
PRIVACY
TOOLS IN
DISTRIBUTED
LEDGERS

J A N N O S I I M

WHAT’S
IT ABOUT?

• Privacy challenge in distributed ledgers

• Main tool: ZK-SNARK

• Challenges in ZK-SNARKs

• Alternative approach

2

PRIVACY

• Privacy is nice (in cryptocurrencies):
• Neighbor shouldn’t know what you bought for dinner
• Competing company shouldn’t know your suppliers
• ...

• Extent of privacy:
• Total privacy?
• Access with court order?
• Access to central authority?

3

PRIVACY IN BITCOIN

(E -> A; 30,000)

Employer

Bob

(A ->
 B; 100)

Look for A on
blockchainBlockchain

Alice

DEANONYMIZED

- mine
- verify transactions

4

SOLUTION: ZCASH

• How to solve the issue?

• Elegant solution from 2014: Zerocash

5

ZCASH

Employer

Bob

Alice

Blockchain

Enc (E -> A; 30,000)
Enc (A ->

 B; 100)Pr
oo

f

Proof

• Privacy: YES
• Verifiability: NO

6

???

ZCASH

Employer

Bob

Alice

Blockchain

Enc (E -> A; 30,000)
Enc (A ->

 B; 100)Pr
oo

f

Proof

• Privacy: if proof doesn’t leak
• Verifiability: if proof is unforgable

7

ZERO-KNOWLEDGE (ZK) PROOF

P
public x
private s public y

• Prover claims: there is s such that P (x, s) = y
Prover (x, s, y) Verifier (x, y)

program

8

ZERO-KNOWLEDGE (ZK) PROOF

P
public x
private s public y

• Prover claims: there is s such that P (x, s) = y
Prover (x, s, y) Verifier (x, y)

program
Soundness (unforgability):

- prover cannot convince verifier if
P (x, s) ≠y

👿

9

ZERO-KNOWLEDGE (ZK) PROOF

P
public x
private s public y

• Prover claims: there is s such that P (x, s) = y
Prover (x, s, y) Verifier (x, y)

program
Soundness (unforgability):

- prover cannot convince verifier if
P (x, s) ≠y
Knowledge soundness:

- prover knows s

👿

10

ZERO-KNOWLEDGE (ZK) PROOF

P
public x
private s public y

• Prover claims: there is s such that P (x, s) = y
Prover (x, s, y) Verifier (x, y)

program
Soundness (unforgability):

- prover cannot convince verifier if
P (x, s) ≠y
Knowledge soundness:

- prover knows s

11

👿

ZERO-KNOWLEDGE (ZK) PROOF

P
public x
private s public y

• Prover claims: there is s such that P (x, s) = y
Prover (x, s, y) Verifier (x, y)

program
Soundness (unforgability):

- prover cannot convince verifier if
P (x, s) ≠y
Knowledge soundness:

- prover knows s
Zero-knowledge (privacy):

- s is not leaked
- even more: only leaked

information is that P (x, s) = y

👿
12

NON-INTERACTIVE ZK-PROOF

• What other properties are needed?

• Proof should be verifiable by many verifiers

• Proof should be non-interactive

• Mathematically impossible!

check

check

check

Prover (x, s, y) Verifier (x, y)

13

COMMON REFERENCE STRING
(CRS)
• Trusted setup phase

• Avoids impossibility results

Prover (x, s, y) Verifier (x, y)

CRS CRS

Trusted Party

14

EFFICIENCY

• What else?

• Succinctness:
• Proof size: much smaller than s
• Verifier much faster than recomputing P (x, s)

• ZK-SNARK = Zero-Knowledge Succinct Non-interactive ARgument of Knowledge

• Prover’s speed: roughly the same as computing P (x, s) = y

P
public x
private s public y

program

15

EARLY RESULTS

• ZK-proof proposed in 1985 (Goldwasser, Micali, Rackoff)
• Turing award, Gödel Prize
• theoretical results for specific programs P

• 80s-90s:
• ZK-proof for all efficient programs P
• non-interactive zero-knowledge
• ZK-SNARKs (CS-proofs)
• many theoretical results
• impractical efficiency for arbitrary programs P
• good efficiency for some specific problems: Σ-protocols

16

PRACTICAL SNARKS

2000s:
• Pairing-based cryptography
• First efficient ZK-SNARKs

• almost good enough for real life

• Better mathematical modeling of programs (Quadratic Span Programs, Quadratic Arithmetic
Programs, ...)
• practical efficiency
• Pinocchio ZK-SNARK, Groth16 ZK-SNARK, ...

• Proof size: ~1500bits (for any program!)

Groth Lipmaa

17

APPLICATION: ROLLUPS

• Forget about privacy

• Blockchain scalability problem

• Rollups:
• compress transactions
• give ZK-SNARK to prove correctness

• Zero-knowledge doesn’t matter

• Soundness and Succinctness

compress
ZK-SNARK

- mine
- verify

18

OPEN PROBLEMS

Trusted setup:
• distributed ledger ≠ trusted setup
• New CRS for each program P
• solutions:

• multi-party computation for CRS
• cumbersome
• have to run for each P

• universal ZK-SNARKs – same CRS for all P
• transparent ZK-SNARKs – CRS is public random string

• How to get as good efficiency?

Prover Verifier

CRS CRS

Trusted Party

😰
😰

19

OPEN PROBLEMS

Security assumptions:

• Cryptography based on assumption
• Falsifiable assumptions: computing X is hard

• feel safer
• Non-falsifiable assumptions:

• hash functions give random outputs
• if you compute X, then you know Y (knowledge assumptions)
• realistic NF assumptions?

• Post-quantum security:
• Most SNARKs insecure against quantum
• Some candidates (less efficient)

20

ALTERNATIVE

• Traceable ring signatures (Monero)

• Signer is private in the ring

• Double spending protection:
• cannot sign twice without detection

21

𝑝𝑘!

𝑝𝑘"

𝑝𝑘# 𝑝𝑘$

𝑝𝑘%
𝑝𝑘&

Signature

QUESTIONS

22

