges
to the optimum, iv) allows for dynamic load-balancing, and v) has low update complexity. GD and SAG fail
points i) and iv), SGD fails point iii), and coded computing methods fail either point ii) or iii), and, in most
cases, points iv) and v).

7. We model the latency distribution by a gamma distribution, which we find provides more accurate predictions than the more
commonly used shifted exponential distribution.



7

0 20 40 60 80 100
0

2

4

6

8

10

Iteration

C
um

ul
at
iv
e
la
te
nc

y
[s
]

Empiric
Predicted
Predicted, event-driven
Empiric
Predicted
Predicted, event-driven

Fig. 5: Cumulative latency over 100 iterations. Blue
curves correspond to w = 9 and red curves to w = 72.
Each iteration ends once w workers have completed
their task. For w < N , we need to account for the
case where workers remain unavailable over several
iterations, which we do using the model based on event-
driven simulations.

To address i)–v), we introduce DSAG, which
adapts SAG to distributed environments with het-
erogenous and straggling workers. As with SAG, the
key idea is to cache stale subgradients. However,
unlike SAG, DSAG utilizes subgradients computed
in previous iterations that arrive late. Further, DSAG
allows for load-balancing by dynamically changing
the number of data partitions (and hence the number
of samples that make up each partition). DSAG meets
all of the above criteria.

DSAG works as follows. Denote by

Y
(t)
i:j ≜

j∑

k=i

∇fk
(
V (t)
)

the subgradient computed from samples i through j,
where j ≥ i. The coordinator maintains a set of such
subgradients, denoted by Y , which we refer to as the
gradient cache. Upon receiving a subgradient Y (t)

i:j

from a worker, the coordinator first selects the subset
of overlapping subgradients

Y ′ ≜
{
Y

(t′)
i′:j′ ∈ Y : i ≤ i′ ≤ j or i ≤ j′ ≤ j

}
.

If any such subgradient is more recent than the re-
ceived subgradient (i.e., if t′ ≥ t for some Y (t′)

i′:j′ ∈ Y ′),
the process is aborted and the received subgradient
discarded. Otherwise, the overlapping subgradients
are discarded in favour of the received subgradient, i.e.,

Y ← (Y \ Y ′) ∪
{
Y

(t)
i:j

}
.

This process allows for changing partition boundaries at runtime, e.g., due to load-balancing, and can be
implemented efficiently by storing the elements of Y as nodes in a tree data structure.8 Denote by

H ≜
∑

 ∈Y
 (5)

the sum of the elements of Y . The coordinator maintains this sum by assigning

H ← H + Y
(t)
i:j −

∑

 ∈Y′
 

whenever a subgradient Y (t)
i:j is inserted into Y . Finally, H is used in place of the exact gradient ∇F to

update V (t), i.e.,

V (t+1) = G

(
V (t) − η

(
1

ξ
H + ∇R

(
V (t)
)))

, (6)

where ξ is the fraction of samples covered by the elements of Y . Scaling the gradient in this way improves the
rate of convergence for the iterations before the coordinator has received subgradients covering all samples.9

We remark that if there exists Y (t′)
i′:j′ in Y such that i′ = i and j′ = j, the existing element can be updated

in-place. In this case, and if the received subgradient is computed from the most recent iterate, the update
process degrades to that of SAG.

5.1 Distributed implementation
Here, we describe our distributed implementation of DSAG. In particular, we wish to maintain predictable
and low latency in the presence of stragglers. For SAG or SGD, this can be achieved by only waiting for
a subset of workers to return in each iteration, and ignoring any results computed by straggling workers.
However, since the same workers are likely to be stragglers for extended periods of time, the subgradients
received from the fastest subset of workers by the coordinator will not be selected uniformly at random, unless
all workers store the entire dataset or the coordinator waits for all workers. This can significantly reduce
the rate of convergence, since parts of the dataset may never factor into the learning process (see Section 7
and Fig. 7).

8. When using a tree data structure, the complexity of deleting and inserting subgradients is in O (log |Y|).
9. A similar scaling is used by SAG.
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DSAG addresses this shortcoming by utilizing stale results and through dynamic load-balancing. In
particular, at the t-th iteration, the coordinator waits until it has received subgradients computed from
V (t) from at least w workers. During this time, the coordinator may also have received subgradients from
previous iterations, which the coordinator stores if they are less stale than the currently stored subgradients it
would replace. Further, we allow for a small margin, such that after receiving the w-th fresh subgradient, the
coordinator waits for 2% longer—collecting any subgradients received during this time—before updating
the iterate. We find that doing so can improve the rate of convergence at the expense of a small increase
in latency, especially when combined with load-balancing. We explain the load-balancing strategy that we
propose in Section 6.

5.2 Convergence of DSAG
DSAG builds upon the SAG method, for which the error

F
(
V (t)
)

− F (V ∗) ,

where V ∗ is the optimum, decreases with O(1/t) and O(ρt), for some ρ < 1, for convex and strongly convex
problems, respectively [7]. We do not have convergence proofs for DSAG—the analysis of asynchronous
optimization methods is notoriously challenging, and the analysis of SAG is already complex—but we make
a few remarks to relate the behavior of DSAG to that of SAG.

SAG updates one subgradient, selected uniformly at random over all partitions, at each iteration, and
does not make use of stale subgradients. DSAG differs by updating one or more subgradients per iteration,
and in that some of the updated subgradients may have been computed from a previous iterate, provided
they are less stale than the replaced subgradients. Hence, the subgradients utilized by DSAG are at least as
fresh as those used by SAG. Second, DSAG, unlike SAG, may discard cached subgradients if it receives a
subgradient that is not aligned with an already cached subgradient (SAG does not support changing the
partition boundaries at runtime).

Hence, we conjecture that the rate of convergence of DSAG is at least as good as that of SAG for iterations
when no subgradients are discarded, and that it is worse than that of SAG in iterations where cached
subgradients have been discarded, and until the discarded entries have been repopulated. We present
empirical results that support this conjecture, see Section 7.

6 LOAD-BALANCING

Recall that computing speed typically differs between workers and may change over time (see Section 3).
Unless these differences are accounted for, fast workers typically spend a significant amount of time waiting
for slower ones, and some workers may never be among the w fastest ones. Here, we propose a strategy to
dynamically adjust the size of the data partitions stored by each worker to alleviate this issue. The process
consists of three steps:
1) Latency profiling to estimate the probability distribution of Zi and Yi for each worker based on recorded

latency (see Section 6.1).
2) Optimizing the number of subpartitions for each worker using simulations based on the latency model

of Section 4.2 to predict the impact of each change (see Section 6.2).
3) Re-partitioning the local dataset for any workers for which the number of subpartitions has changed

(see Section 6.3).
All three steps are performed asynchronously in parallel and are running continuously in the background. In
particular, whenever the optimizer finishes, it is restarted to include any new latency recordings.10 We show
how load-balancing affects latency in Fig. 6, and we describe the three steps in detail next.

10. The load-balancer proposed in [37] takes a similar approach, but is designed for web services.
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6.1 Latency profiler
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Fig. 6: Per-worker latency for N = 8 workers with (top)
and without (bottom) load-balancing, when waiting
for all workers (i.e., w = N ). We artificially slow
down 3 randomly selected workers (blue lines) after
40 iterations, and speed up another set of 3 randomly
selected workers (red lines) after 90 iterations. Note
that there is some natural variation in addition. The
load-balancer automatically re-balances the workload
in the iterations marked with gray lines. For the final
20 iterations, the overall latency of the unbalanced
system is more than twice that of the system with
load-balancing.

The latency profiler is responsible for estimating the
mean and variance of the communication and compu-
tation latency of each worker, and for providing these
to the optimizer. It takes as its input latency recorded
both by the coordinator and the workers themselves.
In particular, for each worker, the coordinator records
the time between sending an iterate to the worker
and receiving a response. Meanwhile, the workers
record the time between starting to process a received
iterate and having a response ready, and include this
recording in their responses.

For each worker, we take the latency recorded by
the worker as a sample of the computation latency,
and the difference between the latency recorded
by the worker and coordinator as a sample of the
communication latency, i.e., for the i-th worker, as
realizations of Zi and Yi, respectively. Hence, we
record the round-trip communication latency, which
includes the time required for data to be sent over the
wire and any queuing at either end.

Next, for each worker, the profiler computes the
sample mean and variance over a moving time win-
dow, i.e., samples older than a given deadline (in
seconds) are discarded before processing. Choosing
a window size involves making a trade-off—a larger
window size makes statistics computed over it less
noisy, but increases the time needed for the profiler
to adapt to changes.11 We denote by eY,i and vY,i
the mean and variance of the communication latency
of the i-th worker, and by eZ,i and vZ,i the mean
and variance of the computation latency, computed
as described above. For each worker, whenever new
latency recordings are available, the mean and vari-
ance of its communication and computation latency
are re-computed and sent to the optimizer, which uses
them to fit probability distributions.12

6.2 Optimizer
For each worker, we tune its workload by changing the number of subpartitions that the data it stores
locally is divided into. The optimizer takes as its input the most recent statistics computed by the profiler
and a vector p = [p1, . . . , pN ] containing the current number of subpartitions for each worker, and returns
an updated vector p′ = [p′1, . . . , p

′
N ]. For any solution p, we impose a constraint on the expected overall

per-iteration contribution, which we define as

h(p) ≜
N∑

i=1

hi(p), with hi(p) ≜
ui(p)ni
pin

,

where ni is the number of samples stored by the i-th worker and ui(p) the fraction of iterations that the i-th
worker delivers a fresh result in. Hence, hi(p) is a measure of the extent to which the i-th worker contributes
to the learning process. Note that ui is a nonlinear function of p, i.e., it depends on the workload of the
entire set of workers. The goal of the optimizer is to minimize latency variation between workers within this
constraint. More formally, its goal is to solve

argmin
p′

max
{
e′X,1, . . . , e

′
X,N

}

min
{
e′X,1, . . . , e

′
X,N

}

s.t. h(p′) ≥ hmin,

(7)

11. We use a window size of 10 seconds, which we find is a good trade-off for the applications we consider.
12. The shape and scale parameter of a gamma-distributed random variable with mean e and variance v is e2/v and v/e,

respectively.
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Algorithm 1 Load-balancer

procedure OPTIMIZE(p)
p′ ← p

i ← argmax
[
e′X,1, . . . , e

′
X,N

]
▷ Slowest worker

for j = 1, . . . , N do
p′j ←

⌊
eZ,jpj

eY,i+eZ,i−eY,j

⌋
▷ Equalize total latency

end for
while h(p′) < hmin do

i ← argmin
[
e′X,1, . . . , e

′
X,N

]
▷ Fastest worker

p′i ← ⌊0.99 · p′i⌋ ▷ Increase workload
end while
while h(p′) ≥ 0.99 · hmin do

i ← argmax
[
e′X,1, . . . , e

′
X,N

]
▷ Slowest worker

p′i ← ⌈1.01 · p′i⌉ ▷ Decrease workload
end while
return p′

end procedure
loop ▷ Optimizer main loop

Collect updated latency statistics from the profiler
p ← OPTIMIZE(p)
Distribute the updated vector p

end loop

where hmin is the constraint, and e′X,i is the expected overall latency of the i-th worker if its local dataset is
split into p′i subpartitions. Throughout the optimization process, we use the approximations

e′Z,i ≜ eZ,i
pi
p′i

, v′Z,i ≜ vZ,i
p2i
p′i

2 ,

and
e′X,i ≜ eY,i + e′Z,i,

where pi is the current number of subpartitions of the i-th worker. Hence, we linearize the mean and variance
of the computation latency around the value of pi for which it was recorded.13

It is difficult to compute ui, and thus h, analytically, but ui can be estimated via event-driven simulations
as explained in Section 4.2.14 However, this requires that the optimizer i) is robust against noise in the
estimates of ui, and ii) evaluates ui a small enough number of times to be computationally fast enough to
provide useful solutions in time. We find that traditional optimization techniques that, e.g., rely on gradients,
fail the first criteria, while meta-heuristic techniques (e.g., evolutionary algorithms) fail the second. Hence, we
propose an optimizer that solves (7) by making small changes to p in an iterative fashion.

At a high level, the optimizer attempts to increase the contribution of workers that are always among
the w fastest by giving them more work, without increasing the overall latency. This increases the overall
per-iteration contribution, thus giving the optimizer leeway to reduce the overall iteration latency by reducing
the workload of the slowest workers. The proposed algorithm is given in Algorithm 1. Since h is estimated
via simulations, we evaluate the constraint with a 1% tolerance. Finally, we set the constraint to be

hmin = h(p0),

where p0 is the baseline number of subpartitions for each worker used at the start of the first iteration. This is
to ensure that load-balancing does not reduce the rate of convergence.

6.3 Re-partitioning
Whenever the optimizer produces an updated number of subpartitions for a particular worker, the update is
included with the next iterate sent to the worker, which re-partitions its local dataset. However, re-partitioning
carries a cost, since it invalidates subgradients cached by the coordinator. Here, we show how to minimize
the number and impact of such cache evictions resulting from re-partitioning. First, we partition the data
matrix such that the i-th worker stores locally the submatrix

X(i) ≜Xpstart(n,N,i):pstop(n,N,i),

13. This linearization is motivated by Fig. 1. If latency has been measured for several different values of pi, we use a weighted
average over the values of pi for which we have recordings.
14. With our implementation, for N = 100 workers and w = 50, simulating 100 iterations of the learning process takes about

1.5 milliseconds.
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Algorithm 2 Partition alignment

1: ki ← mod (ki, pi) + 1
2: k′i ← ptrans(ni, pi, p

′
i, ki)

3: while pstart(ni, p
′
i, k

′
i) ̸= pstart(ni, pi, ki) do

4: k′i ← k′i − 1
5: ki ← ptrans(n, p

′
i, pi, k

′
i)

6: end while
7: pi ← p′i
8: ki ← k′i

where
pstart(n, p, i) =

⌊
(i − 1)n

p

⌋
+ 1

and
pstop(n, p, i) =

⌊
in

p

⌋
,

with 1 ≤ p ≤ n and 1 ≤ i ≤ p. Next, for each worker, we subpartition the data it stores locally, such that, in
each iteration, the i-th worker processes the matrix

X
(i)
pstart(ni,pi,ki):pstop(ni,pi,ki)

,

for some index ki. Hence, we may tune the workload of a worker by sending it a new value pi, which changes
the number of samples processed per iteration. The following example shows how doing so leads to cache
evictions.

Example 1 (Re-partitioning). Consider a scenario with 2 workers, n1 = n2 = 10 (i.e., n = 20), and p1 = p2 = 2,
such that the partitions on the first worker are X1:5 and X6:10, and X11:15 and X16:20 on the second. Now, say
that we let p1 ← 3, such that the partitions on the first worker areX1:3,X4:6, andX7:10. Prior to this change, the
coordinator stores gradients corresponding to partitionsX1:5 andX6:10. Now, if in the next iteration the worker sends
to the coordinator the subgradient computed overX4:6, both of the existing entries need to be evicted before inserting
the new subgradient, leading to a lower rate of convergence until the missing cache entries have been populated.

We find that cache evictions due to re-partitioning can significantly reduce the rate of convergence, since
the gradient used by DSAG no longer covers all samples of the dataset. We use two strategies to reduce the
severity of this issue. First, we refrain from distributing an update p′ to the workers until doing so would
improve the objective function (7) by more than some threshold (e.g., 10%). Second, we process subpartitions
in order to minimize the number of iterations for which evicted cache entries remain empty. More formally,
the i-th worker stores a counter ki that it increments in a cyclic fashion each time it receives an iterate, i.e.,15

ki ← mod (ki, pi) + 1. (8)

Next, it computes the gradient with respect to the ki-th of its locally stored partitions. We show the benefit of
this approach with the following example.

Example 2 (Continuation of Example 1). Immediately after re-partitioning, the coordinator stores subgradients
computed over partitionsX1:5 andX6:10 (we omit partitions stored by the second worker). To minimize cache evictions,
over the following 3 iterations, the first worker sends to the coordinator:
1) The gradient overX1:3, evicting the gradient overX1:5, resulting in a cache with the gradients overX1:3 and
X6:10, leaving the gradient overX4:5 missing.

2) The gradient overX4:6 , evicting the gradient overX6:10, resulting in a cache with the gradients overX1:3 and
X4:6, leaving the gradient overX7:10 missing.

3) The gradient overX7:10, resulting in a cache with the gradients overX1:3,X4:6, andX7:10, leaving no missing
entries.

In this case, the gradients overX4:5 andX7:10 are missing from the cache for 1 iteration each. If instead the worker
had started by sending the gradient overX4:6, either the gradient overX1:3 orX7:10 would have been missing for 2
iterations, and the other for 1 iteration, resulting in a lower rate of convergence.

This approach is most effective if the first sample of the partition processed immediately after a re-
partitioning is aligned with the first sample of a partition already in the cache, since otherwise the evicted
entries are not re-populated until after a full pass over the data (this happens if the first worker in Example 2
starts by processingX4:6 after re-partitioning). Hence, when changing the number of subpartitions of the
i-th worker from pi to p′i, instead of using (8), we update ki using Algorithm 2, which relies on the function

ptrans(ni, pi, p
′
i, ki) =

⌈
pstart(ni, pi, ki)

p′i
ni

⌉
,

15. Note that, when w < N , workers, unlike the coordinator, are unaware of the current iteration index since they may have
remained unavailable for an arbitrary amount of time.
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that returns the index of the partition containing sample pstart(ni, pi, ki) when the number of partitions is p′i.
We illustrate Algorithm 2 with Example 3.

Example 3 (Continuation of Example 2). Say that, prior to re-partitioning, the first worker processed partitionX1:5,
so that k1 = 1, and that we are changing the number of subpartitions from p1 = 2 to p′1 = 3. In this case, the n1 = 10
samples stored by the first worker are subpartitioned as follows,

p1 = 2 : [1, 2, 3 , 4, 5], [6 , 7, 8, 9, 10]

p′1 = 3 : [1, 2, 3], [4, 5, 6], [7, 8, 9, 10]

where the indices are the row indices of X , and brackets in the first and second line indicate partition boundaries
before and after re-partitioning, respectively. Now, Algorithm 2 finds a partition out of p′1 = 3 partitions such
that its first sample is equal to that of some partition out of p1 = 2. It proceeds as follows. First, let k1 ←
mod (1, 2) + 1 = 2 (Algorithm 2), and k′1 ← ptrans(10, 2, 3, k1) = 2 (Algorithm 2). Since the k1-th and k′1-th
partitions are not aligned (Algorithm 2)—pstart(10, 3, k

′
1) = 4 ̸= 6 = pstart(10, 2, k1)—we let k′1 ← k′1 − 1 = 1 and

k1 ← ptrans(10, 3, 2, k
′
1) = 1 (Algorithm 2). Now the partitions are aligned (Algorithm 2)—pstart(10, 2, k1) = 1 =

pstart(10, 3, k
′
1)—and the worker assigns p1 ← p′1 and k1 ← k′1 (Algorithm 2).

Note that Algorithm 2 always terminates, since the first partition always starts at the first sample stored
by the worker, i.e., ki = k′i = 1 results in the partitions being aligned regardless of the values of pi and
p′i. However, ki = k′i = 1 may not be the only solution. For example, if ni = 10, pi = 2, and p′i = 4, then
ki = 2 and k′i = 3 also results in aligned partitions—pstart(10, 4, 3) = 6 = pstart(10, 2, 2). Hence, Algorithm 2
improves timeliness, since always setting ki = k′i = 1 after re-partitioning could result in the first few
subpartitions being processed much more frequently than the others.

7 CONVERGENCE RESULTS

Here, we evaluate the performance of DSAG for PCA and logistic regression, and compare it to that of GD,
SGD, SAG, and coded computing methods, on eX3 and AWS (see Section 2 for details). We also evaluate the
impact of load-balancing on performance for DSAG, SAG, and SGD. For PCA, the loss function is given by

R(V ) =
1

2
∥V ∥2F and fi(V ) =

1

2

∥∥∥xi − xiV V T
∥∥∥
2
, (9)

where the columns of V make up the computed principal components, ∥·∥ denotes the Euclidean norm, and
∥·∥F denotes the Frobenius norm and V is updated according to (2). For PCA,G(·) in (2) is the Gram-Schmidt
operator, i.e., G(·) takes an input matrix and applies the Gram-Schmidt orthogonalization procedure to its
columns such that the columns of the resulting matrix form an orthonormal basis with the same span as the
columns of the input matrix. For logistic regression, the loss is the L2-regularized classification error, i.e.,

R(V ) =
λ

2
∥V ∥2 and fi(V ) =

log
[
1 + exp

(
−bix

T
iV
)]

n
,

where b1, . . . , bn are the classification labels, with bi ∈ {−1,+1}, λ is the regularization coefficient, and in
this case G(·) is the identity operator. For PCA, we use a matrix derived from the 1000 Genomes phase-3
dataset [39], and for logistic regression we use the HIGGS dataset [40] (see Section 2). For PCA, we compute
the top 3 principle components, and for logistic regression, as in [7], we normalize all features to have zero
mean and unit variance, add an intercept equal to 1, and set the regularization coefficient to 1 divided by the
number of samples, i.e., λ = 1/11 000 000. We use 100 and 10 subpartitions for PCA and logistic regression,
respectively.

We measure performance as the latency to solve either PCA or logistic regression to within some precision
of the optimum, and, for all scenarios, we plot the suboptimality gap, i.e., the difference between the explained
variance (for PCA) or classification error (for logistic regression) of the computed solution and that of the
optimum, as a function of time. The results shown are averages over 5 experiments conducted on the
respective computing systems. For GD and coded computing, we use a stepsize of η = 1.0 for both PCA and
logistic regression, whereas for DSAG, SAG, and SGD, we use a stepsize of η = 0.9 for PCA and η = 0.25
for logistic regression (we need to reduce the stepsize relative to GD for the stochastic methods to ensure
convergence). We remark that GD applied to solving the optimization problem in (1) with the loss function
in (9) with η = 1.0 is equivalent to the power method for PCA, i.e., the power method is a special case of GD.

7.1 Coded computing
Coded computing methods with code rate r (a quantity between 0 and 1) make it possible to either recover
the gradient exactly (e.g., [4]) or an approximation thereof (e.g., [5], [6], [21], [22]) from intermediate results
computed by a subset of the workers, at the expense of increasing the computational load of each worker
by a factor 1/r relative to GD. The gradient is recovered via a decoding operation (that typically reduces
to solving a system of linear equations), the complexity of which usually increases superlinearly with the
number of workers. Ideally, the gradient can be recovered exactly from the results computed by any set of
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Fig. 7: Convergence of PCA (left column) and logistic regression (right column) for N = 49 workers on eX3 (top
row) and N = 100 workers on AWS (bottom row). The dataset is split evenly over the workers and is initially
subdivided into 100 subpartitions for PCA and 10 subpartitions for logistic regression. Stochastic optimization
methods with w < N effectively reduce the impact on latency of straggling workers, but only DSAG ensures
convergence to the optimum. Load-balancing can improve latency further in some instances. The results shown are
averages over 5 experiments.

⌈rN⌉ workers—codes with this property are referred to as maximum distance separable (MDS) codes—but
increasing the number of results required can allow for reducing the decoding complexity [9].

To compare against the wide range of coded computing methods, we use an idealized estimate derived
from the GD results. In particular, we assume that the code is MDS, but that the decoding complexity is zero.
More specifically, we set the latency per iteration equal to that of the ⌈rN⌉-th fastest worker after scaling the
computational latency recorded for GD of all workers by 1/r, and the rate of convergence equal to that of
GD. Hence, both the latency and rate of convergence of the estimate are bounds on what is achievable with
coded computing. Further, for PCA, this bound includes coded computing methods for matrix multiplication
(e.g., [3], [6], [9], [10]), since GD is equivalent to the power method in this instance.

7.2 Artificial scenario
While we are primarily interested in cloud computing systems, for the sake of reproducibility, we first present
results recorded for N = 49 workers on eX3, which is much more homogenous than the cloud, where we
introduce variability in a controlled manner. In particular, we artificially increase the computational latency
of the i-th worker by a factor (i/N) · 0.4 by introducing delays at the worker nodes.16 Further, we remove
this artificial latency for workers 40 through 49 after one second has passed from the start of the learning
process to simulate those workers coming out of a high-latency burst.

In Fig. 7 (top row), we show convergence of PCA (left) and logistic regression (right) in this scenario. First,
for both PCA and logistic regression, at least one of the stochastic methods (DSAG, SAG, and SGD) is more

16. This level of variability is comparable to what we have observed for instances of type F2s_v2 on Azure.
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TABLE 1: Approximate latency of stochastic methods.

Comm. latency [s] Comp. latency [s]

eX3 PCA 2.0 · 10−5 to 6 · 10−5 2.2 · 10−2 to 3.1 · 10−2

AWS PCA 1.5 · 10−4 to 1 · 10−3 1.3 · 10−2 to 1.6 · 10−2

eX3 Logistic regression 0.2 · 10−5 to 3 · 10−5 1.8 · 10−3 to 2.5 · 10−3

AWS Logistic regression 1.0 · 10−4 to 6 · 10−4 1.1 · 10−3 to 1.3 · 10−3

than twice as fast as GD for any suboptimality gap—performing many fast, but inexact iterations, is often
preferable to performing fewer more accurate iterations. However, for SAG, when w < N , and SGD, there is a
point beyond which convergence effectively stops. For SGD, the high variance of its gradient estimate prevents
it from converging—SGD is not a variance-reduced method17—although larger w increases precision since it
causes a larger fraction of the dataset to be factored in. For SAG, which is variance-reduced, convergence
stops as a result of not factoring in samples stored by workers that are straggling over many subsequent
iterations (see Section 5.1). For w = N , SAG converges to the optimum since all workers participate in
each iteration, at the expense of increased latency, i.e., there is a trade-off between straggler-resiliency and
convergence.

DSAG extends SAG by incorporating stale results, and, as a result, converges to the optimum even when
w < N , allowing it to achieve both low latency and high precision in the presence of stragglers. In this
instance, DSAG with w = 10 is the fastest of all methods considered for both PCA and logistic regression,
except for when solving PCA to within a precision of about 10−3, in which case SGD is faster. In particular,
DSAG with w = 10 achieves a rate of convergence comparable to that of SAG with w = N , but reduces
latency by an amount that is proportional to the amount of latency variability. For example, for PCA, DSAG
with w = 10 is between about 20% (for a suboptimality gap of 10−4) and 30% (for a suboptimality gap of
10−8 or lower) faster than SAG with w = N , and, for logistic regression, DSAG with w = 10 is about 30%
faster than SAG when the suboptimality gap is 10−4 or lower. Finally, for both PCA and logistic regression,
the straggler resiliency afforded by coding is canceled out by the higher computational load. Here, we
consider a code rate r = 45/49, which we find yields lower latency compared to the lower rates typically
used in coded computing (e.g., in [4], [5], [6], [21], [22]).

Next, we evaluate the proposed load-balancer, which we apply to DSAG, SAG, and SGD—we refer to the
corresponding load-balanced methods as DSAG-LB, SAG-LB, and SGD-LB, respectively. For SAG-LB, to allow
for dynamically re-sizing the data partitions, we use the DSAG update rule (see Section 5), except that stale
results are discarded, instead of that in [7]. There are two important caveats. First, it takes about 7 and 0.5
seconds for the load-balancer to produce a first solution for PCA and logistic regression, respectively, before
which it has no effect (it is slower for PCA due to the larger number of subpartitions). Second, load-balancing
can reduce precision when the suboptimality gap is low due to cache invalidation (see Example 1).18 This
problem is especially severe when the number of subpartitions is large relative to the total number of iterations
(as is the case for the PCA problem we consider) since a larger fraction of the overall optimization time is
spent before the cache is re-populated. As a result, load-balancing does not result in a speedup for PCA.
However, for DSAG with w = 10 applied to logistic regression, load-balancing results in about 30% to 40%
lower latency when the suboptimality gap is between 10−6 and 10−12. Interestingly, the primary mechanism
by which load-balancing reduces latency is by increasing the average number of workers that respond within
the 2% latency tolerance (see Section 5.1), which allows it to reduce the workload for all workers without
reducing the expected overall contribution (see Section 6.2). Further, load-balancing improves the precision of
SAG with w < N since the probability of each worker participating becomes more uniform.

7.3 Performance on AWS
Here, we consider performance on a cluster composed of N = 100 workers on AWS. To ensure that the
results are representative, we use a fresh set of virtual machine instances for each set of experiments. While
the results on AWS are similar to those on eX3, there are a few important differences. First, communication
latency is about an order of magnitude higher on AWS compared to eX3, whereas computation latency is
about 10% to 30% higher, depending on the scenario (when accounting for the fact that the per-worker
computational load is about half that of eX3). We show the approximate latency range for the stochastic
methods without load-balancing in Table 1. As a result, the performance advantage of the stochastic methods
compared to GD and coded computing is reduced somewhat, although they are still about twice as fast.

Second, latency is noisier on AWS, with workers experiencing unpredictable high-latency bursts, which
may affect both communication and computation latency. Further, the noise makes up a larger fraction of
the overall latency for lower average latency. As a result, the straggler problem is more severe for logistic
regression than for PCA, for which each iteration is much slower (see Table 1). In particular, for PCA, DSAG

17. A popular variance reduction technique for SGD is to gradually decrease the stepsize, but doing so reduces the rate of
convergence.
18. This problem could be alleviated by disabling load-balancing when close to convergence.
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with w = 10 is only up to about 10% faster than SAG with w = N (for a suboptimality gap below 10−6),
whereas for logistic regression DSAG with w = 5 is about 30% faster when the suboptimality gap is 10−4 or
lower.

Finally, the level of static variation in latency between workers is smaller on AWS than on eX3 (which we
modeled after Azure). Hence, the advantage of load-balancing is smaller—about 10% to 15% for DSAG-LB
with w = 20 compared to DSAG with w = 10 (which is fastest when not load-balancing), for logistic
regression, and up to about 50% faster than SAG with w = N .

8 CONCLUSIONS

Recently, there has been significant interest in coded computing, which is often motivated by the straggler
problem in distributed machine learning and data analytics. However, we find that there are applications for
which coded computing reduces performance compared to GD, even when not accounting for the decoding
latency, which may be substantial. One issue is that coded computing methods are often designed under
the assumption that latency is i.i.d. between workers, which is typically not the case. Further, there are
fundamental differences between the distributed computing problem and the communication problem that
erasure correcting codes were designed to address. In particular, we find that, for iterative methods, missing
information can be substituted by stale information received over previous iterations, with only a marginal
reduction to the rate of convergence. In this way, variance-reduced stochastic optimization methods can
achieve straggler resiliency without increasing computational complexity, as is the case for coded computing.

In this work, we have proposed DSAG, which alleviates the straggler problem by only waiting for the
fastest subset of workers, while integrating the results computed by stragglers in an asynchronous manner.
DSAG is based on the SAG method and uses a variance reduction strategy to improve convergence. Further,
we have proposed a load-balancing strategy that is able to counter some of the latency variability that
exists in distributed computing systems, without moving data between workers. For both PCA and logistic
regression, we have shown that DSAG can reduce latency significantly—by up to 50% for logistic regression
on AWS, compared to SAG—through a combination of load-balancing and only waiting for the fastest subset
of workers.
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Abstract

We consider the problem of tracking the state of a process that evolves over time in a distributed setting,
with multiple observers each observing parts of the state, which is a fundamental information processing
problem with a wide range of applications. We propose a cloud-assisted scheme where the tracking is
performed over the cloud. In particular, to provide timely and accurate updates, and alleviate the straggler
problem of cloud computing, we propose a coded distributed computing approach where coded observations
are distributed over multiple workers. The proposed scheme is based on a coded version of the Kalman filter
that operates on data encoded with an erasure correcting code, such that the state can be estimated from
partial updates computed by a subset of the workers. We apply the proposed scheme to the problem of tracking
multiple vehicles. We show that replication achieves significantly higher accuracy than the corresponding
uncoded scheme. The use of maximum distance separable (MDS) codes further improves accuracy for larger
update intervals. In both cases, the proposed scheme approaches the accuracy of an ideal centralized scheme
when the update interval is large enough. Finally, we observe a trade-off between age-of-information and
estimation accuracy for MDS codes.

✦

1 INTRODUCTION

T RACKING the state of a process that evolves over time in a distributed fashion is one of the most
fundamental distributed information processing problems, with applications in, e.g., signal processing,

control theory, robotics, and intelligent transportation systems (ITS) [1], [2], [3]. These applications typically
require collecting data from multiple sources that is analyzed and acted upon in real-time, e.g., to track
vehicles in ITS, and rely on timely status updates to operate effectively. The analysis and design of schemes
for providing timely updates has received a significant interest in recent years. In a growing number of works,
timeliness is measured by the age-of-information (AoI) [4], defined as the difference between the current time,
t, and the largest generation time of a received message, U(t), i.e., the AoI is ∆t = t− U(t).

Distributed tracking often entails highly demanding computational tasks. For example, in many previous
works the computational complexity of the tasks performed by each node scales with the cube of the
state dimension, see, e.g., [2], [5] and references therein. Thus, the proposed schemes are only suitable for
low-dimensional processes. A notable exception is the algorithm proposed in [6], where the overall process is
split into multiple overlapping subsystems to reduce the computational complexity. However, the algorithm
in [6] is based on iterative message passing and potentially requires many iterations to reach consensus,
which makes it difficult to provide timely updates.

Offloading computations over the cloud is an appealing solution to aggregate data and speed up
demanding computations such that a stringent deadline is met. In [7], a cloud-assisted approach for
autonomous driving was shown to significantly improve the response time compared to traditional systems,
where vehicles are not connected to the cloud. However, servers in modern cloud computing systems rarely
have fixed roles. Instead, incoming tasks are dynamically assigned to servers [8], which offers a high level of
flexibility but also introduces significant challenges. For example, so-called straggling servers, i.e., servers that
experience transient delays, may introduce significant delays [9]. Thus, for applications requiring very timely
updates, offloading over the cloud must be done with care.

Recently, the use of erasure correcting codes has been proposed to alleviate the straggler problem in
distributed computing systems [10], [11], [12]. In these works, redundancy is added to the computation such
that the final output of the computation can later be decoded from a subset of the computed results. Hence,
the delay is not limited by the slowest server.

In this paper, we consider a distributed tracking problem where multiple observers each observe parts
of the state of the system, and their observations need to be aggregated to estimate the overall state [2], [6].
The goal is to provide timely and accurate information about the state of a stochastic process. An example
is tracking vehicles to generate collision warning messages. We propose a cloud-assisted scheme where
the tracking is performed over the cloud, which collects data from all observers. In particular, to speed up
computations, the proposed scheme borrows ideas from coded distributed computing by distributing the
observations over multiple workers, each computing one or more partial estimates of the state of the system.
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These partial estimates are finally merged at a monitor to produce an estimate of the overall state. To make the
system robust against straggling servers, which may significantly impair the accuracy of the estimate unless
accounted for, redundancy is introduced via the use of erasure correcting codes. In particular, the observations
are encoded before they are distributed over the workers to increase the probability that the information is
propagated to the monitor. A salient contribution of the paper is a coded filter based on the Kalman filter [1]
that takes coded observations as its input and returns a state estimate encoded with an erasure correcting
code. Hence, the monitor can obtain an overall estimate from a subset of the partial estimates via a decoding
operation. We apply the proposed scheme to the problem of tracking multiple vehicles using repetition codes
and random maximum distance separable (MDS) codes. We show that replication achieves significantly
higher accuracy than the corresponding uncoded scheme and that MDS codes further improve accuracy for
larger update intervals. Notably, both schemes approach the accuracy of an ideal centralized scheme for large
enough update intervals. Finally, for MDS codes we observe a trade-off between AoI and accuracy, with
update intervals shorter than some threshold leading to significantly lower accuracy.

2 SYSTEM MODEL AND PRELIMINARIES

We consider the problem of tracking the state of a stochastic process over time in a distributed setting. The
state at time step t is represented by a real-valued vector xt of length d and evolves over time according to

xt = Fxt−1 + qt,

where F is the matrix representing the state transition model and qt is a noise vector drawn from a zero-mean
Gaussian distribution with covariance matrixQ. We denote by x̂t the state estimate at time t and we measure
the accuracy of the estimate by its root mean squared error (RMSE).

At each time step, a set of No observers, O = {o1, . . . , oNo}, obtain noisy partial observations of the state
of the process. Specifically, the observation made by observer o at time t is represented by the vector

 
(o)
t = H(o)xt + r

(o)
t ,

where H(o) is a matrix of size h(o) × d representing the observation model of observer o and r
(o)
t is a

noise vector drawn from a zero-mean Gaussian distribution with covariance matrix R(o). Furthermore, we
denote by  t the overall observation vector formed by concatenating the observations made by all observers,
 
(o1)
t , . . . , 

(oNo )
t , and by h the length of  t. Similarly, we denote by H and rt the overall observation model

and noise vector, respectively, such that  t = Hxt + rt, and by R the covariance matrix of rt. For simplicity
we assume that all observations are of equal dimension. We also assume that h ≥ d and that the entries of
each observation  (o)

t are linear combinations of a small number of entries of xt, i.e., the observation matrices
H(o) are sparse, as is the case, e.g., for an observer measuring speed. The observations made by the No

observers need to be aggregated to estimate the overall state. Since d may be large, the work of aggregating
the observations is performed in the cloud over a set of Nw workers,W = {w1, . . . , wNw}. We assume that
the matrices F , Q, H(o), and R(o) are known.

2.1 Probabilistic Runtime Model
We assume that workers become unavailable for a random time after completing a computing task, which is
captured by the exponential random variable V with probability density function [10], [11]

fV (v) =

{
1
β e

− v
β v ≥ 0

0 v < 0
,

where β is used to scale the tail of the distribution, which accounts for transient disturbances that are at the
root of the straggler problem. We refer to β as the straggling parameter.

2.2 Distributed Tracking

At time step t, each observer o uploads its observation  
(o)
t to the cloud, where the observations are encoded

and distributed over the Nw workers. Next, each worker w that becomes available during time step t
computes locally one or more partial estimates of the state xt. These partial estimates are forwarded to
a monitor, which is responsible for computing the overall estimate of xt, denoted by x̂t, from the partial
estimates. Thus, the monitor has access to an updated state estimate at the end of each time step, which
can be used for other applications (e.g., to generate collision warning messages in ITS). Finally, the overall
estimate is sent back to the workers to be used in the next time step, i.e., we assume that all workers have
access to x̂t−1 at time step t.
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Fig. 1: System overview example. Each of the No = 4 observers observes parts of the state, highlighted with a gray
cone, and Nw = 2 workers compute 3 coded state estimates from 5 coded observations.

2.3 Kalman Filter
Denote by x̃t the prediction of the state at time step t based on the state estimate x̂t−1 at time step t − 1
and the state transition matrix F , i.e., x̃t = F x̂t−1, and by P̃t = FPt−1F

T +Q the covariance matrix of
the error x̃t − xt, where (·)T denotes matrix transposition and Pt−1 is the covariance matrix of the error
x̂t−1 − xt−1 at time step t− 1. The Kalman filter is an algorithm for combining the predicted state x̃t with
an observation  

(o)
t = H(o)xt + r

(o)
t to produce an updated state estimate x̂′

t with minimum mean squared

error [1]. Let ỹ(o)
t =  

(o)
t −H(o)x̃t and denote by S

(o)
t = R(o) + H(o)P̃t

(
H(o)

)T
its covariance matrix.

Then, the updated state estimate is x̂′
t = x̃t +K

(o)
t ỹ

(o)
t , where K(o)

t = P̃t

(
H(o)

)T (
S

(o)
t

)−1
is the Kalman

gain that determines how the observation should influence the updated estimate. The covariance matrix
of the error x̂′

t − xt is P ′
t =
(
Id −K

(o)
t H(o)

)
P̃t, where Id is the d × d identity matrix. If more than one

observation is available, the estimate can be improved by setting x̃t ← x̂′
t and P̃t ← P ′

t and repeating this
procedure. After repeating this procedure for all observations, the final estimate x̂t is obtained.

3 PROPOSED CODED SCHEME

In this section, we introduce the proposed coded scheme. The key idea is the use of two layers of coding to
make the system robust against straggling servers. The first layer consists of encoding the observations and
distributing them over multiple workers. More specifically, the overall observation vector  t is encoded by
an (nC, h) linear erasure correcting code over the reals resulting in the vector C t, where C is a generator
matrix of the code. Next, the elements of C t are divided into NC disjoint subvectors C(1) t, . . . ,C

(NC) t,
where C(i), i = 1, . . . , NC, is the corresponding division of the rows of C into submatrices. We denote by
n
(i)
C the number of rows of C(i). For the rest of the paper we refer to C(i) t as a coded observation. This

coding layer increases the probability that the information from an observation propagates to the monitor in
case of delays.

The second layer of coding relates to the partial state estimates computed by each worker. Specifically,
we propose a coded version of the Kalman filter that takes as its input the overall estimate at the previous
time step x̂t−1, provided by the monitor, one or more coded observations C(i) t from the current time step,
and outputs a partial state estimate x̂(j)

t . The proposed filter is such that the partial state estimate is equal
to the estimate of the regular Kalman filter multiplied by some matrix B(j). Equivalently, it can be seen as
an estimate of the state of a process represented by the vector B(j)xt. Let B be a generator matrix of an
(nB, d) linear erasure correcting code over the reals and let B(j) be a submatrix of B of size n(j)

B × d such
that B(1), . . . ,B(NB) correspond to a division of the rows of B into NB ≤ NC disjoint submatrices. Hence,
the partial estimates are symbols of the codeword Bx̂t and the monitor can recover the overall estimate x̂t

from a subset of the partial estimates, ensuring that the monitor has access to timely and accurate estimates
even if multiple workers experience delays.

Finally, we associate each coded state estimate B(j)x̂t with one worker and each coded observation
C(i) t with one coded state estimate. We index the coded states associated with worker w and the coded
observations associated with B(j)x̂t with the sets B(w) and C(j), respectively. In total, worker w receives the
set {C(i) t : i ∈

⋃
j∈B(w) C(j)} of observations. The overall process is depicted in Fig. 1.

3.1 Coded Update
When a worker w becomes available it first computes the set {B(j)x̂t : j ∈ B(w)} of coded state estimates
associated with it. The worker also computes a randomly selected subset of the Kalman gains associated with
the uncoded filter, which will later be used by the monitor to approximate the covariance matrix Pt. Each
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coded state estimateB(j)x̂t is computed from the previous state estimate x̂t−1 and the set {C(i) t : i ∈ C(j)}
of coded observations associated with it, and is computed independently from the other coded state estimates
using the following procedure. First, the worker computes

x̃
(j)
t =

(
B(j)F

)
x̂t−1

and the covariance matrix

P̃
(j)
t =

(
B(j)F

)
Pt−1

(
B(j)F

)T
+B(j)Q

(
B(j)
)T

of the error x̃(j)
t − B(j)xt. Next, x̃(j)

t and P̃
(j)
t are combined with the associated observations, i.e., the

observations in {C(i) t : i ∈ C(j)}, one at a time, to produce x̂(j)
t and the covariance matrix P (j)

t of the error
x̂
(j)
t −B(j)xt in the following way. First, consider a matrix A(i,j) such that A(i,j)B(j) = C(i)H . Then,

C(i) t = C(i) (Hxt + rt)

= C(i)Hxt +C(i)rt

= A(i,j)B(j)xt +C(i)rt,

i.e., the vector C(i) t can be considered as an observation of the state B(j)xt with observation matrix A(i,j)

and observation noise covariance matrix C(i)R
(
C(i)
)T

. Hence, using an observation C(i) t, a partial coded

state estimate x̂′(j)
t and the covariance matrix P ′(j)

t of the error x̂′(j)
t −B(j)xt can be obtained as

x̂
′(j)
t = x̃

(j)
t +K

(i,j)
t ỹ

(i,j)
t , (1)

P
′(j)
t =

(
I
n
(j)
B

−K
(i,j)
t A(i,j)

)
P̃

(j)
t , (2)

where
ỹ
(i,j)
t = C(i) t −A(i,j)x̃

(j)
t ,

K
(i,j)
t = P̃

(j)
t

(
A(i,j)

)T (
S

(i,j)
t

)−1
,

S
(i,j)
t = C(i)R

(
C(i)
)T

+A(i,j)P̃
(j)
t

(
A(i,j)

)T
.

Next, we let x̃(j)
t ← x̂

′(j)
t and P̃

(j)
t ← P

′(j)
t and repeat (1) and (2) for another observation until all

observations in {C(i) t : i ∈ C(j)} have been used, at which point the coded state estimate x̂(j)
t has been

computed. The covariance matrix P (j)
t is only needed for computing x̂(j)

t and is discarded at this point. The
worker repeats the above procedure for each coded state estimate x̂(j)

t , j ∈ B(w), assigned to it. Once finished,
the worker separately computes the Kalman gain of the uncoded filter K(o)

t , as explained in Section 2.3,
associated with some number NK of observers o selected uniformly at random from O. Finally, the coded
state estimates are sent to the monitor together with the K(i,j)

t and S
(i,j)
t matrices and the uncoded Kalman

gains computed by the worker, where they are used to recover the overall state estimate x̂t and the error
covariance matrix Pt.

3.2 Decoding
At the end of each time step t the monitor attempts to recover x̂t from the partial coded state estimates
x̂
(j)
t received from the workers. This corresponds to a decoding operation. Denote by Ut the set of coded

state estimates the monitor receives at time step t and by Bx̂t
the vertical concatenation of the generator

matrices associated with those estimates. To decode, the monitor needs to solve for x̂t inBx̂t
x̂t = yx̂t

, where
yx̂t

is the vertical concatenation of the vectors x̂(j)
t in Ut. However, there are two issues that need to be

addressed before solving for x̂t. First, due to the dependence structure of the tracking problem and the coding
introduced, the elements of yx̂t

will in general be correlated and have varying variance, which must be
accounted for to recover x̂t optimally. Second, since the local estimates by the workers are noisy,Bx̂t

x̂t = yx̂t

typically does not have an exact solution. We address the first issue by applying a so-called whitening transform
to the original problem, i.e., we solve for x̂t in Mx̂t

Bx̂t
x̂t = Mx̂t

yx̂t
, where Mx̂t

is a linear transform that
has the effect of uncorrelating and normalizing the variance of the elements of yx̂t

. The whitening transform
Mx̂t

is computed from the singular value decomposition of the covariance matrix of yx̂t
, which we denote

by Px̂t
, as in [13]. The covariance matrix Px̂t

is given by [14, Eq. (6.47)], where the covariance matrix, Kalman
gain, observation model, and observation noise covariance matrix of the uncoded filter update procedure are
replaced by their coded equivalents from Section 3.1. We address the second issue by finding the vector x̂t

that minimizes the ℓ2-norm of the error, i.e., by solving argminx̂t
||Mx̂t

Bx̂t
x̂t −Mx̂t

yx̂t
||2. We achieve this

by decoding x̂t using the LSMR algorithm [15]. The LSMR algorithm is a numerical procedure for solving
problems of this type that takes an initial guess of the solution as its input and iteratively improves on the
solution until it has converged to within some threshold. We give x̃t, which the monitor computes from x̂t−1
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as explained in Section 2.3, as the initial guess since the Euclidean distance between x̂t and x̃t typically is
small.

Next, the monitor approximates the error covariance matrix Pt using the following heuristic. First, the
monitor computes P̃t from Pt−1 as explained in Section 2.3. Denote by r the maximum rank of Px̂t

, i.e., the
rank of Px̂t

when all workers are available, and by rx̂t
the rank of the given Px̂t

. Now, if rx̂t
< r we assume

that the monitor has insufficient information to recover x̂t optimally and we let Pt = P̃t. On the other hand,
if rx̂t

= r, we assume that the monitor has recovered x̂t optimally, and the monitor computes Pt from P̃t

using the procedure for a full update of the uncoded filter (see Section 2.3). More formally, denote byK(o)
to the

most recently received Kalman gain corresponding to observer o at time step to. Then, the monitor computes
P ′

t =
(
Id −K

(o)
to H(o)

)
P̃t, assigns P̃t ← P ′

t , and repeats the procedure for each remaining observer o ∈ O.
Finally, we let Pt ← P̃t. Note that Pt depends only on the statistical properties of the observations, i.e., it can
be computed without access to the observations themselves.

4 DESIGN AND ANALYSIS OF THE PROPOSED SCHEME

We analyze the computational complexity of the proposed coded scheme, design the generator matrices
required for the coded filter update, and choose how the computations are distributed over the workers.

4.1 Computational Complexity
We assume that the number of arithmetic operations performed by the workers is dominated by the number
of operations needed to invert S when computing the Kalman gain, which requires in the order of n3

operations, where n is the number of rows and columns of S. Since each worker computes NK Kalman gains
associated with the uncoded filter in addition to those needed for the coded state estimates, and due to our
assumption that all uncoded observations have equal dimension, the overall number of operations performed

by the workers can be approximated by NKNw

(
h(o)
)3

+
∑

w∈W
∑

j∈B(w)

∑
i∈C(j)

(
n
(i)
C

)3
.

4.2 Code Design
Here, we propose two strategies for designing the sets B(w) and C(j) and the matrices B(1), . . . ,B(NB) and
C(1), . . . ,C(NC). The matrices A(i,j) are determined implicitly since A(i,j)B(j) = C(i)H . The first design is
based on replication, which is a special case of MDS codes, whereas the second is based on random MDS
codes.

4.2.1 Replication
This design is based on replicating the tracking task at each worker, i.e., the code rate is h/nC = 1/Nw. More
formally, each worker estimates xt, i.e., NB = Nw, B(j) = Id, j = 1, . . . , NB, B(w1) = {1}, . . . ,B(wNB

) =
{NB}, and each state estimate is computed from the full set of observations, i.e., NC = NwNo and the
observation encoding matrices and sets C(j) associated with each estimate x̂(j)

t = x̂t are such that {C(i) t :

i ∈ C(j)} = { (o)
t : o ∈ O}. Note that the monitor can recover x̂t and Pt immediately upon receiving these

values from any worker without performing any additional computations. Hence, we let NK = 0 and the

overall number of operations performed by the workers is approximately No

(h/nC)

(
h(o)
)3

.

4.2.2 Random MDS Coding
This design is based on assigning a large number of coded state estimates of dimension one to each worker,
i.e., we let n(j)

B = 1, j = 1, . . . , NB. Furthermore, to ensure that the code is well-conditioned, i.e., the numerical
precision lost due to the coding is low, we generateC by drawing each element independently at random from
a standard Gaussian distribution [16]. To satisfy the requirement A(i,j)B(j) = C(i)H we let B(j) = C(i)H

and A(i,j) = I1. As a result, n(i)
C = 1, i = 1, . . . , NC, and we associate each observation one-to-one with

a coded state estimate, i.e., NB = NC and C(1) = {1}, . . . , C(NB) = {NB}. Next, we split the coded state
estimates as evenly as possible over the Nw workers, i.e., some workers are assigned ⌊NB/Nw⌋ estimates and
some are assigned ⌈NB/Nw⌉ estimates. Finally, we letNK =

⌈
No/(h/nC)

Nw

⌉
, which, since n(i)

C = 1, i = 1, . . . , NC,

means that the overall number of operations performed by the workers is approximately No

(h/nC)

(
h(o)
)3

.

5 NUMERICAL RESULTS

To evaluate the performance of the proposed scheme, we consider a distributed vehicle tracking scenario
where Nw workers cooperate to track the position of N vehicles v1, . . . , vN based on observations received
from the vehicles. We model the state of each vehicle with a length-4 vector composed of its position and
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speed in the longitudinal and latitudinal directions, i.e., the overall state dimension is d = 4N . As in [17], we
assume that the state transition matrix of a single vehicle is

F =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1




and that the associated covariance matrix is

Q = V

[
σa 0
0 σa

]
V T, with V =




∆t2/2 0
0 ∆t2/2
∆t 0
0 ∆t


 .

Hence, the combined state transition matrix and covariance matrix for all vehicles is F = IN ⊗ F and Q =
IN ⊗Q , respectively. We assume that each vehicle observes its absolute position, e.g., using global navigation
satellite systems (GNSSs), and speed in the longitudinal and latitudinal directions. The corresponding
observation matrix is H = I4, with associated covariance matrix RGNSS = diag(σ2

GNSS, σ
2
GNSS, σ

2
speed, σ

2
speed),

where diag(·) denotes the diagonal, or block-diagonal, matrix composed of the arguments of diag(·) arranged
along the diagonal. Furthermore, similar to [17] we assume that each vehicle observes the distance and speed
difference in the longitudinal and latitudinal directions relative to a number s < N of other vehicles using,
e.g., radar or lidar. By combining these observations in a cooperative manner the accuracy of the vehicle
position estimates can be improved compared to a system relying only on GNSS observations. The covariance
matrix associated with a relative observation is RRel. = diag(σ2

V2V, σ
2
V2V, σ

2
speed, σ

2
speed).

For each vehicle vi, define the matrix U (vi) of size (s+ 1)×N , where the first row corresponds to the
absolute observation of the vehicle and each of the s remaining rows correspond to an observation relative
to another vehicle. The i-th column of U (vi) has s + 1 nonzero entries and the remaining columns each
have exactly one nonzero entry. For the first row of U (vi) the i-th entry has value 1, while the remaining
entries have value 0. For each of the remaining rows the i-th entry has value −1 and one other entry
corresponding to the observed vehicle has value 1. For example, if s = 2 and vehicle vi can observe vehicles
vj and vk the second and third row will have value 1 in column j and k, respectively. Then, the observation
matrix for vehicle vi is H(vi) = U (vi) ⊗H . The corresponding observation noise covariance matrix is
diag (RGNSS, Is ⊗RRel.). Finally, U (vi) is generated for one vehicle at a time such that the first vehicle
observes vehicles v2, . . . , vs+1, and, in general, vehicle vi observes vehicles v(j mod N )+1, j = i, . . . , i+ s− 1.

We compare the performance of the proposed scheme with that of an ideal centralized scheme where
the monitor has unlimited processing capacity and processes all observations itself using the procedure in
Section 2.3. We also compare against the performance of an uncoded scheme, where each observation is
processed by a single worker with no coding. More formally, we divide the No observations as evenly as
possible over the Nw workers, assigning ⌊No/Nw⌋ observations to some workers and ⌈No/Nw⌉ observations
to the remaining workers. Next, each worker estimates xt using the uncoded update procedure given in
Section 2.3. For this scheme, the monitor estimate is equal to the average of the estimates received from
the workers at each time step, i.e., x̂t is the average of the estimates in Ut and Pt is the average of the
corresponding covariance matrices.

We consider the vehicle tracking problem described above with σa = 0.3, σGNSS = 2, σV2V = 0.5, and
σspeed = 10. For all schemes, we run 10 simulations, each of T = 10000 time steps, and compute the
RMSE of the position estimate at each time step. More specifically, we denote by xp,t and x̂p,t the vectors
composed of the entries of xt and x̂t corresponding to position, e.g., entries 1, 2, 5, 6 if N = 2, and compute
mt ≜

√
1

d/2ep,te
T
p,t, where ep,t = x̂p,t − xp,t, for t = 1, . . . , T . Next, for each simulation, to avoid any initial

transients, we discard the first t0 − 1 samples m1, . . . ,mt0−1. We let t0 be the smallest value such that

|m̄t0:tm − m̄(tm+1):T |
max
(
m̄t0:tm , m̄(tm+1):T

) ≤ 0.1,

where tm = t0 + ⌊(T − t0)/2⌋ and m̄t1:t2 denotes the mean of mt1 , . . . ,mt2 . Finally, we plot the 90-th
percentile of the RMSE of the position estimate over the concatenation of the remaining samples from all
simulations.

In Fig. 2 (left), we show the 90-th percentile of the RMSE of the position as a function of the update
interval ∆t for replication and random MDS codes with rates 1/2 and 1/3. For replication the code rate is
h/nC = 1/Nw (see Section 4.2), i.e., the number of workers is Nw = 2 and Nw = 3 for rates 1/2 and 1/3,
respectively. MDS codes support an arbitrary number of workers and we let Nw = 16 for this design. We
show the RMSE for 0.01 ≤ ∆t ≤ 0.25 since several applications in ITS require an AoI in this range [3]. There
are N = 10 vehicles, each observing s = 5 other vehicles, and the straggling parameter is β = 0.1, i.e.,
workers become unavailable for 0.1 seconds on average after a filter update. Here, replication improves
accuracy significantly compared to the uncoded scheme, with a 90-th percentile RMSE of about 0.27 and 0.25
meters for code rates 1/2 and 1/3, respectively, when ∆t = 0.1. MDS codes improve the accuracy further at
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Fig. 2: 90-th percentile of the RMSE of the position over 10 simulations, each of T = 10000 samples. On the left, as
a function of ∆t for N = 10, s = 5, Nw = 16 (for MDS codes), and β = 0.1. On the right, as a function of Nw for
N = 10, s = 5, ∆t = 0.1, and β = 0.1.

this point, with about a 2.4% and 5.5% smaller error when compared at code rates 1/2 and 1/3, respectively.
Finally, for MDS codes we observe a trade-off between AoI and accuracy, with update intervals shorter than
some threshold, e.g., ∆t = 0.05 for code rate 1/3, leading to a higher RMSE since the probability of the
monitor collecting enough coded state estimates to decode x̂t approaches zero when ∆t→ 0.

In Fig. 2 (right), we show the 90-th percentile of the RMSE of the position for random MDS codes as a
function of the number of workers Nw for N = 10 vehicles, each observing s = 5 other vehicles, ∆t = 0.1,
and β = 0.1. We also show the error of replication (with Nw fixed to 2 and 3 for code rates 1/2 and 1/3,
respectively) and the uncoded and ideal schemes. The accuracy of the design based on MDS codes generally
improves with Nw, since the variance of the fraction of workers available in each time step decreases. In some
cases, e.g., for code rate 1/2 and Nw = 28, the error increases since the fraction of servers needed to decode
x̂t may increase if the number of coded state estimates does not divide evenly over the workers. Here, the
error of MDS codes is lower than that of replication when Nw ≥ 12 and Nw ≥ 8 for code rates 1/2 and 1/3,
respectively. We also observe that the performance does not improve significantly beyond some number of
workers.

6 CONCLUSION

We presented a novel scheme for tracking the state of a process in a distributed setting, which we refer to as
coded distributed tracking. The proposed scheme extends the idea of coded distributed computing to the
tracking problem by considering a coded version of the Kalman filter, where observations are encoded and
distributed over multiple workers, each computing partial state estimates encoded with an erasure correcting
code, which alleviates the straggler problem since missing results can be compensated for. The proposed
coded schemes achieves significantly higher accuracy than the uncoded scheme and approaches the accuracy
of an ideal centralized scheme when the update interval is large enough. We believe that coded distributed
tracking can be a powerful alternative to previously proposed approaches.
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