
Master Thesis

University of Bergen

Department of Informatics

Hardware in the Hands of the Unaware:
Remote BLE Keystroke Injection on

USB-Armory Mk II and the Pedagogical
Gap in Cybersecurity

Author:
Oskar Krystian Michalski Supervisor:

Øyvind Ytrehus

June 1, 2025

0.1 Acknowledgment
I would like to sincerely thank my supervisor, Dr. Øyvind Ytrehus, for his invalu-
able guidance, constructive feedback, and continuous encouragement throughout
this thesis. His motivation and support have been instrumental, offering critical in-
sights while also allowing me the necessary creative freedom. His extensive expertise
in cybersecurity significantly shaped my research direction and encouraged critical
and independent thinking.

Special thanks to Bjørn Møller Greve for inspiring me to pursue the Bluetooth
functionality within the Armory Device.

I am also grateful to my fellow students and colleagues for insightful discussions
and continuous motivation throughout the development of this thesis. Additionally,
I extend my thanks to the University of Bergen for providing the essential resources
and tools required to complete my research.

I would also like to acknowledge ChatGPT, the artificial-intelligence language
model, for helping me navigate the GitHub repository, clarify domain-specific con-
cepts, and translate specialized terminology in the available documentation as well
as comprehend complex aspects of this topic.

Finally, I wish to express my deepest gratitude to my family for their unwavering
support, understanding, and patience during the entire process of writing this thesis.
Their encouragement and consideration provided me the peace and clarity necessary
to accomplish my goals.

Oskar Krystian Michalski
June 1, 2025

i

0.2 Abstract
As our daily lives become increasingly digitalized, cybersecurity is critical for pro-
tecting personal and sensitive data. Yet, despite its importance, most people have
limited knowledge and understanding of cybersecurity fundamentals. This gap in
awareness is a significant vulnerability, potentially compromising even the most so-
phisticated security systems. To explore these challenges, this thesis investigates the
usability and practical functionality of the USB-C Armory Device MK II, a portable
security tool portrayed by the public as an advanced penetration testing platform.
By implementing a keystroke injection attack via Bluetooth Low Energy (BLE), I
demonstrate both the device’s capabilities and the considerable barriers newcomers
face when trying to acquire cybersecurity knowledge. This study reveals how poorly
presented cybersecurity documentation can discourage proactive users, while moti-
vated attackers easily exploit available vulnerabilities. Ultimately, this work aims to
highlight the urgent need for more accessible and intuitive cybersecurity resources,
promoting better awareness among everyday users.

iii

0.3 Research Questions
This thesis addresses the following research questions:

Firstly; How can the USB-C Armory Device MK II serve as an effective tool for
testing personal cybersecurity for users without specialized experise?

Secondly; What specific challenges do non-experts encounter when attempting to
educate themselves about cybersecurity and current cyber threats?

Lastly; How can awareness of cybersecurity threats and countermeasures impact
our safety in the digital world?

In exploring these questions, I investigate specific aspects of cybersecurity that
pose challenges for beginners, identifying obstacles in acquiring cybersecurity aware-
ness and understanding. Additionally, I examine methods to clearly illustrate the
real-world dangers posed by cyberattacks, even when performed by relatively in-
experienced attackers. Ultimately, this research seeks to bridge the knowledge gap
between cybersecurity experts and the general public, exploring ways to make pow-
erful cybersecurity tools accessible and manageable for non-experts. As well as
showcasing how easier accessibility of such tools and knowledge can enhance overall
cybersafety of individuals.

v

List of Figures

1.1 Order of Topics . 5

2.1 404 Server could not find client-requested page 12
2.2 Overlooked resources . 13
2.3 Communication setup between the Linux system on USB-C Armory

Device and my virtual machine. 17

3.1 Toggling Visibility . 23
3.2 Successful settings reading . 24
3.3 Default Sequence . 25
3.4 Read current configuration settings. 26
3.5 Results of the BLE scan. 28
3.6 Discovering ANNA, without being able to connect to it. 29
3.7 AT confirmation message from the ANNA module seen in Picocom

interface. 30
3.8 Intercommunication between underlying system components. 35
3.9 Oracle VM settings connecting USB-C Armory Device MK II to my

Kali Linux VM . 39

4.1 Terminal not connected to the Armory Device 43
4.2 Terminal connected to the Armory Device 44
4.3 Injected script into the not connected terminal 45
4.4 Background Python string processing 45
4.5 Python terminal seen by the user connected to the Armory Device . . 46
4.6 Keystroke Injection Countermeasures and their limitations 48

vii

List of Tables

3.1 BLE services and their characteristics 30
3.2 The properties of the characteristics. 31

ix

Contents

Acknowledgements . i
0.1 Acknowledgment . i
Abstract . iii
0.2 Abstract . iii
Research Question. v
0.3 Research Questions . v
List of Figures . vii
List of Tables . ix
Contents . xi

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 2
1.3 Problem Statement . 3
1.4 Objective . 3
1.5 Methodology . 3
1.6 Thesis Organization . 4
1.7 Bluetooth Technology in Daily Life 4

1.7.1 Bluetooth Low Energy (BLE) 6
1.8 Cybersecurity Context and Threat Landscape 6

1.8.1 Open-Source vs. Proprietary Security Approaches 6
1.9 Social Engineering and Hardware-Based Threats 7

1.9.1 Combined Threats: Bluetooth and BadUSB Attacks 7
1.10 Incentive and Research Gap . 7

1.10.1 My Expertise and Its Relevance 8
1.10.2 Bridging Cybersecurity and Education 8

2 Background 9
2.1 USB-C Armory Device mk II. 9

2.1.1 Hardware Specifications . 9
2.1.2 Device Features . 10
2.1.3 Adaptability . 11

2.2 ANNA-B112 . 11
2.2.1 Bluetooth Isolation and Security Features of ANNA-B112 . . . 12
2.2.2 AT Commands and ANNA Configuration 14

2.3 Experimental Setup . 15
2.3.1 Intended Communication Method 15
2.3.2 Final Communication Setup 16

2.4 Challenges . 17

xi

2.4.1 Initial Setup Difficulties . 17
2.4.2 Documentation and Configuration Struggles 17
2.4.3 Device Communication Exploration 17
2.4.4 Connectivity Adjustments and Final Approach 18
2.4.5 System Stability and Storage Issues 18
2.4.6 Bluetooth Access Challenges 20
2.4.7 Filesystem Integrity Problems 20
2.4.8 Comments on the GitHub Repository 21

3 Thesis 22
3.1 An practical introduction to ANNA 22

3.1.1 Establishing BLE Communication Using Picocom 22
3.2 Modifying ANNAs behavior . 23
3.3 ANNA-B112 Integration and Limitations 27
3.4 Establishing my grounds with ANNA-B112 27
3.5 The Discovery of ANNA . 27

3.5.1 Finding ANNA . 28
3.5.2 Connecting to ANNA . 28
3.5.3 Exploring services of ANNA 29
3.5.4 The Escape Character . 30
3.5.5 The final script . 31

3.6 Bridging Bluetooth with the Rest of the Device 34
3.6.1 Bypassing ANNA . 34
3.6.2 Plugging Python to the Port 35
3.6.3 listening.py in Greater Detail 36

3.7 HID Emulation . 38
3.7.1 Explaining the hidnet.sh Script 39
3.7.2 Modifying the hidnet.sh Script 40
3.7.3 Using the Modified hidnet.sh Script for Keystroke Injection . 41

3.8 Preparing Automatic Launch on Boot 41

4 Results & Future Work 43
4.1 My Results . 43

4.1.1 The Impact of My Results . 44
4.1.2 Trusted Device Vulnerabilities 47
4.1.3 Highlighting the Weakest Link 47
4.1.4 Countermeasures and Limitations 47
4.1.5 Improvements and Future Work 49

References 50

Appendices 53

A Exciting results 54
A.1 The HID emulation scripts . 54

A.1.1 Modified hidnet.sh bash script. 54
A.1.2 Original hidnet.sh script . 55

A.2 Beginning of BLE communication with ANNA-B112 57
A.3 Connection Attempts. 58

xii

A.3.1 Attempting Connection after full iteration. 58
A.3.2 Attempting Connection instantly after discovering the target

device. 59
A.4 Script discovering the services of the device. 60
A.5 User terminal connection . 62
A.6 Testing connection with multiple AT commands. 65
A.7 listening.py . 66
A.8 Services . 68

A.8.1 usb-gadget-hid-ecm.service . 68
A.8.2 rem-com-exec.service . 68

xiii

Chapter 1

Introduction

1.1 Motivation
Although cybersecurity concerns affect virtually everyone, only a minority actively
pursue knowledge to enhance their digital safety. The rapidly evolving landscape
of cybersecurity requires continuous learning, making it a demanding task even for
professionals. For average users, staying updated on cybersecurity threats and effec-
tive protective measures is often overwhelming and impractical. Moreover, unclear
or overly technical documentation of security assessment tools further discourages
proactive cybersecurity engagement among non-expert users, resulting in uncer-
tainty and potential vulnerability.

The USB-C Armory Device Mk II attempts to address these concerns through
its transparent and open-source design, allowing users direct access to its source
and offering an overview of its cryptographic capabilities via the publicly available
GitHub repository [1]. Its compact yet powerful hardware offers extensive computing
capabilities, including advanced features like Bluetooth Low Energy (BLE) Serial
Port Service (SPS) for remote control and Human Interface Device (HID) emulation.
Such features are particularly valuable in penetration testing scenarios, yet remain
underutilized by novices due to documentation complexity and usability barriers.

In contrast, simpler tools like the Rubber Ducky emphasize the need for intu-
itive, user-friendly interfaces to engage non-expert users effectively. The practical
difficulty associated with configuring the Armory Device, as compared to more user-
friendly alternatives, highlights a significant usability gap.

This thesis, therefore, aims to address the critical balance between powerful
functionality and usability in cybersecurity tools. By demonstrating how sophis-
ticated devices like the USB-C Armory Device Mk II can become accessible for
non-specialists, this research underscores the importance of reducing the knowledge
gap between cybersecurity experts and everyday users. Enhancing user awareness
and practical understanding is essential for strengthening individual digital security,
ultimately contributing to broader societal cybersecurity versatility and robustness
against threats.

1

1.2 Related Work
Several studies address the significant risks posed by Social Engineering and how
user unawareness contributes to security breaches. The study "Impact of Human
Vulnerabilities on Cybersecurity" by Maher Alsharif, Shailendra Mishra, and Mo-
hammed AlShehri [2] emphasizes the critical role human behavior plays in cyber-
security. Their findings illustrate how robust cybersecurity measures can fail due
to simple human errors. Despite numerous efforts to bridge the knowledge gap be-
tween cybersecurity professionals and general users, as highlighted by research such
as "The Effect of Countermeasure Readability on Security Intentions" [3], there
remains significant consumer unawareness regarding threats and best practices.

Moreover, despite Bluetooth being integral to daily routines, many users lack
even basic knowledge of its security implications. Studies such as "USB Devices
Phoning Home" [4] reveal severe consequences stemming from user ignorance re-
garding threats like badUSB attacks. Similarly, a comprehensive study by Armis
researchers [5] identified eight zero-day vulnerabilities in Bluetooth protocols widely
used in 2017, underscoring the urgent need for greater public awareness of commonly
trusted digital technologies.

It is important to mention that Patrik Sandstad’s master thesis [6] has helped
me greatly in developing an understanding of the Armory Device which is of great
importance in this thesis. Patrik Sandstad documented several downsides and tech-
nical challenges throughout his work with Armory Device. Some of these challenges
were very similar to the troubles I encountered while working with the device.

2

1.3 Problem Statement
Cybersecurity is a rapidly evolving field impacting nearly every aspect of daily life,
both professionally and personally. Despite its pervasive presence and necessity,
the majority of users possess minimal cybersecurity understanding, often unable
to differentiate genuine security practices from malicious threats such as phishing
attacks. This widespread knowledge gap creates a critical vulnerability—the human
factor.

In this thesis, I address the common lack of cybersecurity awareness among
everyday digital users and examine barriers preventing individuals from acquiring
essential cybersecurity knowledge. By practically engaging with a sophisticated
cybersecurity tool (the USB-C Armory Device MK II) I aim to document the dif-
ficulties faced by newcomers navigating complex cybersecurity documentation and
jargon. Implementing a keystroke injection script via Bluetooth Low Energy (BLE)
remote control, I illustrate how confusing and inaccessible expert documentation can
inadvertently facilitate dangerous cyberattacks, even from relatively inexperienced
attackers.

1.4 Objective
This thesis aims to investigate the existing knowledge gap between novice cybersecu-
rity users and industry experts. Through practical engagement with the USB-C Ar-
mory Device MK II, I document firsthand experiences of the complexities faced when
encountering unintuitive cybersecurity concepts and documentation. Highlighting
the challenges stemming from assumptions of prior foundational knowledge, I ex-
plore how such barriers retard the adoption of cybersecurity among non-specialists.

Additionally, by developing a keystroke injection functionality leveraging the Ar-
mory Device’s BLE capabilities, I will showcase both the device’s adaptability and
critically assess the clarity and accessibility of its official documentation. Through-
out the thesis, I maintain a balance between practical experimentation and theo-
retical analysis to effectively engage both technically experienced and inexperienced
readers.

1.5 Methodology
Throughout this thesis, I adopt a firsthand, experimental approach, documenting
my development of a unique functionality for the USB-C Armory Device MK II by
leveraging its Bluetooth Low Energy (BLE) capabilities. Simultaneously, I aim to
perceive the documentation and development experience from the perspective of a
newcomer to cybersecurity. This dual perspective addresses both the general lack
of cyber threat awareness among inexperienced users and the specific challenges
newcomers face when seeking reliable and comprehensible cybersecurity resources.

This research primarily follows a quantitative, trial-and-error methodology. My
foundational knowledge stems from my Bachelor’s degree in Cybersecurity, supple-
mented by introductory programming courses. Prior to this thesis, my experience
with low-level embedded devices like the USB-C Armory Device MK II was mini-
mal. My expertise predominantly lies in cryptographic functions, accompanied by

3

moderate Linux proficiency.
Throughout this work, I thoroughly document my approach to navigating GitHub

repository information, overcoming encountered challenges, and leveraging device
features for simulated attacks. These experiments highlight how devices specifically
designed for security purposes can paradoxically expand the attack surface and in-
troduce vulnerabilities, providing an insightful firsthand account of a newcomer’s
experience with complex cybersecurity implementations.

1.6 Thesis Organization
This thesis is organized as follows in an intuitive order such that while reading it one
gets an intuitive understanding of the knowledge required to understand subsequent
sections. (As demonstrated in Figure 1.1):

Background: Initially, I present an overview of the core issues this thesis ad-
dresses, highlighting the dangers associated with cybersecurity unawareness. This
section discusses social engineering threats, Bluetooth vulnerabilities, and the open-
source versus proprietary code debate to contextualize the specific challenges ex-
plored in this thesis.

Prerequisite Concepts: Following this, essential concepts necessary for under-
standing the subsequent results are introduced, including badUSB attacks, keystroke
injection, and specific technical aspects of the USB-C Armory Device, such as the
ANNA-B112 Bluetooth module.

Implementation and Analysis: The central part of this thesis details the
practical implementation of my keystroke injection script, coupled with a technical
breakdown of its functionality. This section provides insight into both the attacker’s
perspective in developing an exploit and the victim’s perspective in gaining aware-
ness and protection against such attacks.

Results and Future Work: Finally, I discuss the broader implications of my
findings, summarizing what I’ve learned throughout this research. Additionally, I
propose directions for future development, outlining potential improvements and ad-
vancements for the implemented script and exploring further cybersecurity research
possibilities.

1.7 Bluetooth Technology in Daily Life
Bluetooth has become an integral feature of modern mobile devices, deeply embed-
ded in our daily routines. As we carry our phones, smartwatches, and headphones
everywhere, we are continuously surrounded by various Bluetooth signals. Concep-
tually, these signals resemble radio waves—just operating at different frequencies.
Your phone detects nearby Bluetooth devices much like a radio tunes into stations,
allowing users to establish connections effortlessly. Upon selecting a device to con-
nect with, your device creates a "communication agreement," defining precisely how
data will be exchanged, enabling multiple simultaneous connections without inter-
ference.

Bluetooth’s convenience for short-range (typically around 10 meters) communica-
tion has made it ubiquitous for personal device interactions such as audio streaming,
file transfers, and device synchronization. Most pairing procedures are automatic,

4

Figure 1.1: Order of Topics

5

often prompting users with simple confirmations like "Pair," "Connect," or "Discon-
nect." To streamline usability further, previously connected devices may be stored
as "Trusted Devices," allowing automatic reconnections without repeated confirma-
tions.

However, this ease of use introduces notable security risks. Each Bluetooth-
enabled device represents a potential entry point for unauthorized access. Standard
pairing protocols typically prevent unauthorized connections, yet sophisticated at-
tackers can exploit vulnerabilities or misconfigurations, silently pairing with devices
and potentially extracting sensitive data unnoticed. Consequently, while Bluetooth
significantly enhances convenience, awareness and proactive management are crucial
to maintaining personal and data security. Simply turning Bluetooth off when not
in use can greatly mitigate such risks.

1.7.1 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is designed specifically for devices demanding minimal
power consumption, distinguishing itself from traditional Bluetooth by significantly
enhancing battery life. Rather than maintaining continuous data streams, BLE
transmits small data packets intermittently, enabling devices to remain mostly dor-
mant and significantly conserve power.

BLE is commonly used in fitness trackers, smartwatches, medical devices, auto-
motive sensors, and various IoT applications. Its efficient power consumption makes
it ideal for devices requiring long-term operation without frequent recharging, em-
phasizing BLE’s relevance in modern, battery-dependent applications.

1.8 Cybersecurity Context and Threat Landscape
Today’s cybersecurity landscape features numerous challenges, including threats
posed by social engineering, hardware-based attacks like BadUSB, and user aware-
ness gaps. Additionally, this section highlights how open-source security strategies,
such as those employed by devices like the USB-C Armory Device MK II, differ from
proprietary solutions, providing context for the subsequent discussion.

1.8.1 Open-Source vs. Proprietary Security Approaches

The choice between open-source and proprietary software significantly impacts se-
curity strategies. Proprietary software hides its source code from the public, relying
heavily on secrecy and vendor trust. However, exposure of even minor sections of
proprietary code can severely compromise security, especially for large corporations
that serve millions of users.

Open-source software, conversely, provides public access to its codebase, aligning
closely with Kerckhoffs’s principle, which argues that a secure system should remain
secure even if all details except the encryption keys are public knowledge. Open-
source approaches allow continuous public scrutiny, fostering community-driven im-
provements and potentially identifying vulnerabilities faster. However, openness
alone doesn’t guarantee security, as nearly half of open-source applications report-
edly contain critical vulnerabilities, underscoring the necessity of comprehensive and
ongoing community engagement for maintaining robust security.

6

1.9 Social Engineering and Hardware-Based Threats
Social engineering remains a pervasive cybersecurity threat, manipulating users into
unknowingly compromising security measures. According to Cisco, social engineer-
ing remains one of the most common attack vectors, demonstrating the critical im-
portance of user awareness and education. For instance, Chainanalysis [7] reported
record-high ransomware payments exceeding $460 million in the first half of 2024,
emphasizing the financial and operational impacts of successful social engineering
attacks.

Hardware-based attacks, notably BadUSB, further compound this threat land-
scape. Attackers exploit human trust and curiosity by leaving malicious USB devices
in accessible locations. Once connected to a victim’s computer, these devices can
execute keystroke injections, silently installing malware or extracting sensitive in-
formation. Defenses like USB port blocking or keystroke monitoring are helpful but
have limitations, such as users inadvertently overriding security measures.

1.9.1 Combined Threats: Bluetooth and BadUSB Attacks

Combining Bluetooth’s inherent vulnerabilities with BadUSB tactics creates an es-
pecially potent attack vector. Bluetooth, often overlooked in security protocols, lacks
widespread specialized detection tools, making malicious connections challenging to
detect. For instance, Bluetooth-based Serial Port Service (SPS) communications
do not produce typical network footprints, unlike standard network-based attacks
(e.g., SSH connections). Therefore, detecting unauthorized Bluetooth activities re-
quires specialized monitoring tools and physical proximity, complicating defensive
strategies.

Organizations frequently underestimate Bluetooth vulnerabilities, neglecting com-
prehensive Bluetooth-specific security measures. This oversight, when coupled with
hardware attack vectors such as BadUSB, significantly expands potential vulnera-
bilities, emphasizing the importance of proactive user education and robust security
awareness.

1.10 Incentive and Research Gap
The USB-C Armory Device MK II exemplifies powerful, versatile cybersecurity hard-
ware, capable of facilitating penetration testing, secure communications, and every-
day cryptographic applications. Its open-source nature offers adaptability crucial
for high-trust environments.

However, despite its significant capabilities, the device suffers from usability
challenges, primarily due to complex and poorly accessible documentation, hinder-
ing adoption by less experienced users. This difficulty reflects a broader issue within
cybersecurity: the significant knowledge gap between experts and everyday users,
creating vulnerabilities stemming from user misunderstanding or ignorance of secu-
rity threats.

This thesis aims to explore and document these usability challenges through
practical experience with the Armory Device, specifically implementing a remote-
controlled keystroke injection attack via BLE. This approach illustrates not only

7

the device’s technical potential but also highlights barriers to effective utilization by
non-experts.

1.10.1 My Expertise and Its Relevance

My academic background in cryptography and familiarity with low-level program-
ming provided a valuable foundation for working with the USB-C Armory Device
MK II. Yet, despite relevant expertise, the complexity of implementing BLE-based
functionalities posed considerable challenges. These difficulties underscored the ex-
tensive prerequisite knowledge required to effectively utilize sophisticated cyberse-
curity tools, illuminating how intimidating the learning curve might be for users
new to the field.

This personal experience reinforced the notion that powerful cybersecurity tools
are only as effective as their accessibility and ease of use. Improving documentation
and educational approaches can significantly enhance tool adoption and effective-
ness, emphasizing the critical intersection between technical security measures and
accessible user education.

1.10.2 Bridging Cybersecurity and Education

Cybersecurity requires not only advanced technical skills but also effective commu-
nication and educational methods. Unfortunately, cybersecurity professionals often
lack the pedagogical expertise needed to convey complex topics effectively to non-
specialists. As threats evolve, the gap between experts and everyday users continues
widening, creating vulnerabilities due to user ignorance and misunderstandings.

Through direct engagement with the Armory Device, this thesis highlights the
challenges users face when attempting to grasp cybersecurity fundamentals, empha-
sizing the urgent need for improved pedagogical strategies within the cybersecurity
domain. Enhancing educational clarity can significantly mitigate inadvertent user-
created vulnerabilities, strengthening overall cybersecurity resilience.

8

Chapter 2

Background

This chapter introduces key topics and concepts relevant to this thesis. It provides
an overview of the primary device explored in this study, the USB-C Armory De-
vice MK II, along with its integrated Bluetooth module, ANNA-B112. It discusses
the role of the ANNA-B112 module in safeguarding and managing Bluetooth Low
Energy (BLE) communications on behalf of the Armory Device. Additionally, an
introduction to the initial experimental setup and a brief overview of the primary
challenges encountered during the course of this research will be presented.

2.1 USB-C Armory Device mk II.
The USB-C Armory Device Mk II, widely known as "the Swiss Army knife of cy-
bersecurity," has earned its reputation among enthusiasts, professionals, and the
cybersecurity community for its versatility and wide-ranging applications. The de-
vice is equipped with powerful hardware components as well as features that are
perfectly maintaining the security within the system on the USB-C Device, and can
easily be applied for penetration testing purposes. These features and the means of
their application will be discussed in this chapter.

2.1.1 Hardware Specifications

The USB-C Armory Device MK II comes with its own dedicated processor, RAM,
and persistent storage, making it effectively a fully functional computer in the size
of a USB flash drive. The processor used is the NXP i.MX6ULZ ARM Cortex-
A7, known particularly for its strong security features and energy efficiency. The
device includes 512 MB of RAM, an embedded 16 GB eMMC internal storage, and
a MicroSD card slot for additional external storage. Furthermore, it allows users
to change the boot method between the internal eMMC storage and an external
MicroSD card.

A notably powerful feature of this device is its embedded Secure Element (eSE).
Due to its robust security and isolation from the main system, the eSE is well-
suited for securely storing sensitive information, such as cryptographic keys or even
cryptocurrencies. This component, combined with the flexibility and compact size
of the device, makes it particularly relevant to the cryptographic community.

Additionally, the USB-C Armory Device MK II is well-equipped for both crypto-
graphic and penetration testing purposes. It can emulate various USB device types,

9

such as Ethernet adapters, Human Interface Devices (HID) like keyboards, and mass
storage devices. This capability significantly expands its utility and broadens the
potential attack vectors it can access during penetration testing.

2.1.2 Device Features

Security Features

The USB-C Armory Device MK II incorporates multiple security features aimed
at enhancing both the speed and security of encryption and decryption processes.
Notably, it includes a True Random Number Generator (TRNG) and Cryptographic
Acceleration capabilities that allow faster cryptographic operations compared to a
standard CPU.

Additionally, the device offers tamper resistance, which includes a secure boot
mechanism that verifies the authenticity of firmware during startup, and protects
the system against unauthorized firmware modifications. The compact size of the
device itself can also be viewed as a security advantage; the integrated hardware
components make physical tampering just as challenging as digital tampering.

The ANNA-B112 Bluetooth module further enhances security by strictly manag-
ing Low Energy Bluetooth (BLE) functionality. ANNA acts as a security gatekeeper,
isolating and supervising Bluetooth interactions. This isolation significantly reduces
potential attack vectors, as described in Section 1.7. Additionally ANNA offers a
wide spread of security settings which can be applied by leveraging AT commands
to communicate with ANNA and modify its behavior. (Discussed in greater detail
in section 3.2)

USB Device Emulation

The USB-C Armory Device MK II can emulate various USB device types, offering
great adaptibility for penetration testing purposes. Depending on its configuration,
the device can function as a keyboard for command injection attacks or as a network
adapter capable of facilitating man-in-the-middle attacks. This adaptability greatly
enhances how versatile and practical for penetration testing this device might be.

CDC Ethernet Emulation

By emulating a network adapter using TCP/IP protocols over USB-C, the device
can communicate with a host system, making the device sort of an agent handling
the communication on the hosts behalf. Furthermore, the device can utilize the
host’s authenticated network access to interact with remote resources.

Flash Drive Emulation via Mass Storage Gadget

The USB-C Armory Device can emulate a mass storage device (such as a flash
drive) using its internal eMMC storage. This feature allows users to conveniently
load new firmware, store data, and facilitate file transfers between the host and the
device. Combined with the previously mentioned features, this capability positions
the device as an effective tool for data exfiltration from secured or isolated networks.
Combining this feature with my implementation could potentially improve the ca-
pabilities of the attack even further, thus allowing an attacker to flash the whole

10

storage of a target device after downloading sensitive data from the cloud. This
topic deserves further discussion in the potential further work chapter (Section 4)

Stand-alone Mode

Finally, the USB-C Armory Device MK II can operate independently, performing
computational tasks without the involvement of a host system. This capability ef-
fectively transforms the device into a flash drive-sized standalone computer, suitable
for use in various IoT applications or isolated computing tasks.

2.1.3 Adaptability

The USB-C Armory Device MK II is highly adaptable, offering significant adaptabil-
ity properties through its hardware and software features. One of the most promi-
nent examples is the inclusion of a 10-pin General-Purpose Input/Output (GPIO)
header. This GPIO header lets users easily communicate with external hardware
components by configuring each pin for different purposes—such as powering exter-
nal devices, transmitting data, or controlling hardware directly.

In addition to hardware adaptability, the Armory Device offers software flex-
ibility. All software for the USB-C Armory Device MK II is publicly accessible
through its GitHub repository [1]. This open-source availability allows developers
to customize and adjust the code to perfectly align with their specific goals and
needs.

Lastly, the Armory Device supports Linux-based operating systems and appli-
cations written in the Go programming language, which is recognized for effectively
balancing security and performance. This combination allows for secure and efficient
development and deployment of new applications for this device.

2.2 ANNA-B112
Due to the ANNA module completely isolating the Bluetooth adapters from the
rest of the device. I encountered several challenges during my initial attempts to
interact with Armory Devices Bluetooth functions. Given that this type of hardware-
level security was entirely new to me, my progress slowed significantly, as I needed
to thoroughly understand ANNA’s functionality and the appropriate methods for
interacting with it.

Initially, I was uncertain about how Bluetooth operated on such specialized hard-
ware. However, based on my observations, I assumed that the primary objective of
ANNA-B112 was to enhance security through extensive configuration options, ad-
vanced cryptographic algorithms, and complete control over Bluetooth Low Energy
(BLE) implementations, and by also including aspects like authentication. Further-
more, by isolating Bluetooth interactions, ANNA minimizes the potential security
risks associated with wireless connections.

While trying to familiarize myself with ANNA, I attempted to access its docu-
mentation through links provided in the USB-C Armory Device GitHub repository.
Unfortunately, most of these links were outdated or broken, displaying a "404" error,
as illustrated in figure 2.1. Eventually, I navigated directly to the U-Blox homepage,

11

Figure 2.1: 404 Server could not find client-requested page

but even there, I initially only found basic resources such as data sheets and prod-
uct summaries. It seemed like a comprehensive manual wasn’t available. Much
later, after I completed most of my work, I revisited the website and discovered that
additional resources—including a user guide—was available on their homepage.2.2.

Given these difficulties, my main strategy shifted to searching online using com-
mands found in the initial Bluetooth configuration section of the USB-C Armory
GitHub repository. By combining these commands with the module’s name—"ANNA-
B112 AT commands"—I successfully located the AT command manual, which pro-
vided the critical information I needed to configure the ANNA module.

Navigating the overwhelming amount of documentation and numerous reposi-
tory pages to pinpoint the essential steps required for setting up the module was
extremely time-consuming. Despite this challenge, discovering the "Bluetooth" sec-
tion in the repository was crucial—it explicitly confirmed that the ANNA-B112
module was intended for "out-of-band" Bluetooth interactions, motivating further
investigation.

My ultimate objective was to familiarize myself with the ANNA-B112 module
and establish a functional Bluetooth connection with my laptop. Specifically, I
wanted the device to be discoverable and provide transparent UART functionality
to directly send Bash commands from my terminal to the USB Armory Device.
Strangely enough, the commands listed in the GitHub repository appeared to con-
figure the device as "non-discoverable, non-pairable, non-connectable, and disabled
in any role (central or peripheral)," exactly the opposite of what I needed. This
caused initial confusion, as I intuitively assumed setting these parameters to 1 (of-
ten implying "true") would activate these features, while 0 (false) would deactivate
them. As I later discovered by closely reviewing the AT command manual, my
assumptions were entirely incorrect.

2.2.1 Bluetooth Isolation and Security Features of ANNA-
B112

When I first started working with implementing a simple Python script that would
establish a Bluetooth connection to receive and execute commands (utilizing the
"BlueZ" library on the Debian OS running on Armory Device) from my laptop to
the Armory Device, I quickly encountered an unexpected roadblock. It turned out
that the Bluetooth adapters were completely inaccessible. The operating system did

12

Figure 2.2: Overlooked resources

13

not recognize them, and it wouldn’t even allow me to check their status or enable
Bluetooth using standard commands like "systemctl enable bluetooth" or "systemctl
status bluetooth".

This unexpected issue was due to the ANNA-B112 module having exclusive ac-
cess to the Bluetooth module, effectively blocking any other applications running
on the OS from accessing the BLE adapters. Although I knew ANNA-B112 was
the Bluetooth module, I wasn’t initially aware that it also restricted direct access
to Bluetooth functionalities. This crucial detail was likely assumed to be obvious
by the documentation on the GitHub repository. However, for someone like me,
who didn’t have extensive expertise in this specific area of firmware, this restric-
tion was far from intuitive. Initially, I worried that my boot image might have
been improperly configured, and thus spent considerable time troubleshooting po-
tential misconfigurations rather than immediately realizing that the lack of access
was intentional and enforced by ANNA.

Once I realized that ANNA-B112 intentionally restricted Bluetooth adapter ac-
cess, it became clear that any communication had to pass exclusively through ANNA
using AT commands. At this stage, I hoped that the ANNA module supported a
UART Transparency mode or similar functionality, allowing remote command execu-
tion. Unfortunately, this isolation mechanism significantly complicated the process,
forcing me to employ ad hoc scripting and alternative methods to bypass ANNA’s
isolation measures and successfully achieve remote command execution.

The ANNA-B112 module provides several security options that highlight its
robust capability for securing Bluetooth communication in addition to BLE isolation:

• SPS Encryption and Communication – providing Serial Port Service com-
munication and security for BLE communication.

• Security Modes – allowing different connection and pairing modes tailored
to varying application-specific security requirements.

• Advanced Security Types – employing elliptic curve cryptography for se-
cure pairing, combined with AES encryption algorithms for robust authenti-
cation and communication protection.

• User Confirmation and Passkey Entry – configurable features enhancing
device security by requiring explicit user authentication.

These advanced security measures underscore ANNA-B112’s design intent as a
secure and isolated Bluetooth management solution.

2.2.2 AT Commands and ANNA Configuration

Briefly speaking, Attention Commands (AT Commands) are special commands used
to communicate with modules such as ANNA-B112. They allow configuration and
control of functionalities such as Bluetooth or Wi-Fi. For the ANNA module specif-
ically, these commands enable adjustments to settings like device name, advertise-
ment intervals, and power consumption. They also control connections, like for
instance, connecting or disconnecting devices when ANNA is operating as a cen-
tral or peripheral device and provide the ability to query current device states and
settings.

14

The ANNA-B112 module supports AT commands via a UART serial inter-
face. To interpret and execute these commands, ANNA-B112 relies on u-blox’s
"u-connectXpress firmware" which contains an AT command parser. Without this
firmware, the module cannot understand or respond to AT commands.

The UART interface for ANNA-B112 on my USB-C Armory Device, running
Debian 11, is located at the path "/dev/ttymxc0". This particular port became
a central focus during my script development, where I monitored traffic passing
through it, as discussed further in Chapter 3.

Leveraging these AT commands, I modified several settings on ANNA to facili-
tate a Bluetooth SPS (Serial Port Service) connection, in attempt to enable remote
command execution via UART transparency from my laptop to the Armory Device.
To simplify and speed up the Bluetooth connection process, I significantly lowered
the advertisement interval using the command "AT+UBTLECFG=1", reducing the
minimum advertisement interval to 800 units (0.5 ms), down from the default of
1600 units (1 second). I also reduced the maximum interval to 1000 units (0.625
ms), down from the default of 1.25 seconds, using "AT+UBTLECFG=2". These
changes increased how often ANNA broadcasted BLE advertisements, making the
device easier and faster for my laptop to discover, though this improvement came
at the cost of higher power consumption.

I ensured the SPS server was activated using the command "AT+UDSC=0",
verifying this with the response "+UDSC:0,6", indicating that SPS was indeed
enabled. SPS functionality essentially simulates a wired serial connection, enabling
BLE devices to communicate as though physically connected.

Finally, to enable remote configuration capability, I set the server flag parameter
"AT+UDSF=0,1", allowing remote access and management of the ANNA-B112
module, which was initially disabled by default.

2.3 Experimental Setup

2.3.1 Intended Communication Method

When I started working with the Armory Device, my initial goal was to find an
operating system that would let me easily explore and test the device’s capabilities. I
decided on using the Raspberry Pi OS because of its simplicity and close resemblance
to Debian, which is the OS used for the original Armory Device image. My first
setup attempt closely mirrored Patrik’s approach, connecting the Armory Device to
a Raspberry Pi 4 and then accessing the Pi remotely via SSH. The setup looked like
this:

15

My Laptop

Raspberry Pi 4

USB-C Armory Mk II

SSH Connection

USB-A to USB-C Adapter

- SSH connection from lap-
top to Raspberry Pi 4.
- Raspberry Pi 4 connects to
USB-C Armory via USB-A
to USB-C adapter.
- Intended use of tools like
armoryctl and OpenOCD to
communicate with the USB-
C Armory Device.

However, I quickly realized this setup introduced unnecessary complexity, espe-
cially during debugging. Since the Raspberry Pi 4 only has USB-A ports, I was
forced to use a USB-A to USB-C adapter. Tools like OpenOCD and armoryctl re-
quire precise, direct configurations, and the adapter complicated things considerably.
For instance, while following Inverse Path’s instructions from their GitHub reposi-
tory [1], I struggled to detect or configure the important "imx_gpio" pin needed by
OpenOCD.

Before diving deeper into debugging, I made sure the Armory Device was recog-
nized by running the lsusb command, confirming that it showed up correctly as a
"Linux-USB Ethernet/RNDIS Gadget":

Bus 001 Device 003: ID 0525:a4a2 Netchip Technology,
Inc. Linux-USB Ethernet/RNDIS Gadget

Despite multiple attempts, the OpenOCD setup constantly failed, suggesting
issues with the USB-A to USB-C adapter itself. Given these complications, I chose
to abandon this initial approach and shifted focus toward a simpler, more practical
method of exploring the device’s capabilities.

2.3.2 Final Communication Setup

The final setup used in this thesis is shown in Figure 2.3. I directly connected the
USB-C Armory Device MK II to my laptop, running Kali Linux in a virtual environ-
ment. I configured port forwarding carefully to minimize common communication
issues, especially those arising with Windows systems. This allowed a successful
SSH connection and provided internet access to the Armory Device.

Acknowledgments and Limitations

Usually, the Armory Device operates independently, routing internet traffic securely
through its USB-C port. In my setup, however, the approach is reversed: I focused
primarily on exploring the penetration testing features of the Armory Device itself.
Because of this, evaluating the built-in security measures provided by the Armory
Device was beyond the scope of this thesis.

16

Figure 2.3: Communication setup between the Linux system on USB-C Armory
Device and my virtual machine.

2.4 Challenges
While setting up my Armory Device MK II and implementing BLE functionality
with the ANNA-B112 module, I encountered several challenges. These ranged from
hardware compatibility issues to unclear documentation, requiring persistent trou-
bleshooting and research.

2.4.1 Initial Setup Difficulties

One of the first major obstacles was simply understanding how the Armory Device
worked. I initially knew very little about its internal mechanics, and the available
documentation (Inverse Path’s GitHub repository) was extremely detailed but often
confusing. Important details got buried within massive amounts of information, and
clear, step-by-step guides were scarce.

My initial approach, connecting the Armory Device through a Raspberry Pi 4
using a USB adapter, quickly presented issues. The Pi didn’t correctly recognize the
device, and I suspected the adapter was not properly translating the USB signals.
Directly connecting to a Linux machine instead immediately identified the Armory
Device as a network adapter, reinforcing my suspicion that the adapter setup was
problematic.

2.4.2 Documentation and Configuration Struggles

The GitHub documentation for essential tools like armoryctl and OpenOCD was
confusing, leading me to misunderstand whether these tools belonged to the host
or directly on the Armory Device. My difficulties compiling OpenOCD with the
necessary flags (like "imx_gpio") likely arose from hardware incompatibility or in-
correct setups. Further complications arose because I relied on a virtual machine
(Kali Linux running in VirtualBox on Windows 11), which made USB access and
external hardware configuration notably challenging.

2.4.3 Device Communication Exploration

Exploring Vendor-Defined Messages

Initially, the Armory Device identified itself as a "Freescale Semiconductor i.MX
6ULL SystemOnChip in RecoveryMode." Inspired by Gunnar Alendal’s work [8]
on exploiting vendor-defined messages in USB protocols, I attempted to investigate
this communication pathway. I created a preliminary C script to test brute-force
interactions, which I’ll discuss further in Chapter 4.

17

Operating System Installation

I chose the recommended Debian 12 OS from Inverse Path’s repository, downloaded
the provided image, and flashed it onto a 32GB SD card. This straightforward step
helped ensure compatibility and simplify later configurations.

Challenges with armoryctl and Dependencies

Inspired by Patrik Sandstad’s previous work [9], I explored the armoryctl tool, aim-
ing to manage device communication. However, vague instructions and unclear
warnings made setting it up confusing. It wasn’t immediately obvious whether the
tool was meant for the host machine or the Armory Device itself. Misinterpreting
these instructions led me down unproductive paths, struggling with dependencies
like OpenOCD and the "imx_gpio" configuration.

2.4.4 Connectivity Adjustments and Final Approach

After continuous issues, I decided to simplify my setup by connecting the Armory
Device directly to my laptop running Kali Linux within a virtual machine. Even
though this transition introduced new challenges, like complex port forwarding con-
figurations, it ultimately allowed me to overcome IP conflicts and establish reliable
SSH communication. However, issues with compiling OpenOCD persisted, eventu-
ally leading me to bypass armoryctl entirely and rely directly on AT commands to
communicate with ANNA-B112, as described further in Chapter 3.

Even then, unexpected complications arose, such as the device becoming unre-
sponsive after power cycles, adding further hurdles to my progress.

2.4.5 System Stability and Storage Issues

Permanent "Off" State Problem

As I mentioned before, navigating the GitHub repository was not straightforward,
causing me to miss some critical instructions—especially around correctly parti-
tioning the SD card and properly flashing the device. This oversight led me into
a frustrating situation where the Armory Device would abruptly stop functioning
exactly 44 seconds after being connected.

After numerous trials and errors, I discovered the issue was related to improper
partitioning of the SD card. Rather than following the overly complicated and
unclear walkthrough provided by the repository, I developed my own simpler and
more intuitive partitioning method, which I discuss in Chapter 4.

Once the partitioning was fixed, I could install dependencies and continue con-
figuring armoryctl without issues. My theory is that without correct partitioning,
essential boot or runtime instructions got overwritten due to extremely limited stor-
age (around 0.2GB). This was probably why the device initially booted fine but
failed after running dependency installations or system upgrades. The entire de-
bugging process cost me a lot of time, and I even tried different operating systems
suggested by the repository moderators, which ultimately didn’t address the ac-
tual problem—partitioning. This situation highlighted how my lack of specialized
knowledge significantly complicated the process.

18

Storage Space Problem and My Hypothesis

While investigating these issues, I noticed the Armory Device only used about 3.2GB
of storage out of the available 32GB on the SD card. My hypothesis was that running
sudo apt upgrade on limited storage space overwrote essential boot data. Initially,
the device seemed functional, possibly because critical system files were temporarily
stored in RAM. However, after power cycling, these files disappeared, leaving the
device unable to boot.

Resolving the Issue: Resizing the Filesystem

After understanding the storage limitation, I identified two ways to resize the filesys-
tem: a complicated method recommended by the repository moderators and my own
simplified approach. Naturally, I chose the simpler option:

After inserting the SD card into my PC via an adapter, I identified the SD card
as ‘/dev/sdb‘ and then ran:

sudo parted /dev/sdb

Inside parted, I listed partitions with print and resized the first partition:

resizepart 1 100%

After quitting parted, I extended the filesystem itself:

sudo resize2fs /dev/sdb1

I confirmed the expansion was successful by using df -h, which showed significantly
more available storage.

Difficulty Locating Partitioning Instructions

Due to the repetitive flashing and boot setups I performed, having easy access to
clear partitioning instructions became crucial. Unfortunately, finding these instruc-
tions within the GitHub repository was challenging. The recommended instructions
were buried deep within multiple sub-links:

1. Getting Started linked to usbarmory-debian-base_image.

2. usbarmory-debian-base_image linked to Pre-Compiled releases.

3. Pre-Compiled releases contained numerous unrelated links, with resizing
instructions hidden under question 5.

4. Resizing the microSD/eMMC Partition finally provided relevant instruc-
tions.

Even then, the provided method recommended using a "BeagleBoard," addi-
tional hardware costing between 600-1400 NOK. This seemed unnecessarily complex
and expensive, prompting me to stick with my simpler manual resizing method.

19

2.4.6 Bluetooth Access Challenges

Issues Accessing Bluetooth on Armory Device

A major obstacle was accessing Bluetooth functionality. The ANNA-B112 module,
managing the BLE connections, had exclusive control over Bluetooth, making typ-
ical Linux Bluetooth methods useless. Attempts using armoryctl or directly inter-
acting with hardware failed repeatedly, making it clear that ANNA-B112 operated
independently, requiring specific commands and communication protocols.

GPIO Pin Configuration Problems

Another significant headache was the unclear GPIO pin configuration needed for
compiling OpenOCD with the required "imx_gpio" flags. The GitHub documenta-
tion was vague about what these pins were or how they should be configured, forcing
me to rely heavily on trial-and-error. The documentation clearly assumed a deeper
familiarity with ARM-based hardware than I possessed.

Confusion on Tool Installation Location

Determining whether to install tools like armoryctl and OpenOCD on my host ma-
chine or directly on the Armory Device itself was confusing due to ambiguous doc-
umentation. This confusion led me to repeatedly set up the same tools in both
environments, significantly delaying my progress and causing unnecessary compli-
cations.

Adjusting Bluetooth Discovery Intervals

Based on my understanding of BLE protocols, I initially tried increasing the discov-
ery intervals, expecting faster and more reliable connections. Contrary to expecta-
tions, this change didn’t improve connection stability, suggesting deeper underlying
issues between the system and ANNA-B112 firmware. This experience highlighted
how complex BLE configuration is and how limited conventional tools were for re-
solving these issues.

2.4.7 Filesystem Integrity Problems

System Remounting to Read-Only

When attempting system updates with apt upgrade, I encountered an issue where
the filesystem suddenly became read-only, despite proper permissions. Checking
system logs with:

dmesg | grep -i ’error|ext4|remount’

revealed filesystem corruption. To fix this, I had to physically remove the SD card,
connect it to my PC, and debug from within a virtual machine—another challenging
process on its own.

20

Mounting the SD Card to My Virtual Machine

Mounting the SD card inside my VM required a rather complicated approach, in-
volving creating a Virtual Machine Disk (VMDK) linked directly to the SD card.
First, I identified the SD card path, verified it through Windows Disk Manager, and
then executed:

C:\Program Files\Oracle\VirtualBox>
.\VBoxManage internalcommands createrawvmdk
-filename "C:\path\to\store\the\sdcard.vmdk"
-rawdisk \\.\PhysicalDriveX

After generating the .vmdk file, I added it through Oracle VM’s storage settings,
finally enabling direct filesystem editing.

2.4.8 Comments on the GitHub Repository

Navigating the GitHub repository was notably difficult due to numerous links, overly
technical jargon, and a lack of clear structure. Even when users know what they’re
looking for, it’s challenging to find relevant information.

From extensive experience, I consider Inverse Path’s repository more like a cheat
sheet than an actual guide. Cheat sheets are not intended as learning resources, and
this analogy perfectly fits the GitHub repository. If you’re already knowledgeable,
you might find it useful. However, for newcomers trying to get started with the
Armory Device, the repository can easily become overwhelming and, frankly, a bit
of a nightmare.

21

Chapter 3

Thesis

In this chapter, I provide a practical introduction to the ANNA-B112 Bluetooth
module, which proved essential in my efforts to develop a remote keystroke injection
script using the USB-C Armory Device MK II. By carefully documenting each step
of this process, I was able to highlight specific challenges that a non-expert user
would likely encounter while trying to acquire knowledge within this field.

I describe in detail my experience getting familiarized with the ANNA-B112
module, including how I learned to interact with it through Python scripts and
AT commands. I also discuss the specific modifications I made to the module and
outline the various ways in which ANNA restricted some aspects of my development
process. Similar descriptions are provided regarding my exploration of the Armory
Device itself, particularly focusing on my experience using Debian 11 and its HID
Emulation capabilities.

Each section concludes with a comprehensive explanation of the scripts I devel-
oped. My goal is to clearly illustrate the types of barriers that newcomers might face
when attempting to understand complex cybersecurity tools and methodologies. Ul-
timately, this chapter serves as motivation for enhancing accessibility and adopting a
more effective pedagogical approach to documentation—because knowledge shared
without clear communication cannot truly be considered shared.

3.1 An practical introduction to ANNA

3.1.1 Establishing BLE Communication Using Picocom

To ensure that establishing a connection with the ANNA BLE module on my Armory
Device was possible, I needed to interact with the module through an appropriate
interface. This interface facilitates communication between the Linux OS running
on the Armory Device and the ANNA BLE module, allowing me to modify settings
such as discoverability, pairability, connectability, and device role selection, including
central or peripheral modes.

Initially, I used Minicom for communication, but it quickly proved to be ineffi-
cient due to several issues, including errors caused by incorrect line endings. Conse-
quently, I switched to Picocom, which provided a more reliable and automated way
of communicating with the ANNA module.

With Picocom, I was able to confirm the current state of the device. However,
to fully utilize the AT commands provided by Ublox, I had to implement certain

22

workarounds.

AT Command Workarounds

The Bluetooth section of the USB-C Armory GitHub repository provides a general
command execution sequence, followed by a state save command and a restart, as
illustrated in Figure 3.1. However, finding proper documentation or even documen-
tation relating to these commands turned into an extensive internet search due to
the outdated links in the repository.

My objective was not to configure the BLE module as non-discoverable, non-
pairable, non-connectable, and role-disabled, as suggested in the default instructions.
Instead, I wanted to verify whether it was possible to establish a connection with
the module. To achieve this, I had to validate the parameters shown in Figure 3.1.

Fortunately, I was able to locate the AT commands documentation via Chat-
GPT’s web search functionality [10]. In Section 6: Bluetooth, I found relevant
commands to verify the current settings of the ANNA BLE module.

Figure 3.1: Toggling Visibility

It is also important to mention that the command execution sequence was not
as straightforward as depicted in Figure 3.1. Using the provided sequence often
resulted in errors, as shown in Figure 3.3, and even using the read mode commands
(Figure 3.4) led to unexpected issues.

To address these inconsistencies, I applied an ad hoc approach, leveraging the
read settings command and the restart command, as demonstrated in Figure 3.2.

3.2 Modifying ANNAs behavior
When I first started working with AT commands, I used a terminal interface called
"picocom," which allowed me to interact directly with the ANNA-B112 module and
modify its settings and behaviors through AT commands.

Initially, I spent several hours familiarizing myself with the U-blox manual for
the AT commands, primarily due to its structure with overwhelming information
but also because I wasn’t entirely sure what information I was searching for. As
mentioned earlier, my expertise lies primarily in coding and cybersecurity rather

23

Figure 3.2: Successful settings reading

than hardware programming or establishing Bluetooth Low Energy (BLE) connec-
tions. Consequently, understanding the intricacies of BLE communication required
considerable effort. I had to grasp the fundamental differences between BLE and
traditional Bluetooth connections, focusing especially on factors such as connection
procedures and communication protocols unique to BLE.

Additionally, before beginning my work with this device I did not know anything
about its capabilities and if I would be able to make use of the implementations
available on the device. I needed to confirm whether the ANNA-B112 module itself
supported the specific BLE functionalities required for my project. Although the
documentation provided by the USB-C Armory Device Mk II indicated the presence
of a "u-blox ANNA-B112 BLE" module [11], it did not explicitly detail the specific
Bluetooth capabilities or services that the module supported. This lack of specificity
led to further uncertainty and required additional exploration on my part to clearly
identify the BLE features available on the ANNA-B112.

24

Figure 3.3: Default Sequence

25

Figure 3.4: Read current configuration settings.

26

3.3 ANNA-B112 Integration and Limitations
The core purpose of the Armory Device’s BLE interface is to remotely configure and
manage the ANNA-B112 module from an external device. Typically, AT commands
are used to modify ANNA’s radio behavior, including how it advertises itself, ac-
cepts connections, and operates as either a central or peripheral device. However,
these commands are not designed for large data transfers or comprehensive control
over the Armory Device. Initially, I explored the possibility of establishing a more
direct, high-bandwidth communication channel. Unfortunately, after extensive re-
search through firmware documentation and available resources, I found no explicit
support for such functionality. Given the often overly complicated or unclear doc-
umentation on how ANNA-B112 integrates with the Armory Device, I still cannot
entirely exclude the existence of an indirect method to create a more transparent
BLE link that I simply overlooked.

3.4 Establishing my grounds with ANNA-B112
Before establishing the Bluetooth connection, I needed to make several essential
modifications to the ANNA-B112 module, detailed extensively in subsequent chap-
ters. The most crucial adjustments included activating the Serial Port Service (SPS)
to enable remote AT command execution and reducing the advertisement interval
to expedite connection establishment.

The SPS is effectively a wireless counterpart of a physical serial connection, al-
lowing two devices to communicate as if they were physically connected by a cable.
In this context, the relevant port was identified as "/dev/ttymxc0." Initially, my as-
sumption was that connecting to this port via BLE would allow me to directly inject
terminal commands into the device. However, I misunderstood this implementation.
The port was dedicated exclusively to receiving AT commands, not general terminal
commands, compelling me to employe a somewhat ad-hoc solution.

Another initial misunderstanding involved the advertisement interval setting.
Initially, I assumed increasing the interval to 10 seconds would offer more time for
connection establishment. In reality, this adjustment significantly prolonged the
connection time, increasing it from approximately two to four minutes. Further
clarification, notably through discussions with ChatGPT, revealed that reducing
the advertisement interval (thus increasing advertisement frequency) was preferable
for Windows-based systems and considerably improved connection reliability and
speed.

Navigating these configurations proved challenging and time-intensive, but ulti-
mately, I achieved the correct setup, enabling me to proceed confidently with further
exploration of Bluetooth Low Energy communication.

3.5 The Discovery of ANNA
During my research on practical methods for establishing BLE connections, I discov-
ered a particularly helpful Medium article titled “TLDR: How to Control a Bluetooth
LE Device with Python” [12]. The author shared valuable insights from personal
experiences with BLE programming and recommended the Python library "Bleak"

27

for interacting effectively with BLE devices. Leveraging this advice and utilizing
the built-in Bluetooth adapter on my Windows laptop, I successfully identified the
ANNA-B112 module. This marked a significant milestone, as it allowed me to es-
tablish a stable and reliable connection, forming the foundation for my continued
experimentation and deeper exploration of BLE capabilities.

3.5.1 Finding ANNA

Starting with the simple Python snippet from Proto Bioengineer’s Medium [13] post
(shown below), I was able to scan for BLE peripherals and retrieve both the MAC
address and the friendly name of the Armory Device. I used this later to connect
with ANNA. The results of that scan are displayed in Figure 3.5.

Bluetooth LE scanner
Prints the name and address of every nearby Bluetooth LE device

import asyncio
from bleak import BleakScanner

async def main():
devices = await BleakScanner.discover()

for device in devices:
print(device)

asyncio.run(main())

Figure 3.5: Results of the BLE scan.

3.5.2 Connecting to ANNA

After discovering the device, the next step was to connect and maintain that con-
nection—but it was not as straightforward as I would hope. As a Bleak newcomer,
I naturally assumed I’d need to run a full scan each time, much like pairing in
Windows: discover first, then connect. However, the Armory Device would only
advertise itself for a few seconds before returning to sleep mode to conserve power.
By the time my script spotted the device and tried to connect, it had often already
stopped advertising, and go to sleep, resulting in repeated “Connection failed” errors.
The original script used for this initial connection method is provided in Appendix
A.3.1, and the complication this method entailed can be seen in Figure 3.6

Initially, I considered several potential reasons for these connection failures.
First, I thought my laptop might not be compatible with establishing this spe-
cific BLE connection. However, given that the Bleak scan successfully detected the

28

Figure 3.6: Discovering ANNA, without being able to connect to it.

ANNA-B112 module, I figured that it should also be capable of connecting to the
device as well. Second, there was the possibility that the Armory Device actively
rejected connection attempts from my laptop, because of some settings prohibit-
ing external device connection. Since the picocom interface provided detailed logs
of all Bluetooth procedures, any rejection would have likely triggered explicit no-
tifications, which I never observed. Finally, the most plausible scenario was that
the device simply went into sleep mode before my connection attempt could com-
plete. This suspicion was reinforced by observing the module’s irregular advertising
through the "U-blox BLE" application on my iPhone, which showed ANNA ap-
pearing and disappearing unpredictably. To address this, I adjusted my script to
immediately verify if a newly discovered device was the ANNA module and, if so,
connect to it immediately. Rather than performing a complete discovery scan first
and then searching the discovered devices afterward. This direct verification helped
significantly reduce the delay between discovery and connection attempts.

Once I successfully connected to the ANNA module, I could proceed with ex-
ploring additional capabilities of the module directly from my laptop. According
to the Medium blog that guided part of my approach, the next critical step was
identifying the device’s characteristics. At the time, I was unfamiliar with the con-
cept, prompting me to seek clarification from ChatGPT. The explanation I received
clarified that characteristics in a BLE device represent small data points exposed by
the device, indicating how external systems should communicate with it. Charac-
teristics typically have properties such as read and write, which allow users to send
data to the device or receive updates through notifications. Additionally, ChatGPT
mentioned that subscribing to these notifications would allow me to receive auto-
mated feedback directly from the device. This realization greatly motivated me, as
it suggested a viable pathway toward implementing remote command execution on
a Linux machine via Bluetooth.

Parallel to establishing a stable BLE connection, I explored the possibility of
executing remote commands through BLE communication. My research indicated
that an SPS (Serial Port Service) connection or a UART transparency mode needed
to be active on the target device to facilitate such communication. Consequently,
I examined the ANNA manual and identified the relevant subsection titled Server
Configuration, which enabled me to configure and activate the SPS connection on
the ANNA module. These configuration details and the module’s response to these
adjustments are discussed in Section 2.2.2.

3.5.3 Exploring services of ANNA

Having achieved a reliable connection to ANNA, the subsequent task was to iterate
through its available services and their respective characteristics, aiming to identify a
suitable characteristic that would enable command execution. To effectively explore
these characteristics, I first needed to understand the concept of UUIDs (Universally
Unique Identifiers), which uniquely identify specific Bluetooth services. With this

29

understanding, I developed a dedicated script tailored specifically to scan for UUIDs
and extract their properties from the Armory Device (refer to Appendix A.4).

The results (as you can see in table 3.1 and 3.2) had one service that seemed to
be particularly good fitted for the purpose of communication with properties like
"read, write-without-response, write, notify". Which had all the properties required
to read current state, write commands to the current state, and get notifications
about the "writes".

After successfully identifying the service UUID, I attempted a direct connection
and write operation using this UUID. Although the connection appeared successful
(as depicted in Figure 3.7), the commands sent were not reflected in the Picocom
interface used to monitor the ANNA module. Clearly, there was still an unresolved
issue.

Figure 3.7: AT confirmation message from the ANNA module seen in Picocom
interface.

Table 3.1: BLE services and their characteristics
Service UUID Characteristic UUID

00001800-0000-1000-8000-00805f9b34fb 00002a00-0000-1000-8000-00805f9b34fb

00001800-0000-1000-8000-00805f9b34fb 00002a01-0000-1000-8000-00805f9b34fb

00001800-0000-1000-8000-00805f9b34fb 00002a04-0000-1000-8000-00805f9b34fb

00001800-0000-1000-8000-00805f9b34fb 00002aa6-0000-1000-8000-00805f9b34fb

00001801-0000-1000-8000-00805f9b34fb 00002a05-0000-1000-8000-00805f9b34fb

0000180a-0000-1000-8000-00805f9b34fb 00002a29-0000-1000-8000-00805f9b34fb

0000180a-0000-1000-8000-00805f9b34fb 00002a24-0000-1000-8000-00805f9b34fb

0000180a-0000-1000-8000-00805f9b34fb 00002a26-0000-1000-8000-00805f9b34fb

0000180a-0000-1000-8000-00805f9b34fb 00002a28-0000-1000-8000-00805f9b34fb

2456e1b9-26e2-8f83-e744-f34f01e9d701 2456e1b9-26e2-8f83-e744-f34f01e9d703

2456e1b9-26e2-8f83-e744-f34f01e9d701 2456e1b9-26e2-8f83-e744-f34f01e9d704

3.5.4 The Escape Character

Resolving this issue proved particularly challenging, taking approximately one month
of my research. Initially, I was uncertain if my approach would even function cor-
rectly and anticipated several potential obstacles. These included improper ini-
tialization of the BLE connection, formatting constraints such as requiring specific

30

Table 3.2: The properties of the characteristics.

Characteristic UUID Properties

00002a00-0000-1000-8000-00805f9b34fb read

00002a01-0000-1000-8000-00805f9b34fb read

00002a04-0000-1000-8000-00805f9b34fb read

00002aa6-0000-1000-8000-00805f9b34fb read

00002a05-0000-1000-8000-00805f9b34fb indicate

00002a29-0000-1000-8000-00805f9b34fb read

00002a24-0000-1000-8000-00805f9b34fb read

00002a26-0000-1000-8000-00805f9b34fb read

00002a28-0000-1000-8000-00805f9b34fb read

2456e1b9-26e2-8f83-e744-f34f01e9d703 read,
write-without-response,
write, notify

2456e1b9-26e2-8f83-e744-f34f01e9d704 write-without-response,
write, notify

termination characters (e.g., "\r\n"), or potential issues in how the ANNA module
processed incoming commands. Additionally, I considered the possibility of over-
looked configuration settings necessary for the communication.

After a prolonged period without progress and nearing resignation, I revisited
the ANNA manual with the intention of identifying any overlooked configuration
options. Although unsure precisely what I was seeking, I intuitively searched for
terms related to command processing, utilizing the browser’s word search function
for the keyword "command." Fortunately, I encountered the obscurely located sec-
tion named "Escape Character S2." This section described how the ANNA module
recognized the escape character, specifically requiring the configured escape charac-
ter ("+") to be transmitted three times consecutively within a single data frame.

Additionally, this section referenced another configuration subsection titled Con-
figuration section (5.6 +UDCFG), mentioning that some modules allowed adjust-
ments to the timing required for entering data mode. Intrigued by this timing
parameter, I investigated further and discovered detailed explanations in section
5.6.2 of the AT commands manual. Specifically, I learned about the "escape se-
quence timing," which mentioned a one-second period of silence before and after
transmitting the escape character sequence for the ANNA module to recognize the
switch to command mode communication.

Implementing these timing adjustments in my script finally resolved the issue,
enabling successful command execution from my laptop to the ANNA module, with
commands correctly appearing in the Picocom interface as intended.

3.5.5 The final script

Roughly speaking, the script USB_Connect.py (see Appendix A.5) begins with my
latest update that makes it compatible with any operating system that supports

31

Python. This update takes care of automatically installing all required packages
using Python’s importlib library, removing the need for manual setup.

Auto-install dependencies if missing
_deps = ("bleak",)
for pkg in _deps:

try:
importlib.import_module(pkg)

except ImportError:
subprocess.check_call([sys.executable,
"-m",
"pip",
"install",
"--upgrade",
pkg])

The top part of the script is used to import all necessary libraries and define
global variables, such as the friendly name of the ANNA BLE module for faster
identification, along with the specific service and characteristic UUIDs required for
communication.

import asyncio
from bleak import BleakScanner, BleakClient

TARGET_NAME = "ANNA-B1-0CADDD"
CONNECTION_HOLD = 5 # Time (in seconds) to keep the connection open
buffer = "" # Buffer to store the response from the device.
started = False # Flag to indicate if the response has started.

Custom service/characteristic UUIDs as discovered:
SPS_SERVICE_UUID = "2456e1b9-26e2-8f83-e744-f34f01e9d701"
SPS_WRITE_CHAR_UUID = (

Supports write and notify
"2456e1b9-26e2-8f83-e744-f34f01e9d703"

)
SPS_NOTIFY_CHAR_UUID = (

Same characteristic used for notifications
"2456e1b9-26e2-8f83-e744-f34f01e9d703"

)

From there, the main() function kicks in. It initializes the Bleak scanner to
check if the ANNA module is available. If the device is found, the main() func-
tion proceeds by calling connect_device(), which uses BleakClient() to establish a
connection. Once the connection is set up, the script prompts the user for input.
The input is then parsed and passed back to the connect_device() function, which
handles sending the command to the USB Armory device where the ANNA module
is implemented.

32

main()

As previously mentioned, the main() function is responsible for initializing and
performing the Bluetooth scan using BleakScanner(). It does so by registering
the callbackfunction detection_callback() through register_detection_callback(),
which processes each device found during the scan. If the ANNA module is de-
tected, its friendly name is matched, and the dynamic global variable DeviceHolder
is set accordingly. After the scan, the script checks this variable to determine if
ANNA-B112 is available. If the device is not found, the script ends with the mes-
sage "Device not found."

detection_callback()

Each time the detection_callback() function is triggered during the scan, it compares
the name of the currently detected device against the TARGET_NAME defined in
the script. If the name matches ANNA-B112, the function sets the device property
of the DeviceHolder class to the correct device instance. This approach simplifies
and accelerates the connection process by storing the appropriate target device for
later use.

connect_device()

The connect_device() function establishes a notification channel using the charac-
teristic UUID that supports notifications. This is necessary to receive status updates
and feedback from the USB Armory device via ANNA. The function sets notifica-
tion_handler() as the callback to handle incoming messages.

Once the notifier is active, the script executes the escape character sequence
required by ANNA to switch from data mode to command mode. This sequence
follows the instructed sequence required from the Armory Device to initialize the
Command Mode Communication (as mentioned in previous sections). Consisting of
a one-second silence, followed by three consecutive plus signs (+++) sent in a single
frame, and then another one-second pause.

If this transition is successful, the function enters a while loop that continuously
prompts the user for input. If the user types exit, the session ends. Otherwise, the
input command is parsed and sent to the ANNA module via write_gatt_char(),
targeting the write-enabled characteristic. After the command is sent, the script
briefly sleeps before re-entering the loop for the next user command.

notification_handler()

The notification_handler() function is tasked with interpreting and displaying the
feedback messages returned from the ANNA terminal. It is registered by con-
nect_device() and is called each time a notification is received. The function begins
by accessing the global variables buffer and started, then decodes the received data.

It checks whether the decoded data contains both the !start! and !end! mark-
ers. These are my custom delimiters I implemented to signify the beginning and
end of a message. If both markers are present in a single payload, the complete
message is printed directly. If only one of the two markers is found (either !start!
or !end!), the function buffers the data appropriately, either initializing or finalizing

33

the message, supposedly ensuring that even fragmented messages are reconstructed
correctly before being displayed.

This approach offers a robust and user-friendly mechanism for receiving clear
and ordered messages. However, it is not well-suited for large data transfers; for
instance, attempting to cat a file with more than five lines may result in the !end!
signal not being received, thus preventing the message from being displayed at all.

terminal_emulation()

The terminal_emulation() function serves a simple but essential role: it prompts the
user for input, checks whether the entered command is exit, and if not, transforms
the command into a byte string. It adds a custom start symbol "#" at the beginning
(to aid recognition on the ANNA-B112 side) and appends a newline character (\n)
to properly end the command before it is sent.

3.6 Bridging Bluetooth with the Rest of the Device
The ANNA module provides a standalone Bluetooth "administrator" that functions
independently from the rest of the Armory Device having all Bluetooth process-
ing handled by the ANNA-B112 module. The module effectively acts as a security
"guard," positioned between the publicly accessible Bluetooth antenna for the Ar-
mory Device user and the private USB Armory Device itself. This design inherently
prevents direct Bluetooth interaction with the system, making it impossible for me
to directly implement solutions that rely on Bluetooth adapters (like bluez or blue-
toothctl), as these adapters are not exposed to the underlying operating system.
Consequently, all Bluetooth communication must pass through the ANNA module,
effectively isolating Bluetooth interactions from the main device.

This isolation required me to find a workaround to enable remote control of the
device via Bluetooth. Figure 3.8 illustrates my solution, highlighting the interde-
pendence between the scripts I developed and the underlying system components.
This approach is detailed in the following sections.

3.6.1 Bypassing ANNA

As previously mentioned, I consistently utilized an interface called picocom, which
allowed me to configure ANNA’s behavior using AT commands. Picocom also pro-
vided live status updates whenever ANNA processed incoming messages. Addition-
ally, I noticed that picocom could effectively monitor all communication between
my laptop and the ANNA module, displaying everything sent to or received from
the SPS service.

This observation led me to an idea on how to effectively bypass ANNA using
picocom. Initially, my approach involved configuring picocom to log all communica-
tion into a ".log" file, which my script could then process. The script was intended
to filter the logged commands, extract relevant kernel commands, and subsequently
execute them directly on the Armory Device’s terminal.

However, during implementation, I discovered that picocom simply read the
input from the ttymxc0 port, which was also accessible by the system kernel. Con-
sequently, this meant the port received inputs simultaneously from my laptop and

34

Figure 3.8: Intercommunication between underlying system components.

the ANNA module, resulting in significant noise that could potentially slow down
or distort command execution.

Besides this issue, another significant challenge arose: the script required manual
initiation after device boot-up. Ideally, remote keystroke injection should function
autonomously without needing manual setup each time.

In the next subsection, I describe in detail how I successfully addressed and
resolved these challenges.

3.6.2 Plugging Python to the Port

As described earlier, all communication takes place through the ttymxc0 port, which
is exposed to the rest of the device. This opened up the possibility to make Python
listen to that port and capture the remote commands being received through it. I
decided this was the most efficient way to bridge the incoming commands from the
remote connector—through ANNA—into the system.

To implement this, I used the Python library serial, which allows direct reading
from ports like /dev/ttymxc0. This successfully enabled me to print all incoming
and outgoing AT commands, which effectively solved my first major issue: the
ANNA module having isolated control over the Bluetooth interface. Initially, I
assumed ANNA had full and exclusive control, but after this implementation, I could
reinterpret its role as more focused solely on the Bluetooth protocol layer—while
the connection it establishes becomes globally accessible in the system through the
"ttymxc0" port.

Proceeding-the next challenge was to filter out the actual user commands from
the standard AT communication responses like "OK", "ERROR", and other feed-
back that ANNA sends after interpreting every single received command. To distin-
guish between the two, I introduced a hashtag ("#") as a custom symbol—which
signals the beginning of a user command. As mentioned earlier in Section A.5, the
Python script appends a binary representation of this "#" character at the begin-
ning of each outgoing message. This allows the receiving script to detect the symbol
and interpret the rest of the payload as a command that needs to be handled by

35

Python and executed in the shell.
This method also has a protective function: it prevents any user command from

being misinterpreted by the ANNA module as an actual AT command, which could
otherwise cause the module to change its notification settings—or worse, brick the
device, cutting off the only available access channel.

With that, I was able to reliably identify incoming commands and ensure only
valid commands were processed. However, a new issue appeared: ANNA would still
return an "ERROR" message after each user command starting with "#". To fix
this, I implemented a filter to discard irrelevant notifications and separate the kernel
response intended for the user, from default noise generated by ANNA.

It’s important to note that disabling ANNA’s echo function altogether caused a
different problem—no data would be read from "/dev/ttymxc0" anymore. This was
because ANNA fully manages the Bluetooth communication protocol, and turning
off echo resulted in python being unable to read the data from the port. So instead
of disabling echo, I added a second layer of control—similar to the "#" prefix—by
introducing a custom symbol to signal the start of a response. Later complications,
such as larger data chunks being transferred out of order, led me to also define
an end-of-message symbol. Both are visible in the USB_Connect.py script (see
Appendix A.5).

To forward the kernel’s response back to the user via Bluetooth, I used the
Python subprocess library to execute commands and handle both standard output
and error output. Then, using the same serial library, I sent the response through
/dev/ttymxc0 by writing the message in the following sequence: start symbol, re-
sponse payload, and end symbol. This allowed the ANNA module to send the
message over BLE back to the user. All of this is implemented in my script called
listening.py (Appendix A.7), which I describe in more detail in the following sub-
sections.

3.6.3 listening.py in Greater Detail

The main goal of the listening.py script is to: detect incoming user commands,
execute them in the system kernel, handle the output, and send the response back
to the user in a proper and recognizable format.

Listening on the Port

With the use of Python’s try: and except: structures, the script is able to manage the
communication process robustly, even in the case of errors. In the initial try: block, I
instantiate the listening interface using the serial library, applying key settings—like
baudrate and timeout—that I retrieved from the official GitHub repository of the
USB-C Armory Mk II device [1].

try:
Open the serial port for reading
(and optionally writing, if required)
with serial.Serial(’/dev/ttymxc0’, baudrate=115200, timeout=1) as ser:

print("Listening on /dev/ttymxc0...")

36

Reading the Serial

After setting up the serial connection, the script enters a while loop that runs in-
definitely (while True:). Inside this loop, the script continuously listens to the port
using the .readline() method. This method both keeps track of the current position
in the stream and fetches the next available line from the serial port buffer.

If a new line is available, the script attempts to decode the incoming data and
parse it into a string. If the decoding fails it simply parse the line into string format
and proceeds with that string. This ensures that the system does not crash or stall
due to encoding issues, and that all received data is processed in one form or another.

while True:
Check if data is waiting in the serial buffer
line = ser.readline()
if line:

Read all available data
try:

Decode the incoming bytes into a string.
text = data.decode(’utf-8’, errors=’replace’)
text = str(text)

except Exception as e:
text = str(line)

String Processing

To process the incoming strings correctly, I use the .strip() method, which trims
any leading and trailing whitespace or newline characters. This gives me a cleaner
string to work with and allows me to iterate through the string and access specific
indexes for conditional checks.

Although using “absolute position checks”—where you check for specific charac-
ters at fixed positions (like the one I used)—can be a bit fragile (since formatting
differences or noise might make the character appear in a different position, which
would result in the entire command being unrecognizable), I found this method to
be quite effective in practice. Once a command is successfully identified, I know
it starts with "b’#" and ends with a newline character and a signle quote mark:
"\n’". These parts are removed using one simple instruction: user_command =
fixed_text[3:-3].

Executing the Command

At this point, the string has been validated as a user command and is ready to be
executed. If the command begins with cd, the cd prefix is removed. By leveraging
Python’s os library, I change the current working directory to the user-provided
path using the chdir() function. Once the directory has been updated, I encode
an acknowledgment as a byte string and transmit it back to the user, framed by the
previously defined start and end symbols.

I pass the (possibly modified) command to the system shell using Python’s
subprocess library. If the command executes successfully, it returns a .stdout
response, which is captured in the ker_resp variable. This response is then sent

37

through the serial port using the write() method of the serial library, again en-
closed between the start and end markers.

After sending the response, the script pauses (sleep(1)) to allow the ANNA
module time to complete the transmission. Finally, I reset the input buffer with
ser.reset_input_buffer() to prevent the script from reading its own outgoing
message on the next loop iteration.

If the provided string is not a valid command, the shell returns an error via
.stderr. In that case, the error message is handled similarly—sent back over the
serial port with the same formatting.

Important note: While writing this part, I realized that the current error-
handling branch does not reset the input buffer after sending the error message.
This could lead to the script getting stuck in a loop—constantly reading the same
error line it just sent. To avoid this, I recommend adding a ser.reset_input_buffer()
call immediately after handling the error message, just like in the successful com-
mand case.

if execution.stdout:
ker_resp = execution.stdout
print("Command Output:\n", ker_resp)

Formating the kernel_feedback string to send it to the user:

print("Sending the following command:", ker_resp)
#Begin the incoming message:
ser.write(ker_start)
ser.write(ker_resp)
ser.write(ker_end)
sleep(1)
ser.reset_input_buffer()

if execution.stderr:
error = execution.stderr
print("Error Output:")
print(error) # Debugging output in Kali.
ser.write(ker_start)
ser.write(error)
ser.write(ker_end)
sleep(1)

3.7 HID Emulation
To leverage HID emulation on the Armory Device, I first familiarized myself with
the script provided by Collin Mulliner [14], which is included in the Armory De-
vice’s GitHub repository. This script instructs the device to change its behavior,
presenting itself as an HID keyboard rather than its default USB-C Armory Device
MK II gadget. Figure 3.9 shows the Oracle VM settings I used during this process.
Mulliner’s script effectively transforms the device from an Ethernet Gadget into

38

Figure 3.9: Oracle VM settings connecting USB-C Armory Device MK II to my
Kali Linux VM

a combined network and keyboard interface. His repository contains several bash
scripts for different use cases; I employed hidnet.sh to preserve network emulation
(allowing SSH access if the BLE connection failed) while simultaneously exposing
the device as a keyboard.

3.7.1 Explaining the hidnet.sh Script

To understand how I leveraged and modified this script, we first review its default
behavior. A brief analysis of Mulliner’s hidnet.sh (see Appendix A.1.2) is presented
below.

The script begins by requesting sudo privileges to avoid ERROR: Permission
Denied when manipulating kernel modules and configuration directories. It then
removes the modules responsible for the Ethernet Gadget and loads those needed
for HID and ECM:

modprobe -r g_ether usb_f_ecm u_ether
modprobe usb_f_hid
modprobe usb_f_ecm

Next, the script creates configuration directories under:
"/sys/kernel/config/usb_gadget/", instantiates g1, and sets the hid and ecm
functions for the usb0 interface. Finally, it specifies the HID property as a keyboard,
explicitly informing the kernel and host to recognize the device as an HID keyboard.

cd /sys/kernel/config/
mkdir usb_gadget/g1
cd usb_gadget/g1
mkdir configs/c.1
mkdir functions/hid.usb0
mkdir functions/ecm.usb0

39

echo 1 > functions/hid.usb0/protocol
echo 1 > functions/hid.usb0/subclass
echo 8 > functions/hid.usb0/report_length
echo -ne "\x05\x01\x09\x06\xA1\x01\...
...\x29\x65\x81\x00\xC0" > functions/hid.usb0/report_desc
mkdir strings/0x409
mkdir configs/c.1/strings/0x409

The next few lines handle how the gadget presents itself in a human-readable way,
for both the user and the connected host. These lines declare product information,
power consumption, and the active configuration:

echo 0x1d6b > idVendor # Linux Foundation
echo 0x0104 > idProduct # Multifunction Composite Gadget
echo 0x0100 > bcdDevice # v1.0.0
echo 0x0200 > bcdUSB # USB2
echo "deadbeef9876543210" > strings/0x409/serialnumber
echo "USBArmory" > strings/0x409/manufacturer
echo "USBArmory Network + Keyboard" > strings/0x409/product
echo "Conf1" > configs/c.1/strings/0x409/configuration
echo 120 > configs/c.1/MaxPower

The script then binds the functions to the configuration by creating symbolic
links. This ensures that both the keyboard interface (hid.usb0) and the ECM
interface (ecm.usb0) are included in configuration c.1. Finally, it attaches the
gadget g1 to the physical USB controller, altering how the USB-C Armory Device
MK II is presented to the host:

ln -s functions/hid.usb0 configs/c.1/
ln -s functions/ecm.usb0 configs/c.1/
echo ci_hdrc.0 > UDC

3.7.2 Modifying the hidnet.sh Script

Disclaimer: This work extends beyond my core expertise; some modifications may
be redundant. Also with the aid of modern tools like ChatGPT, I enhanced the
script for safer and more reliable execution.

The most significant change I introduced was the initialization of the network
interface, effectively opening the “network doors” on the USB Armory Device:

USB_IF="usb0"
ip link set \$USB_IF up
ip addr add 10.0.0.1/24 dev \$USB_IF

I also improved error handling by suppressing failures when loading or removing
modules that may already be in the desired state:

modprobe -r g_ether usb_f_ecm u_ether 2>/dev/null || true
modprobe usb_f_hid 2>/dev/null || true
modprobe usb_f_ecm 2>/dev/null || true

40

Next, I verify whether the g1 gadget directory exists. If it does, I unbind and
remove it safely before reconfiguration:

if \[-d /sys/kernel/config/usb_gadget/g1]; then
echo "" > /sys/kernel/config/usb_gadget/g1/UDC 2>/dev/null || true
rm -rf /sys/kernel/config/usb_gadget/g1
fi

I then group the procedure for defining HID and ECM functions. For HID, I
create the function directory and set protocol, subclass, and report length. The
report descriptor is defined in hexadecimal:

mkdir functions/hid.usb0
echo 1 > functions/hid.usb0/protocol
echo 1 > functions/hid.usb0/subclass
echo 8 > functions/hid.usb0/report_length
echo -ne "\x05\x01\x09\x06\xA1...
...\x29\x65\x81\x00\xC0" > functions/hid.usb0/report_desc

To create the ECM (Ethernet) function, I simply make its directory:

mkdir functions/ecm.usb0

Finally, I bring up the usb0 interface with IP 10.0.0.1/24 for SSH access. This
interface is exclusively exposed to the directly connected host via the USB port.

3.7.3 Using the Modified hidnet.sh Script for Keystroke In-
jection

Now that the USB Armory Device is recognized as a keyboard, the host accepts
keystrokes as if they were entered by a user. This behavior is exactly why we config-
ured the device as a reliable HID keyboard. To inject keystrokes, I use the compiled
version of string2hid.c, also provided by Collin Mulliner. Briefly, this program
accepts a single argument of arbitrary length and translates it into HID reports.
Using it on my Kali Linux VM, I was able to perform tasks such as launching a web
browser and searching for a specified URL, or opening a terminal and typing “Hello
World.” This demonstrates HID emulation with virtually no limitations—equivalent
to an SSH shell on a remote host.

The final requirement for fully remote keystroke injection is to execute the mod-
ified hidnet.sh script at boot. This ensures that, upon power-up, the device im-
mediately presents itself as a combined network+keyboard gadget, allowing instant
SSH access and arbitrary code injection.

3.8 Preparing Automatic Launch on Boot
To start the application automatically after boot, I created systemd services—analogous
to Bluetooth or network services—that can be enabled or disabled with systemctl.
This approach lets me control the state of the HID gadget and BLE listener inde-
pendently.

41

First, I copied the modified hidnet.sh script to the system binary directory
(/usr/local/bin) for global accessibility, alongside other administrative scripts. I
placed the BLE listener (listening.py) in /opt/rem_com_exec. Once the directory
structure was organized, I created two service unit files in /etc/systemd/system:
usb-gadget-hid-ecm.serviceA.8.1 and rem-com-exec.serviceA.8.2. The sys-
tem attempts to start these services during boot as follows.

usb-gadget-hid-ecm.service ensures the USB gadget configuration is mounted
before running:

[Unit]
After=local-fs.target sysinit.target
Wants=local-fs.target

[Service]
Type=oneshot
ExecStart=/usr/local/bin/usb_gadget_hid_ecm.sh
RemainAfterExit=yes

rem-com-exec.service runs only after usb-gadget-hid-ecm.service is active,
launches the BLE listener, and restarts on failure:

[Unit]
After=usb-gadget-hid-ecm.service

[Service]
ExecStart=/opt/rem_com_exec
Restart=on-failure
RestartSec=5

After creating both units, I reloaded systemd and enabled the services:

sudo systemctl daemon-reload
sudo systemctl enable usb-gadget-hid-ecm.service
sudo systemctl enable rem-com-exec.service

Finally, I rebooted the device, allowing a complete keystroke injection immedi-
ately after startup.

42

Chapter 4

Results & Future Work

This chapter summarizes the key outcomes of my research and discusses their
broader implications for cybersecurity awareness and practice. I address how user
unawareness can significantly diminish the effectiveness of even the most sophisti-
cated security implementations, emphasizing the need of applying some pedagogical
approaches in cybersecurity documentation which are intended for general public.

Furthermore, I evaluate the practical limitations and countermeasures relevant
to the remote keystroke injection methods developed in my thesis. Additionally, I
outline potential enhancements to my existing scripts and suggest promising direc-
tions for future exploration and further development of the USB-C Armory Device
MK II, highlighting areas that could be of interest for cybersecurity research and
practice.

4.1 My Results
I successfully connected the Armory Device MK II to my host computer and for-
warded its USB-C traffic to a Kali Linux virtual machine (VM) for a controlled
demonstration. Figure 4.1 illustrates the terminal state before SSH connection,
while Figure 4.2 shows a terminal with an ongoing SSH connection.

Figure 4.1: Terminal not connected to the Armory Device

43

Figure 4.2: Terminal connected to the Armory Device

To perform keystroke injection, I utilized the compiled string2hid.c binary
named Inject, located in /home/usbarmory/GIT_Backup/. Additionally, the BLE
listener script (listening.py) runs from /opt/rem_com_exec. My Python script
includes a cd command, allowing it to navigate to any directory on the host filesys-
tem, showcasing the flexibility and adaptability of the USB-C Armory Device MK
II. Although rapid keystroke injections occasionally resulted in missed characters,
stable command injection was reliably achievable when executed at a moderate pace.
Figure 4.3 demonstrates keystrokes injected into the unconnected terminal, Figure
4.4 illustrates background device-side processing via /dev/ttymxc0, and Figure 4.5
presents the client-side output.

4.1.1 The Impact of My Results

Social engineering attacks and badUSB exploits remain highly relevant threats in
cybersecurity, primarily because ordinary users are neither adequately informed nor
actively interested in understanding these risks. This thesis clearly illustrates how
challenging it can be (even for someone with a strong background in cryptology)
to access and interpret cybersecurity information due to its complexity and poor
readability.

I managed to achieve substantial results within a one-year timeframe due to
my motivation and daily dedication. However, typical users who might genuinely
care about their privacy rarely have the luxury of dedicating such significant time
and effort. For these individuals, navigating cybersecurity resources can become
overwhelming and discouraging, ultimately leading them to ignore proactive security
measures altogether.

Attackers benefit from clear incentives like financial gain or strategic advantages,
making them inherently motivated to learn and exploit vulnerabilities efficiently.
On the other hand, preventing such attacks provide no immediate reward, making
proactive cybersecurity efforts challenging for users without clear and accessible
information.

The current state of my script provides a practical demonstration of how simply
a trusted device can miss use this trust. However it is only for performing tests on

44

Figure 4.3: Injected script into the not connected terminal

Figure 4.4: Background Python string processing

45

Figure 4.5: Python terminal seen by the user connected to the Armory Device

46

personal equipment, in an ethical manner. This demonstration gives an intuitive
display of how dangerous cyber threats might be. Also highlighting the fact that
cyber threats does not solely come from the digital channel.

4.1.2 Trusted Device Vulnerabilities

Typically, devices become "trusted" once physically connected or paired via Blue-
tooth. This research emphasizes how easily this trust can be exploited. Malicious de-
vices capable of emulating trusted devices can effortlessly gain unauthorized access,
exploiting the user’s assumption that physical or Bluetooth connections inherently
imply safety.

4.1.3 Highlighting the Weakest Link

A key insight from my research is that even the most advanced security protocols
become entirely ineffective if there is an overlooked physical or digital vulnerability.
Cybersecurity tends to emphasize technical solutions like protocol enhancements,
cryptographic implementations, or software defenses, while often neglecting the im-
portance of user awareness. Just as Health, Safety, and Environment (HSE) training
is crucial in industries like construction, cybersecurity awareness should be equally
prioritized within organizations dealing with sensitive user data.

4.1.4 Countermeasures and Limitations

Keystroke Injection Countermeasures

One of the most effective defenses against keystroke injection attacks via badUSB is
simple physical prevention—restricting access to device USB ports. However, this
is not always practical in environments where USB access is necessary. Operating
systems like Windows and macOS implement various software-based protections,
such as blocking unknown USB Vendor IDs or preventing payload execution. Yet,
these countermeasures often have significant downsides, including complexity, user
inconvenience, and vulnerability to dynamically spoofed IDs.

To illustrate this, Figure 4.6 summarizes common keystroke injection prevention
techniques and their limitations, emphasizing the critical need for proactive user
education to reduce vulnerability.

Theoretical Limitations

This research aims solely at educational and testing purposes and does not endorse
unethical activities. It offers insight into the learning curve faced by newcomers in cy-
bersecurity. However, acknowledging theories like Bayesian Brain Theory highlights
that individual experiences and perceptions vary greatly, suggesting the necessity
for further research into enhancing cybersecurity education.

Practical Limitations

Due to limited documentation and time constraints, my research on developing a
BLE connection with the Armory Device MK II did not reach the desired levels of
automation, user-friendliness or security robustness. Numerous dead ends slowed

47

Figure 4.6: Keystroke Injection Countermeasures and their limitations

48

progress, underscoring the need for clearer guidance and accessible resources in this
field.

Additionally, my relative inexperience with BLE development and the lack of
readable documentation significantly impacted the depth and pace of my progress,
highlighting the importance of improved educational materials and resources.

Application Drawbacks

On the practical side, my application currently handles only small data streams
at a time (20-30 characters), requiring close proximity (3-5 meters) for effective
Bluetooth communication. Furthermore, manual initiation of the keystroke injec-
tion application is necessary before using the script, reducing its ease of use. The
script also lacks user notifications regarding connection status, potentially causing
confusion when a connection is lost or terminated.

Addressing these practical issues in future developments could significantly im-
prove usability and reliability, further emphasizing the need for clear, intuitive cy-
bersecurity solutions accessible to all users.

4.1.5 Improvements and Future Work

Security Enhancements

Several improvements could significantly strengthen my application’s security, show-
casing its inherent flexibility. The ANNA-B112 module offers multiple encryption
algorithms and key negotiation protocols that were not fully utilized in my current
implementation. Employing these cryptographic tools would significantly reduce
the risk of Bluetooth spoofing, connection hijacking, or similar security breaches.
Additionally, leveraging ANNA’s built-in handshake protocol, which requires user
authentication before granting access, would further protect the device against unau-
thorized use.

Script Development and Automation

Currently, my script requires further refinement before it could perform real keystroke
injection prevention testing tool. Below are several suggestions for future develop-
ment:

Firstly, automating the keystroke injection process would greatly enhance usabil-
ity. Instead of manually navigating to the directory containing the injection file, the
user could be immediately prompted to begin injecting keystrokes into the target
device. Additionally, providing an option to seamlessly switch back to "Command
Armory Device Mode" would increase flexibility and user convenience.

Further improvements could include adding predefined automated functions,
such as "Open Command Prompt on Target" or "Open Link on Target." These
user-friendly commands would simplify testing for individuals without extensive
technical knowledge.

Improving the BLE connection itself could also significantly enhance perfor-
mance. Extending the effective range and optimizing packet handling would enable
the transmission of longer data strings, improving usability and reducing the need
for sending multiple short messages.

49

Another promising area for further development would be combining remote
keystroke injection with the Armory Device’s mass storage emulation capabilities.
This combination could allow rapid exfiltration or targeted writing of data to and
from the target device.

Disclaimer: These recommendations are presented strictly for educational and
demonstration purposes, aiming to increase awareness about the versatility and
broad attack surface of cybersecurity threats. They emphasize the importance of
bridging the knowledge gap between cybersecurity professionals and everyday users.
They are not intended to encourage malicious or unethical behavior.

Further Exploration of Vendor Defined Messages

Before installing the operating system on the Armory Device, I briefly explored com-
munication using Vendor Defined Messages (VDM). Although my initial exploration
was limited, I successfully extracted some byte-level data from the device using a
basic script. This approach reveals a potential vulnerability common in many USB
devices, as previously demonstrated by Gunnar Alendal in his paper [15], which I
have briefly interpreted and summarized in my paper [16].

Future research could explore the automation of communication using vendor-
defined messages, leveraging the USB-C Armory Device MK II’s capabilities. This
approach could delve deeper into this niche but significant area of USB security vul-
nerabilities, further expanding our understanding of potential threats and necessary
countermeasures.

50

Bibliography

[1] Barisani, Andrea or InversePath. Mk ii introduction. [Online]. Available:
https://github.com/usbarmory/usbarmory/wiki/Mk-II-Introduction

[2] Maher Alsharif, Shailendra Mishra, and Mohammed AlShehri, “Cybersecurity
awareness and phishing attacks,” Computer Systems Science and Engineering,
vol. 40, no. 3, 2022, accessed: 2025-05-07. [Online]. Available: https:
//www.techscience.com/csse/v40n3/44582/html

[3] Björn Hjelm, Niklas von Maltzahn and Michael Fischer, “Cybersecurity
communication for the general public—challenges and opportunities,” Journal
of Cybersecurity and Privacy, vol. 1, no. 4, pp. 649–661, 2021, accessed:
2025-05-07. [Online]. Available: https://www.mdpi.com/2624-800X/1/4/34

[4] Unknown, “A device for executing keystroke injection attacks,” 2022, accessed:
2025-04-20. [Online]. Available: https://tore.tuhh.de/dspace-cris-server/api/
core/bitstreams/c8e23b88-214b-4006-9597-1795e1c8cc55/content

[5] Armis Researchers. (n.d.) Blueborne vulnerability summary. Ac-
cessed: 2025-05-01. [Online]. Available: https://westoahu.hawaii.edu/cyber/
vulnerability-research/vulnerabilities-weekly-summaries/blueborne/

[6] Patrik Almehagen Sandstad, “Open source cots equipment for transparent
security: A qualitative study,” Master’s thesis, University of Oslo, Department
of Informatics, Faculty of Mathematics and Natural Sciences, 2024, 30 ECTS.
[Online]. Available: https://www.mn.uio.no/

[7] Chainalysis. (2024) 2024 crypto crime mid-year update: Part 1. Chainalysis.
Accessed: 2025-05-21. [Online]. Available: https://www.chainalysis.com/blog/
2024-crypto-crime-mid-year-update-part-1/

[8] Gunnar Alendal, Digital Forensic Acquisition of mobile phones in the Era of
Mandatory Security. NTNU, 2022.

[9] Patrik Almehagen Sandstad, “Open source cots equipment for transparent se-
curity,” Master’s thesis, University of Oslo, 2024.

[10] u-connect. u-connectxpress, at commands manual. [On-
line]. Available: https://content.u-blox.com/sites/default/files/
u-connectXpress-ATCommands-Manual_UBX-14044127.pdf?utm_content=
UBX-14044127

[11] Hacker Warehouse, “Usb armory mk ii,” 2024, accessed: 2025-04-25. [Online].
Available: https://hackerwarehouse.com/product/usb-armory-mkii/

51

https://github.com/usbarmory/usbarmory/wiki/Mk-II-Introduction
https://www.techscience.com/csse/v40n3/44582/html
https://www.techscience.com/csse/v40n3/44582/html
https://www.mdpi.com/2624-800X/1/4/34
https://tore.tuhh.de/dspace-cris-server/api/core/bitstreams/c8e23b88-214b-4006-9597-1795e1c8cc55/content
https://tore.tuhh.de/dspace-cris-server/api/core/bitstreams/c8e23b88-214b-4006-9597-1795e1c8cc55/content
https://westoahu.hawaii.edu/cyber/vulnerability-research/vulnerabilities-weekly-summaries/blueborne/
https://westoahu.hawaii.edu/cyber/vulnerability-research/vulnerabilities-weekly-summaries/blueborne/
https://www.mn.uio.no/
https://www.chainalysis.com/blog/2024-crypto-crime-mid-year-update-part-1/
https://www.chainalysis.com/blog/2024-crypto-crime-mid-year-update-part-1/
https://content.u-blox.com/sites/default/files/u-connectXpress-ATCommands-Manual_UBX-14044127.pdf?utm_content=UBX-14044127
https://content.u-blox.com/sites/default/files/u-connectXpress-ATCommands-Manual_UBX-14044127.pdf?utm_content=UBX-14044127
https://content.u-blox.com/sites/default/files/u-connectXpress-ATCommands-Manual_UBX-14044127.pdf?utm_content=UBX-14044127
https://hackerwarehouse.com/product/usb-armory-mkii/

[12] Proto Bioengineering, “How to control a bluetooth
le device with python,” 2019, accessed: 2025-04-
25. [Online]. Available: https://medium.com/@protobioengineering/
how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223

[13] ——. (2021) How to control a bluetooth le de-
vice with python. Medium. Accessed: 2025-03-24.
[Online]. Available: https://medium.com/@protobioengineering/
how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223

[14] Collin Mulliner. hidemulation. [Online]. Available: https://github.com/
crmulliner/hidemulation

[15] Gunnar Alendal, “Digital forensic acquisition of mobile phones in the era
of mandatory security: Offensive techniques, security vulnerabilities and ex-
ploitation,” Doctoral thesis, Norwegian University of Science and Technology
(NTNU), Department of Information Security and Communication Technology,
2022, doctoral theses at NTNU, 2022:94.

[16] Oskar Krystian Michalski, “Digital forensic acquisition: Assessment of gunnar
alendal’s work,” Paper, University of Bergen, Department of Informatics, 2024,
supervisor: Øyvind Ytrehus.

52

https://medium.com/@protobioengineering/how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223
https://medium.com/@protobioengineering/how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223
https://medium.com/@protobioengineering/how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223
https://medium.com/@protobioengineering/how-to-control-a-bluetooth-le-device-with-python-3541c0cd2223
https://github.com/crmulliner/hidemulation
https://github.com/crmulliner/hidemulation

Appendices

53

Appendix A

Exciting results

A.1 The HID emulation scripts

A.1.1 Modified hidnet.sh bash script.

Listing A.1: Dev_switch_HID.sh
1 #!/ bin /bash
2 #
3 # Modi f i ca t i on o f Co l l i n Mul l iner ’ s USB gadget s c r i p t f o r the USB

Armory Device .
4 # I t automat i ca l l y re−execute s with sudo i f not a l r eady root .
5 # Then i t s e t s up an IP address on the new ECM in t e r f a c e f o r SSH acc e s s

at IP 1 0 . 0 . 0 . 1 .
6 #
7 # Co l l i n Mul l iner + mod i f i c a t i on s
8
9 #se t +e # Exit on any e r r o r

10
11 # This w i l l remove the o ld gadget d r i v e r s that a l r eady e x i s t s .
12 # There for i f an SSH connect ion i s open , i t w i l l be dropped .
13 # (In sp i r ed by Co l l i n Mul l ine r s code .)
14 modprobe −r g_ether usb_f_ecm u_ether 2>/dev/ nu l l | | t rue
15 modprobe usb_f_hid 2>/dev/ nu l l | | t rue
16 modprobe usb_f_ecm 2>/dev/ nu l l | | t rue
17
18 # Removing e x i s t i n g usb_gadgets
19 i f [−d / sys / ke rne l / c on f i g /usb_gadget/g1] ; then
20 echo "" > / sys / ke rne l / c on f i g /usb_gadget/g1/UDC 2>/dev/ nu l l | | t rue
21 rm −r f / sys / ke rne l / c on f i g /usb_gadget/g1
22 f i
23
24 # In s t a n t i a t e new gadget by Co l l i n Mul l iner .
25 mkdir / sys / ke rne l / c on f i g /usb_gadget/g1
26 cd / sys / ke rne l / c on f i g /usb_gadget/g1
27
28 # This dev i c e d e s c r i p t i o n was provided by Co l l i n Mul l iner .
29 echo 0x1d6b > idVendor # Linux Foundation
30 echo 0x0104 > idProduct # Mult i funct i on Composite Gadget
31 echo 0x0100 > bcdDevice # v1 . 0 . 0
32 echo 0x0200 > bcdUSB # USB2
33 mkdir s t r i n g s /0x409
34 echo "deadbeef9876543210 " > s t r i n g s /0x409/ ser ia lnumber

54

35 echo "USBArmory" > s t r i n g s /0x409/manufacturer
36 echo "USBArmory Network + Keyboard" > s t r i n g s /0x409/product
37 mkdir c o n f i g s /c . 1
38 mkdir c o n f i g s /c . 1/ s t r i n g s /0x409
39 echo "Conf1" > con f i g s /c . 1/ s t r i n g s /0x409/ c on f i gu r a t i on
40 echo 120 > con f i g s /c . 1/MaxPower
41
42 # In s t a n t i a t i n g the HID func t i on f o r the dev i ce (provided by Co l l i n

Mul l iner) :
43 mkdir f unc t i on s /hid . usb0
44 echo 1 > func t i on s /hid . usb0/ p ro to co l
45 echo 1 > func t i on s /hid . usb0/ subc l a s s
46 echo 8 > func t i on s /hid . usb0/ report_length
47 echo −ne "\x05\x01\x09\x06\xA1\x01\x05\x07\x19\xE0\x29\xE7\x15\x00\x25\

x01\x75\x01\x95\x08\x81\x02\x95\x01\x75\x08\x81\x03\x95\x05\x75\x01
\x05\x08\x19\x01\x29\x05\x91\x02\x95\x01\x75\x03\x91\x03\x95\x06\
x75\x08\x15\x00\x25\x65\x05\x07\x19\x00\x29\x65\x81\x00\xC0" \

48 > func t i on s /hid . usb0/ report_desc
49
50 # Create ECM (Ethernet) func t i on
51 mkdir f unc t i on s /ecm . usb0
52
53 # Create symbol ic l i n k to the f unc t i on s in the c on f i g d i r e c t o r y . (As

Co l l i n Mul l iner did .)
54 ln −s func t i on s /hid . usb0 c on f i g s /c . 1/
55 ln −s func t i on s /ecm . usb0 c on f i g s /c . 1/
56
57 # Connecct the gadget to the phy s i c a l USB c o n t r o l l e r .
58 echo "Binding to ci_hdrc . 0 . . . "
59 echo ci_hdrc . 0 > UDC
60
61 # In s t an t l y enable the network i n t e r f a c e f o r ssh ac c e s s .
62 # Network i n t e r f a c e that I was working with was named "usb0 " .
63 # And the 10 . 0 . 0 . 1 / 24 IP address was the d e f au l t f o r the USB Armory .
64 USB_IF="usb0"
65 ip l i n k s e t $USB_IF up
66 ip addr add 10 . 0 . 0 . 1 / 24 dev $USB_IF

A.1.2 Original hidnet.sh script

Listing A.2: hidnet.sh by Collin Mulliner
1 #!/ bin /bash
2
3 #
4 # Co l l i n Mul l iner <c o l l i n AT mul l i ne r . org>
5 #
6
7 modprobe −r g_ether usb_f_ecm u_ether
8 modprobe usb_f_hid
9 modprobe usb_f_ecm

10
11 cd / sys / ke rne l / c on f i g /
12 mkdir usb_gadget/g1
13 cd usb_gadget/g1
14 mkdir c o n f i g s /c . 1
15 mkdir f unc t i on s /hid . usb0

55

16 mkdir f unc t i on s /ecm . usb0
17 echo 1 > func t i on s /hid . usb0/ p ro to co l
18 echo 1 > func t i on s /hid . usb0/ subc l a s s
19 echo 8 > func t i on s /hid . usb0/ report_length
20 echo −ne "\x05\x01\x09\x06\xA1\x01\x05\x07\x19\xE0\x29\xE7\x15\x00\x25\

x01\x75\x01\x95\x08\x81\x02\x95\x01\x75\x08\x81\x03\x95\x05\x75\x01
\x05\x08\x19\x01\x29\x05\x91\x02\x95\x01\x75\x03\x91\x03\x95\x06\
x75\x08\x15\x00\x25\x65\x05\x07\x19\x00\x29\x65\x81\x00\xC0" >
func t i on s /hid . usb0/ report_desc

21 mkdir s t r i n g s /0x409
22 mkdir c o n f i g s /c . 1/ s t r i n g s /0x409
23 echo 0x1d6b > idVendor # Linux Foundation
24 echo 0x0104 > idProduct # Mult i funct ion Composite Gadget
25 echo 0x0100 > bcdDevice # v1 . 0 . 0
26 echo 0x0200 > bcdUSB # USB2
27 echo "deadbeef9876543210 " > s t r i n g s /0x409/ ser ia lnumber
28 echo "USBArmory" > s t r i n g s /0x409/manufacturer
29 echo "USBArmory Network + Keyboard" > s t r i n g s /0x409/product
30 echo "Conf1" > con f i g s /c . 1/ s t r i n g s /0x409/ c on f i gu r a t i on
31 echo 120 > con f i g s /c . 1/MaxPower
32 ln −s func t i on s /hid . usb0 c on f i g s /c . 1/
33 ln −s func t i on s /ecm . usb0 c on f i g s /c . 1/
34 echo ci_hdrc . 0 > UDC

56

A.2 Beginning of BLE communication with ANNA-
B112

Listing A.3: Bleak_SPS_BLE.py
1 import async io
2 from bleak import BleakScanner , B leakCl i ent
3
4 async de f main () :
5 p r i n t ("Scanning f o r BLE dev i c e s . . . ")
6 dev i c e s = await BleakScanner . d i s c ove r (timeout =10.0)
7
8 f o r d in dev i c e s :
9 i f d . name == "ANNA−B1−0CADDD" :

10 p r in t ("Found ANNA−B1−0CADDD")
11 try :
12 async with BleakCl i ent (d . address) as c l i e n t :
13 """ p r i n t (f "Connected to {d . name} at {d . address }")
14 response = await send_command(c l i e n t , " l s ")
15 i f r e sponse :
16 p r i n t (f "Response : { re sponse }") """
17 except Exception as e :
18 p r i n t (f " Fa i l ed to connect : {e}")
19
20 async io . run (main ())

57

A.3 Connection Attempts.

A.3.1 Attempting Connection after full iteration.

Listing A.4: Sub optimal connection attempts.
1 import async io
2 from bleak import BleakScanner , B leakCl i ent
3
4 TARGET_NAME = "ANNA−B112"
5 MAX_RETRIES = 3
6
7 async de f main () :
8 p r i n t ("Scanning f o r dev i c e s . . . ")
9 dev i c e s = await BleakScanner . d i s c ove r (timeout =5.0)

10
11 target_dev ice = None # Place ho lder f o r the t a r g e t dev i ce to be

found .
12 f o r dev i ce in dev i c e s :
13 p r i n t (f "Found dev i ce : { dev i c e . name} [{ dev i c e . address }] ")
14 i f dev i c e . name == TARGET_NAME:
15 target_dev ice = dev i ce # Store the found dev i ce
16 break
17
18 # I f the t a r g e t dev i c e was not scanned then return .
19 i f target_dev ice i s None :
20 p r in t (f "Device ’{TARGET_NAME} ’ not found . ")
21 re turn
22
23 p r in t (f "Found ta r g e t dev i ce : { target_dev ice . name} [{ target_dev ice .

address }] ")
24
25 f o r attempt in range (1 , MAX_RETRIES + 1) : # In case the connect ion

es tab l i shment time out too ea r l y .
26 p r i n t (f "Attempt {attempt} to connect . . . ")
27 try :
28 async with BleakCl i ent (target_dev ice . address) as c l i e n t :
29 connected = await c l i e n t . i s_connected ()
30 i f connected :
31 p r i n t (f "Connected to {TARGET_NAME} s u c c e s s f u l l y ! ")
32 s e r v i c e s = await c l i e n t . g e t_se rv i c e s ()
33 p r i n t (" S e r v i c e s : ")
34 f o r s e r v i c e in s e r v i c e s :
35 p r i n t (s e r v i c e)
36 re turn # Success , e x i t a f t e r connect ion
37 e l s e :
38 p r i n t (f " Fa i l ed to connect on attempt {attempt } . ")
39 except Exception as e :
40 p r i n t (f "Error on attempt {attempt } : {e}")
41
42 await async io . s l e e p (2) # Wait 2 seconds be f o r e r e t r y i n g
43
44 p r in t (f " Fa i l ed to connect to {TARGET_NAME} a f t e r {MAX_RETRIES}

attempts . ")
45
46 i f __name__ == "__main__" :
47 async io . run (main ())

58

A.3.2 Attempting Connection instantly after discovering the
target device.

Listing A.5: Successful BLE Connection attempt.
1 import async io
2 from bleak import BleakScanner , B leakCl i ent
3
4 """ This i s a more e f f i c i e n t way to connect to a BLE dev i ce by

i n s t a n t l y e s t a b l i s h i n g a connect ion once i t i s detec ted . """
5 TARGET_NAME = "ANNA−B1−0CADDD"
6 CONNECTION_HOLD = 60
7
8 # Container f o r s t o r i n g the t a r g e t s name .
9 c l a s s DeviceHolder :

10 dev i ce = None
11
12 found_event = async io . Event ()
13
14 de f de t e c t i on_ca l lback (device , advertisement_data) :
15 i f dev i c e . name == TARGET_NAME:
16 p r in t (f "Detected { dev i ce . name} at { dev i ce . address } . ")
17 DeviceHolder . dev i c e = dev i ce # Save the dev i c e immediately .
18 found_event . s e t () # S igna l that the t a r g e t has been found .
19
20 async de f connect_device (dev i c e) :
21 t ry :
22 async with BleakCl i ent (dev i c e) as c l i e n t :
23 i f c l i e n t . i s_connected :
24 p r in t (f "Connected to { dev i ce . name} ({ dev i ce . address }) ")
25 # await async io . s l e e p (CONNECTION_HOLD) # This can

p o t e n t i a l l y pro long the connect ion time .
26 p r in t (f " Disconnect ing from { dev i c e . name } . . . ")
27 except Exception as e :
28 p r i n t (f "Connection f a i l e d : {e}")
29
30
31 async de f main () :
32 scanner = BleakScanner ()
33 scanner . r e g i s t e r_de t e c t i on_ca l l ba ck (de tec t i on_ca l lback)
34
35 p r in t (f "Scanning f o r ’{TARGET_NAME} ’ . . . ")
36 await scanner . s t a r t ()
37 await found_event . wait () # Wait u n t i l the name o f the t a r g e t i s

a s s i gned .
38 await scanner . stop ()
39
40 # Connect to the t a r g e t name .
41 i f DeviceHolder . dev i c e :
42 p r i n t (f "Found {TARGET_NAME} at {DeviceHolder . dev i c e . address } .

Attempting connect ion . . . ")
43 await connect_device (DeviceHolder . dev i c e)
44 e l s e :
45 p r i n t ("Device not found . ")
46
47 i f __name__ == "__main__" :
48 async io . run (main ())

59

A.4 Script discovering the services of the device.

Listing A.6: Iterating through services.
1 import async io
2 from bleak import BleakScanner , B leakCl i ent
3
4 TARGET_NAME = "ANNA−B1−0CADDD"
5 CONNECTION_HOLD = 60 # Adjust i f you want to keep the connect ion

l onge r
6
7 # Shared conta ine r to hold the t a r g e t dev i ce r e f e r e n c e
8 c l a s s DeviceHolder :
9 dev i ce = None

10
11 found_event = async io . Event ()
12
13 de f de t e c t i on_ca l lback (device , advertisement_data) :
14 i f dev i c e . name == TARGET_NAME:
15 p r in t (f "Detected { dev i ce . name} at { dev i ce . address } . ")
16 DeviceHolder . dev i c e = dev i ce # Save the dev i c e immediately .
17 found_event . s e t () # S igna l that the t a r g e t has been found .
18
19 async de f connect_device (dev i c e) :
20 t ry :
21 async with BleakCl i ent (dev i c e) as c l i e n t :
22 i f c l i e n t . i s_connected :
23 p r in t (f "Connected to { dev i ce . name} ({ dev i ce . address }) ")
24
25 # Discover and pr in t a v a i l a b l e s e r v i c e s , here I needed

some help from chatGPT f o r format ing purposes .
26 s e r v i c e s = await c l i e n t . g e t_se rv i c e s ()
27 p r in t ("\ nDiscovered S e r v i c e s and Cha r a c t e r i s t i c s : ")
28 f o r s e r v i c e in s e r v i c e s :
29 p r i n t (f "\ nServ i ce : { s e r v i c e . uuid} | { s e r v i c e .

d e s c r i p t i o n }")
30 f o r char in s e r v i c e . c h a r a c t e r i s t i c s :
31 p r i n t (f " Cha r a c t e r i s t i c : { char . uuid} | { char .

d e s c r i p t i o n }")
32 i f char . p r op e r t i e s :
33 p r i n t (f " Prope r t i e s : { char . p r op e r t i e s }")
34
35
36
37 await async io . s l e e p (CONNECTION_HOLD) # Keep the

connect ion open .
38 p r in t (f " Disconnect ing from { dev i c e . name } . . . ")
39 except Exception as e :
40 p r i n t (f "Connection f a i l e d : {e}")
41
42 async de f main () :
43 scanner = BleakScanner ()
44 scanner . r e g i s t e r_de t e c t i on_ca l l ba ck (de tec t i on_ca l lback)
45
46 p r in t (f "Scanning f o r ’{TARGET_NAME} ’ . . . ")
47 await scanner . s t a r t ()
48 await found_event . wait () # Wait u n t i l the name o f the t a r g e t i s

a s s i gned .

60

49 await scanner . stop ()
50
51 i f DeviceHolder . dev i c e :
52 p r i n t (f "\nFound {TARGET_NAME} at {DeviceHolder . dev i c e . address } .

Attempting connect ion . . . ")
53 await connect_device (DeviceHolder . dev i c e)
54 e l s e :
55 p r i n t ("Device not found . ")
56
57 i f __name__ == "__main__" :
58 async io . run (main ())

61

A.5 User terminal connection

Listing A.7: The script that prompts the user with a python terminal allowing for
remote bash command execution.

1 #!/ usr / bin /env python3
2 import sys
3 import subproces s
4 import impor t l i b
5
6 # Auto−i n s t a l l dependenc ies i f mis s ing
7 _deps = (" bleak " ,)
8 f o r pkg in _deps :
9 t ry :

10 impor t l i b . import_module (pkg)
11 except ImportError :
12 subproces s . check_cal l ([sys . executable , "−m" , "pip " , " i n s t a l l " ,

"−−upgrade" , pkg])
13
14 import async io
15 from bleak import BleakScanner , B leakCl i ent
16
17 TARGET_NAME = "ANNA−B1−0CADDD"
18 CONNECTION_HOLD = 5 # Time (in seconds) to keep the connect ion open
19 bu f f e r = "" # Buf f e r to s t o r e the response from the dev i c e .
20 s t a r t ed = False # Flag to i nd i c a t e i f the response has s t a r t ed .
21
22 # Custom s e r v i c e / c h a r a c t e r i s t i c UUIDs as d i s cove r ed :
23 SPS_SERVICE_UUID = "2456 e1b9−26e2−8f83−e744−f34 f01e9d701 "
24 SPS_WRITE_CHAR_UUID = (
25 "2456 e1b9−26e2−8f83−e744−f34 f01e9d703 " # Supports wr i t e and no t i f y
26)
27 SPS_NOTIFY_CHAR_UUID = (
28 "2456 e1b9−26e2−8f83−e744−f34 f01e9d703 " # Same c h a r a c t e r i s t i c used

f o r n o t i f i c a t i o n s
29)
30
31
32 c l a s s DeviceHolder :
33 dev i ce = None
34
35
36 found_event = async io . Event ()
37
38
39 de f de t e c t i on_ca l lback (device , _) :
40 i f dev i c e . name == TARGET_NAME:
41 p r in t (f "Detected { dev i ce . name} at { dev i ce . address } . ")
42 DeviceHolder . dev i c e = dev i ce
43 found_event . s e t ()
44
45
46 de f terminal_emulat ion (e x i t) :
47 command = input ("Type your input : ")
48 i f command . lower () == " ex i t " :
49 re turn True , None
50 e l s e :
51 re turn (

62

52 ex i t ,
53 b"#" + command . encode (" utf −8") + b"\n" ,
54)
55
56
57 de f no t i f i c a t i on_hand l e r (_, data) :
58 g l oba l bu f f e r
59 g l oba l s t a r t ed
60
61 try :
62 decoded = data . decode (" utf −8" , e r r o r s=" r ep l a c e ")
63 except Exception :
64 decoded = s t r (data)
65
66 i f " ! s t a r t ! " in decoded and " ! end ! " in decoded :
67 start_index = decoded . f i nd (" ! s t a r t ! ") + len (" ! s t a r t ! ")
68 end_index = decoded . f i nd (" ! end ! ")
69 content = decoded [start_index : end_index] . s t r i p ()
70 p r in t ("−−−−−−−−−−−−−−−−−−−−−−−START−−−−−−−−−−−−−−−−−−−−−−−−")
71 p r in t (content)
72 p r in t ("−−−−−−−−−−−−−−−−−−−−−−−−−END−−−−−−−−−−−−−−−−−−−−−−−−\n")
73 re turn
74
75 i f " ! s t a r t ! " in decoded :
76 start_index = decoded . f i nd (" ! s t a r t ! ") + len (" ! s t a r t ! ")
77 p r in t ("−−−−−−−−−−−−−−−−−−−−−−−START−−−−−−−−−−−−−−−−−−−−−−−−")
78 s t a r t ed = True
79 bu f f e r = decoded [start_index :]
80 re turn
81
82 i f s t a r t ed :
83 bu f f e r += decoded
84
85 i f " ! end ! " in decoded :
86 end_index = bu f f e r . f i nd (" ! end ! ")
87 f ina l_content = bu f f e r [: end_index] . s t r i p ()
88 p r i n t (f ina l_content)
89 p r i n t ("−−−−−−−−−−−−−−−−−−−−−−−−−END

−−−−−−−−−−−−−−−−−−−−−−−−\n")
90 bu f f e r = ""
91 s t a r t ed = False
92
93
94 async de f connect_device (dev i c e) :
95 t ry :
96 async with BleakCl i ent (dev i c e) as c l i e n t :
97 i f c l i e n t . i s_connected :
98 p r in t (f "Connected to { dev i ce . name} ({ dev i ce . address }) ")
99 e x i t = Fal se

100
101 await c l i e n t . s t a r t_no t i f y (SPS_NOTIFY_CHAR_UUID,

no t i f i c a t i on_hand l e r)
102 p r in t (" Es t ab l i s h i ng Communication . . . ")
103 await async io . s l e e p (1)
104 await c l i e n t . write_gatt_char (
105 SPS_WRITE_CHAR_UUID, b"+++" , response=True
106)
107 p r in t (" . ")

63

108 await async io . s l e e p (1)
109
110 p r in t ("Enter ing remote command execut ion . . . \ n")
111
112 whi l e True :
113 ex i t , command = terminal_emulation (e x i t)
114 i f e x i t :
115 break
116 e l s e :
117 await c l i e n t . write_gatt_char (
118 SPS_WRITE_CHAR_UUID, command , re sponse=True
119)
120 p r in t (" . ")
121 await async io . s l e e p (1)
122
123 p r in t ("Connection was f i n i s h e d . . . ")
124 await c l i e n t . s top_not i fy (SPS_NOTIFY_CHAR_UUID)
125 p r in t (f " Disconnect ing from { dev i c e . name } . . . ")
126
127 except Exception as e :
128 p r in t (f "Connection f a i l e d : {e}")
129
130
131 async de f main () :
132 scanner = BleakScanner ()
133 scanner . r e g i s t e r_de t e c t i on_ca l l ba ck (de tec t i on_ca l lback)
134
135 p r in t (f "Scanning f o r ’{TARGET_NAME} ’ . . . ")
136 await scanner . s t a r t ()
137 await found_event . wait ()
138 await scanner . stop ()
139
140 i f DeviceHolder . dev i c e :
141 p r in t (
142 f "Found {TARGET_NAME} at {DeviceHolder . dev i c e . address } .

Attempting connect ion . . . "
143)
144 await connect_device (DeviceHolder . dev i c e)
145 e l s e :
146 p r in t ("Device not found . ")
147
148
149 i f __name__ == "__main__" :
150 async io . run (main ())

64

A.6 Testing connection with multiple AT commands.

Listing A.8: In case one or more of the commands were not delivered.
1 import async io
2 from bleak import BleakScanner , B leakCl i ent
3
4 TARGET_NAME = "ANNA−B1−0CADDD"
5 CONNECTION_HOLD = 30 # Time (in seconds) to keep the connect ion open
6
7 # Custom s e r v i c e / c h a r a c t e r i s t i c UUIDs as d i s cove r ed :
8 SPS_SERVICE_UUID = "2456 e1b9−26e2−8f83−e744−f34 f01e9d701 "
9 SPS_WRITE_CHAR_UUID = "2456 e1b9−26e2−8f83−e744−f34 f01e9d703 " #

Supports wr i t e and no t i f y
10 SPS_NOTIFY_CHAR_UUID = "2456 e1b9−26e2−8f83−e744−f34 f01e9d703 " # Same

c h a r a c t e r i s t i c used f o r n o t i f i c a t i o n s
11
12 # Shared conta ine r to hold the t a r g e t dev i ce r e f e r e n c e .
13 c l a s s DeviceHolder :
14 dev i c e = None
15
16 found_event = async io . Event ()
17
18 de f de t e c t i on_ca l lback (device , advertisement_data) :
19 i f dev i c e . name == TARGET_NAME:
20 p r in t (f "Detected { dev i c e . name} at { dev i c e . address } . ")
21 DeviceHolder . dev i c e = dev i ce # Save the dev i ce immediately .
22 found_event . s e t () # S igna l that the t a r g e t has been found .
23
24 # Chat GPTs sugge s t i on : Use a n o t i f i c a t i o n handler to proce s s incoming

n o t i f i c a t i o n s .
25 de f no t i f i c a t i on_hand l e r (sender , data) :
26 t ry :
27 decoded = data . decode (" utf −8" , e r r o r s=" r ep l a c e ")
28 except Exception as e :
29 decoded = s t r (data)
30 p r in t (f " No t i f i c a t i o n from { sender } : {decoded}")
31
32 async de f connect_device (dev i c e) :
33 t ry :
34 async with BleakCl i ent (dev i c e) as c l i e n t :
35 i f c l i e n t . i s_connected :
36 p r in t (f "Connected to { dev i ce . name} ({ dev i ce . address }) ")
37
38 # Star t n o t i f i c a t i o n s to r e c e i v e the dev i ce ’ s re sponse .
39 await c l i e n t . s t a r t_no t i f y (SPS_NOTIFY_CHAR_UUID,

no t i f i c a t i on_hand l e r)
40
41 # Allow a shor t de lay to ensure n o t i f i c a t i o n s are

proper ly s e t up .
42 await async io . s l e e p (1)
43
44 # Sending mul t ip l e AT commands in case o f packet l o s s

or t iming i s s u e s .
45 p r i n t ("Sending AT command . . . ")
46 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

r \n" , re sponse=True)
47 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

65

r \n" , re sponse=True)
48 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

r \n" , re sponse=True)
49 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

r \n" , re sponse=True)
50 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

r \n" , re sponse=True)
51 await c l i e n t . write_gatt_char (SPS_WRITE_CHAR_UUID, b"AT\

r \n" , re sponse=True)
52 p r in t ("AT command sent . Waiting f o r re sponse . . . ")
53
54 # Keep the connect ion open f o r a per iod to r e c e i v e any

re sponse s .
55 await async io . s l e e p (CONNECTION_HOLD)
56
57 # Stop n o t i f i c a t i o n s be f o r e d i s connec t ing .
58 await c l i e n t . s top_not i fy (SPS_NOTIFY_CHAR_UUID)
59 pr in t (f " Disconnect ing from { dev i c e . name } . . . ")
60 except Exception as e :
61 p r i n t (f "Connection f a i l e d : {e}")
62
63 async de f main () :
64 scanner = BleakScanner ()
65 scanner . r e g i s t e r_de t e c t i on_ca l l ba ck (de tec t i on_ca l lback)
66
67 p r in t (f "Scanning f o r ’{TARGET_NAME} ’ . . . ")
68 await scanner . s t a r t ()
69 await found_event . wait () # Wait u n t i l the ca l l ba ck de t e c t s the

t a r g e t .
70 await scanner . stop ()
71
72 i f DeviceHolder . dev i c e :
73 p r i n t (f "Found {TARGET_NAME} at {DeviceHolder . dev i c e . address } .

Attempting connect ion . . . ")
74 await connect_device (DeviceHolder . dev i c e)
75 e l s e :
76 p r i n t ("Device not found . ")
77
78 i f __name__ == "__main__" :
79 async io . run (main ())

A.7 listening.py

Listing A.9: the script reading input from ttymxc0 and executing recognized com-
mands.

1 #!/ usr / bin /env python3
2
3 import s e r i a l
4 import subproces s
5 import os
6 from time import s l e e p
7
8 de f main () :
9 ker_start = b ’ ! s t a r t ! ’

10 ker_end = b ’ ! end ! ’

66

11 try :
12 with s e r i a l . S e r i a l (’ /dev/ttymxc0 ’ , baudrate =115200 , t imeout=1)

as s e r :
13 p r i n t (" L i s t en ing on /dev/ttymxc0 . . . ")
14
15 whi l e True :
16 l i n e = s e r . r e ad l i n e ()
17 i f l i n e :
18 t ry :
19 text = data . decode (’ ut f −8 ’ , e r r o r s=’ r ep l a c e ’)
20 text = s t r (t ex t)
21 except Exception as e :
22 text = s t r (l i n e)
23
24 p r i n t ("Detected input : " , t ex t)
25 f ixed_text = text . s t r i p ()
26
27 i f f ixed_text [2] == "#" :
28 user_command = f ixed_text [3 : −3]
29 p r in t (f "User input : {user_command}")
30 p r in t ("Executing . . . ")
31
32 try :
33 p r i n t ("The detec ted command i s : " ,

user_command . s t r i p () [: 3])
34 # Handle cd command s epa r a t e l y
35 i f user_command . s t a r t sw i t h (’ cd ’) :
36 t ry :
37 d i r e c t o r y = user_command [3 :] . s t r i p

()
38 os . chd i r (d i r e c t o r y)
39 response = f "Changed d i r e c t o r y to :

{ os . getcwd () }"
40 ker_resp = response . encode ()
41 s e r . wr i t e (ker_start)
42 s e r . wr i t e (ker_resp)
43 s e r . wr i t e (ker_end)
44 except Exception as e :
45 e r r o r = s t r (e) . encode ()
46 s e r . wr i t e (ker_start)
47 s e r . wr i t e (e r r o r)
48 s e r . wr i t e (ker_end)
49 e l s e :
50 # Handle other commands as be f o r e
51 execut ion = subproces s . run (user_command

, s h e l l=True , capture_output=True)
52 i f execut ion . stdout :
53 ker_resp = execut ion . stdout
54 p r in t ("Command Output : \ n" , ker_resp

)
55 s e r . wr i t e (ker_start)
56 s e r . wr i t e (ker_resp)
57 s e r . wr i t e (ker_end)
58 s l e e p (1)
59 s e r . re set_input_buf fe r ()
60
61 i f execut ion . s t d e r r :
62 e r r o r = execut ion . s t d e r r

67

63 p r in t ("Error Output : ")
64 p r in t (e r r o r)
65 s e r . wr i t e (ker_start)
66 s e r . wr i t e (e r r o r)
67 s e r . wr i t e (ker_end)
68 s l e e p (1)
69
70 except Exception as cmd_exception :
71 p r i n t ("Error execut ing command : " ,

cmd_exception)
72 s e r . wr i t e (ker_start)
73 s e r . wr i t e (b ’ C r i t i c a l Error ’)
74
75 except KeyboardInterrupt :
76 p r i n t ("\nStopped by user . ")
77 except Exception as e :
78 p r i n t ("Error : " , e)
79
80 i f __name__ == ’__main__ ’ :
81 main ()

A.8 Services

A.8.1 usb-gadget-hid-ecm.service

Listing A.10: The service that runs the hidnet.sh file at boot up.
1 # / etc / systemd/system/usb−gadget−hid−ecm . s e r v i c e
2 [Unit]
3 Desc r ip t i on=USB Gadget HID+ECM con f i gu r a t i on
4 # ensure c o n f i g f s i s mounted be f o r e t h i s runs
5 After=l o ca l −f s . t a r g e t s y s i n i t . t a r g e t
6 Wants=l o ca l −f s . t a r g e t
7
8 [S e rv i c e]
9 Type=oneshot

10 ExecStart=/usr / l o c a l / bin /usb_gadget_hid_ecm . sh
11 RemainAfterExit=yes
12
13 [I n s t a l l]
14 WantedBy=multi−user . t a r g e t

A.8.2 rem-com-exec.service

Listing A.11: The service that runs the listening.py application at boot up.
1 # / etc / systemd/system/rem−com−exec . s e r v i c e
2 [Unit]
3 Desc r ip t i on=Run rem_com_exec l i s t e n e r a f t e r USB gadget i s up
4 After=usb−gadget−hid−ecm . s e r v i c e
5 Wants=usb−gadget−hid−ecm . s e r v i c e
6
7 [S e rv i c e]
8 Type=simple
9 # run your Python s c r i p t

68

10 ExecStart=/opt/rem_com_exec
11 Restart=on−f a i l u r e
12 RestartSec=5
13
14 [I n s t a l l]
15 WantedBy=multi−user . t a r g e t

69

	Acknowledgements
	Acknowledgment
	Abstract
	Abstract
	Research Question.
	Research Questions
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Related Work
	Problem Statement
	Objective
	Methodology
	Thesis Organization
	Bluetooth Technology in Daily Life
	Bluetooth Low Energy (BLE)

	Cybersecurity Context and Threat Landscape
	Open-Source vs. Proprietary Security Approaches

	Social Engineering and Hardware-Based Threats
	Combined Threats: Bluetooth and BadUSB Attacks

	Incentive and Research Gap
	My Expertise and Its Relevance
	Bridging Cybersecurity and Education

	Background
	USB-C Armory Device mk II.
	Hardware Specifications
	Device Features
	Adaptability

	ANNA-B112
	Bluetooth Isolation and Security Features of ANNA-B112
	AT Commands and ANNA Configuration

	Experimental Setup
	Intended Communication Method
	Final Communication Setup

	Challenges
	Initial Setup Difficulties
	Documentation and Configuration Struggles
	Device Communication Exploration
	Connectivity Adjustments and Final Approach
	System Stability and Storage Issues
	Bluetooth Access Challenges
	Filesystem Integrity Problems
	Comments on the GitHub Repository

	Thesis
	An practical introduction to ANNA
	Establishing BLE Communication Using Picocom

	Modifying ANNAs behavior
	ANNA-B112 Integration and Limitations
	Establishing my grounds with ANNA-B112
	The Discovery of ANNA
	Finding ANNA
	Connecting to ANNA
	Exploring services of ANNA
	The Escape Character
	The final script

	Bridging Bluetooth with the Rest of the Device
	Bypassing ANNA
	Plugging Python to the Port
	listening.py in Greater Detail

	HID Emulation
	Explaining the hidnet.sh Script
	Modifying the hidnet.sh Script
	Using the Modified hidnet.sh Script for Keystroke Injection

	Preparing Automatic Launch on Boot

	Results & Future Work
	My Results
	The Impact of My Results
	Trusted Device Vulnerabilities
	Highlighting the Weakest Link
	Countermeasures and Limitations
	Improvements and Future Work

	References
	Appendices
	Exciting results
	The HID emulation scripts
	Modified hidnet.sh bash script.
	Original hidnet.sh script

	Beginning of BLE communication with ANNA-B112
	Connection Attempts.
	Attempting Connection after full iteration.
	Attempting Connection instantly after discovering the target device.

	Script discovering the services of the device.
	User terminal connection
	Testing connection with multiple AT commands.
	listening.py
	Services
	usb-gadget-hid-ecm.service
	rem-com-exec.service

